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Abstract

Sufficient conditions for controllability of nonlocal impulsive stochastic quasi-
linear integrodifferential systems in Hilbert spaces are established. The results
are obtained by using evolution operator, semigroup theory and fixed point
technique. As an application, an example is provided to illustrate the obtained
result.
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1 Introduction

The concept of controllability plays an important role in many areas of applied math-

ematics. Random differential and integral equations play an important role in char-

acterizing numerous social, physical, biological and engineering problems. Stochastic

differential equations are important from the viewpoint of applications since they

incorporate randomness into the mathematical description of the phenomena and

therefore provide a more accurate description of it. Impulsive effects exist widely in

many evolution processes in which states are changed abruptly at certain moments

of time involving fields such as medicine, biology, economics, electronics and telecom-

munications etc., (see [26, 33]). Besides impulsive effects, stochastic effects also exist

in real systems. Most of the dynamical systems have variable structures subject to

stochastic abrupt changes, which may result from abrupt phenomena such as stochas-

tic failures and repairs of the components, sudden environment changes and changes

in the interconnections of subsystems.

Mathematical modelling of real life problems usually results in functional equa-

tions, like ordinary or partial differential equations, integral equations, integrodif-

ferential equations and stochastic equations. Integrodifferential equations play an

important role in many branches of linear and nonlinear functional analysis and their

applications in the theory of engineering, mechanics, physics, chemistry, astronomy,
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biology, economics, potential theory and electrostatics. Various mathematical formu-

lation of physical phenomena contain integrodifferential equations, these equations

arises in fields such as fluid dynamics, biological models and chemical kinetics. The

nonlocal condition which is a generalization of the classical initial condition was mo-

tivated by physical problems. The pioneering work on nonlocal conditions is due to

Byszewski [10].

Quasilinear evolution equations are encountered in many areas of science and

engineering. It forms a very important class of evolution equations as many time de-

pendent phenomena in physics, chemistry and biology can be represented by such evo-

lution equations. For more details on the theory and applications of quasilinear evolu-

tion equations we refer to [25]. Several authors have studied the existence of solutions

of abstract quasilinear evolution equations in Banach space [1, 5, 15, 17, 18, 34].

Bahuguna [3], Oka [28], Oka and Tanaka [29] discussed the existence of solutions

of quasilinear integrodifferential equations in Banach spaces. Kato [16] studied the

nonhomogeneous evolution equations and Chandrasekaran [11] proved the existence

of mild solutions of the nonlocal Cauchy problem for a quasilinear integrodifferential

equation. Dhakne and Pachpatte [14] established the existence of a unique strong

solution of a quasilinear abstract functional integrodifferential equation in Banach

spaces. Recently, the study on controllability of quasilinear systems has gained re-

newed interests and only few papers have appeared (see [6, 8, 9]).

Also, the controllability and stability of nonlinear stochastic systems in finite

and infinite-dimensional spaces have been studied by several authors [2, 13, 27, 30].

Many extensive results on stochastic controllability were investigated by Jerzy Klamka

in [19]-[24]. Balachandran and Karthikeyan [4] and Balachandran et al. [7] derived

the sufficient conditions for the controllability of stochastic integrodifferential systems

in finite dimensional spaces. We refer to the paper of Sakthivel et al. [32] who de-

rived the controllability of nonlinear impulsive stochastic systems. Subalakshmi and

Balachandran [35, 36] studied the controllability of semilinear stochastic functional

integrodifferential systems and approximate controllability of nonlinear stochastic im-

pulsive integrodifferential systems in Hilbert spaces. Moreover, controllability of im-

pulsive stochastic quasilinear integrodifferential systems has not yet studied in the

literature. Motivated by this consideration, in this paper we study the controllability

of nonlocal impulsive stochastic quasilinear integrodifferential systems described by

dx(t) =
[
A(t, x)x(t) +Bu(t) + f(t, x(t)) +

∫ t

0

g
(
t, s, x(s),

∫ s

0

κ
(
s, η, x(η)

)
dη
)
ds
]
dt

+ σ(t, x(t))dw(t), t ∈ J := [0, a], t 6= τk,

△x(τk) = x(τ+
k ) − x(τ−k ) = Ik(x(τ

−
k )), k = 1, 2, · · · , m,

x(0) + h
(
t1, t2, · · · , tp, x(·)

)
= x0. (1.1)

where 0 < t1 < t2 < · · · < tp ≤ a (p ∈ N). Here, the state variable x(·) takes

values in a real separable Hilbert space H with inner product (·, ·) and norm ‖ · ‖
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and the control function u(·) takes values in L2(J, U), a Banach space of admissible

control functions for a separable Hilbert space U . Also, A(t, x) is the infinitesimal

generator of a C0-semigroup in H and B is a bounded linear operator from U into

H . Let K be another separable Hilbert space with inner product (·, ·)K and the norm

‖ · ‖K . Suppose {w(t) : t ≥ 0} is a given K-valued Wiener process with a finite

trace nuclear covariance operator Q ≥ 0. We employ the same notation ‖ · ‖ for

the norm L(K,H), where L(K,H) denotes the space of all bounded linear operators

from K into H . Further, f : J × H → H , g : Λ × H × H → H , κ : Λ × H → H ,

σ : J × H → LQ(K,H) are measurable mappings in H-norm and LQ(K,H) norm

respectively, where LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operators

from K into H which will be defined in Section 2 and Λ = {(t, s) ∈ J × J : s ≤ t}.
Here, the nonlocal function h : PC[Jp × H : H ] → H and impulsive function Ik ∈
C(H,H) (k = 1, 2, · · · , m) are bounded functions. Furthermore, the fixed times τk
satisfies 0 = τ0 < τ1 < τ2 < · · · < τm < a, x(τ+

k ) and x(τ−k ) denote the right and

left limits of x(t) at t = τk. And △x(τk) = x(τ+
k )− x(τ−k ) represents the jump in the

state x at time τk, where Ik determines the size of the jump.

2 Preliminaries

For more details in this section refer [12]. Let (Ω,F ,P ;F) {F = {Ft}t≥0} be a

complete filtered probability space satisfying that F0 contains all P -null sets of F .

An H-valued random variable is an F -measurable function x(t) : Ω → H and the

collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called a stochastic

process. Generally, we just write x(t) instead of x(t, ω) and x(t) : J → H in the space

of S. Let {ei}∞i=1 be a complete orthonormal basis of K. Suppose that {w(t) : t ≥ 0}
is a cylindrical K-valued wiener process with a finite trace nuclear covariance operator

Q≥ 0, denote Tr(Q) =
∑∞

i=1λi = λ<∞, which satisfies that Qei = λiei. So, actually,

ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-dimensional

standard Wiener processes. We assume that Ft =σ{ω(s) : 0 ≤ s ≤ t} is the σ-algebra

generated by ω and Fa = F . Let Ψ ∈ L(K,H) and define

‖Ψ‖2
Q = Tr(ΨQΨ∗)=

∞∑

n=1

‖
√
λnΨen‖2.

If ‖Ψ‖Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote

the space of all Q-Hilbert-Schmidt operators Ψ : K → H . The completion LQ(K,H)

of L(K,H) with respect to the topology induced by the norm ‖ · ‖Q where ‖Ψ‖2
Q =

〈Ψ,Ψ〉 is a Hilbert space with the above norm topology. LF
2 (J,H) is the space of all

Ft - adapted, H-valued measurable square integrable processes on J × Ω.

Denote J0 = [0, τ1], Jk = (τk, τk+1], k = 1, 2, · · · , m, and define the following class

of functions:
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PC(J, L2(Ω,F , P ;H)) = {x : J → L2 :x(t) is continuous everywhere except for

some τk at which x(τ−k ) and x(τ+
k ) exists and x(τ−k ) = x(τk), k = 1, 2, 3, · · · , m}

is the Banach space of piecewise continuous maps from J into L2(Ω,F , P ;H) satisfy-

ing the condition supt∈JE‖x(t)‖2 <∞. Let Z ≡ PC(J, L2) be the closed subspace of

PC(J, L2(Ω,F , P ;H)) consisting of measurable, Ft - adapted and H-valued processes

x(t). Then PC(J, L2) is a Banach space endowed with the norm

‖x‖2
PC = sup

t∈J

{
E‖x(t)‖2 : x ∈ PC(J, L2)

}
.

Let H and Y be two Hilbert spaces such that Y is densely and continuously

embedded in H . For any Hilbert space Z the norm of Z is denoted by ‖ · ‖PC or ‖ · ‖.
The space of all bounded linear operators from H to Y is denoted by B(H, Y ) and

B(H,H) is written as B(H). We recall some definitions and known facts from [31].

Definition: 2.1 Let S be a linear operator in H and let Y be a subspace of H. The

operator S̃ defined by D(S̃) = {x ∈ D(S) ∩ Y : Sx ∈ Y } and S̃x = Sx for x ∈ D(S̃)

is called the part of S in Y .

Definition: 2.2 Let Q be a subset of H and for every 0 ≤ t ≤ a and q ∈ Q, let

A(t, q) be the infinitesimal generator of a C0 semigroup St,q(s), s ≥ 0, on H. The

family of operators {A(t, q)}, (t, q) ∈ J × Q, is stable if there are constants M ≥ 1

and ω such that

ρ(A(t, q)) ⊃ (ω,∞) for (t, q) ∈ J ×Q,
∥∥∥

k∏

j=1

R(λ : A(tj , qj))
∥∥∥ ≤ M(λ− ω)−k for λ > ω

and every finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, qj ∈ Q, 1 ≤ j ≤ k. The stability

of {A(t, q)}, (t, q) ∈ J ×Q, implies [31] that

∥∥∥
k∏

j=1

Stj ,qj
(sj)

∥∥∥ ≤M exp {ω
k∑

j=1

sj} for sj ≥ 0

and any finite sequences 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ a, qj ∈ Q, 1 ≤ j ≤ k. k = 1, 2, · · · .

Definition: 2.3 Let St,q(s), s ≥ 0 be the C0 semigroup generated by A(t, q), (t, q) ∈
J ×Q. A subspace Y of H is called A(t, q)- admissible if Y is invariant subspace of

St,q(s) and the restriction of St,q(s) to Y is a C0- semigroup in Y .

Let Q ⊂ H be a subset of H such that for every (t, q) ∈ J × Q, A(t, q) is the

infinitesimal generator of a C0-semigroup St,q(s), s ≥ 0 on H . We make the following

assumptions:
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(E1) The family {A(t, q)}, (t, q) ∈ J ×Q is stable.

(E2) Y is A(t, q) - admissible for (t, q) ∈ J×Q and the family {Ã(t, q)}, (t, q) ∈ J×Q
of parts Ã(t, q) of A(t, q) in Y , is stable in Y .

(E3) For (t, q) ∈ J ×Q, D(A(t, q)) ⊃ Y , A(t, q) is a bounded linear operator from Y

to H and t→ A(t, q) is continuous in the B(Y,H) norm ‖ · ‖ for every q ∈ Q.

(E4) There is a constant L > 0 such that

‖A(t, q1) − A(t, q2)‖Y →H ≤ L‖q1 − q2‖H

holds for every q1, q2 ∈ Q and 0 ≤ t ≤ a.

Let Q be a subset of H and let {A(t, q)}, (t, q) ∈ J × Q be a family of operators

satisfying the conditions (E1)− (E4). If x ∈ PC(J, L2) has values in Q then there is

a unique evolution system U(t, s; x), 0 ≤ s ≤ t ≤ a in H satisfying (see [31])

(i) ‖U(t, s; x)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ a, where M and ω are stability

constants.

(ii) ∂+

∂t
U(t, s; x)y = A(s, x(s))U(t, s; x)y for y ∈ Y, 0 ≤ s ≤ t ≤ a.

(iii) ∂
∂s
U(t, s; x)y = −U(t, s; x)A(s, x(s))y for y ∈ Y, 0 ≤ s ≤ t ≤ a.

Further we assume that

(E5) For every x ∈ PC(J, L2) satisfying x(t) ∈ Q for 0 ≤ t ≤ a, we have

U(t, s; x)Y ⊂ Y, 0 ≤ s ≤ t ≤ a

and U(t, s; x) is strongly continuous in Y for 0 ≤ s ≤ t ≤ a.

(E6) Closed bounded convex subsets of Y are closed in H .

(E7) For every (t, q) ∈ J×Q, f(t, q) ∈ Y , ((t, s), q1, q2) ∈ Λ×Q×Q, g(t, s, q1, q2) ∈ Y

and (t, q) ∈ J ×Q, σ(t, q) ∈ Y .

Definition: 2.4 [13] A stochastic process x is said to be a mild solution of (1.1) if

the following conditions are satisfied:

(a) x(t, ω) is a measurable function from J × Ω to H and x(t) is Ft -adapted,

(b) E‖x(t)‖2 <∞ for each t ∈ J ,

(c) △x(τk) = x(τ+
k ) − x(τ−k ) = Ik(x(τ

−
k )), k = 1, 2, · · · , m,
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(d) For each u ∈ LF
2 (J, U), the process x satisfies the following integral equation

x(t) =U(t, 0; x)
[
x0−h

(
t1, t2, · · · , tp, x(·)

)]
+

∫ t

0

U(t, s; x)[Bu(s)+f(s, x(s))]ds

+

∫ t

0

U(t, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds

+

∫ t

0

U(t, s; x)σ(s, x(s))dw(s)+
∑

0<τk<t

U(t, τk; x)Ik(x(τ
−
k )), for a.e. t ∈ J,

x(0) + h
(
t1, t2, · · · , tp, x(·)

)
= x0 ∈ H. (2.1)

Definition: 2.5 The system (1.1) is said to be controllable on the interval J , if for

every initial condition x0 and x1 ∈ H, there exists a control u ∈ L2(J, U) such that

the solution x(·) of (1.1) satisfies x(a) = x1.

Further there exists a constant N > 0 such that for every x, y ∈ PC(J, L2) and every

ỹ ∈ Y we have

‖U(t, s; x)ỹ − U(t, s; y)ỹ‖2 ≤ Na2‖ỹ‖2
Y ‖x− y‖2

PC.

In order to establish our controllability result we assume the following hypotheses:

(H1) A(t, x) generates a family of evolution operators U(t, s; x) in H and there exists

a constant CU > 0 such that

‖U(t, s; x)‖2 ≤ CU for 0 ≤ s ≤ t ≤ a, x ∈ Z.

(H2) The linear operator W : L2(J, U) → H defined by

Wu =

∫ a

0

U(a, s; x)Bu(s)ds

is invertible with inverse operator W−1 taking values in L2(J, U) \ kerW and

there exist a positive constant CW such that

‖BW−1‖2 ≤ CW .

(H3) The nonlinear function f : J × Z → Z is continuous and there exist constants

Cf > 0, C̃f > 0 for t ∈ J and x, y ∈ Z such that

E‖f(t, x) − f(t, y)‖2 ≤ Cf‖x− y‖2

and C̃f = supt∈J ‖f(t, 0)‖2.
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(H4) The nonlinear function g : Λ×Z×Z → Z is continuous and there exist positive

constants Cg, C̃g, for x1, x2, y1, y2 ∈ Z and (t, s) ∈ Λ such that

E
∥∥g(t, s, x1, y1) − g(t, s, x2, y2)

∥∥2 ≤ Cg(‖x1 − x2‖2 + ‖y1 − y2‖2)

and C̃g = sup(t,s)∈Λ ‖g(t, s, 0, 0)‖2.

(H5) The function κ : Λ × Z → Z is continuous and there exist positive constants

Cκ, C̃κ for (t, s) ∈ Λ and x, y ∈ Z such that

E
∥∥∥
∫ t

0

[
κ(t, s, x) − κ(t, s, y)

]
ds
∥∥∥

2

≤ Cκ‖x− y‖2

and C̃κ = sup(t,s)∈Λ

(∥∥ ∫ t

0
κ(t, s, 0)ds

∥∥2)
.

(H6) The function σ : J × Z → LQ(K,H) is continuous and there exist constants

Cσ > 0, C̃σ > 0 for t ∈ J and x, y ∈ Z such that

E‖σ(t, x) − σ(t, y)‖2
Q ≤ Cσ‖x− y‖2

and C̃σ = supt∈J ‖σ(t, 0)‖2.

(H7) The nonlocal function h : PC(Jp × Z : Z) → Z is continuous and there exist

constants Ch > 0, C̃h > 0 for x, y ∈ Z such that

E‖h(t1, t2, · · · , tp, x(·)) − h(t1, t2, · · · , tp, y(·))‖2 ≤ Ch‖x− y‖2,

E‖h(t1, t2, · · · , tp, x(·))‖2 ≤ C̃h.

(H8) Ik : Z → Z is continuous and there exist constants βk > 0, β̃k > 0 for x, y ∈ Z
such that

E‖Ik(x) − Ik(y)‖2 ≤ βk‖x− y‖2, k = 1, 2, · · · , m
and β̃k = ‖Ik(0)‖2, k = 1, 2, · · · , m.

(H9) There exists a constant r > 0 such that

7
{
CU(‖x0‖2+C̃h)+a

2CUG+2a2CU(Cfr+C̃f)+2a3CU

[
Cg

(
(1+2Cκ)r+2C̃κ

)
+C̃g

]

+ 2a CU Tr(Q)
(
Cσr + C̃σ

)
+ 2mCU

[∑m
k=1 βkr +

∑m
k=1 β̃k

]}
≤ r

and

ν = 7
{

(1 + 12a2CUCW )(N1 +N2 +N3 +N4 +N5) + 2a3NG
}

where

N1 = Na2‖x0‖2 + 2(Na2C̃h + CUCh)

N2 = 2a2
[
2Na

(
Cfr + C̃f

)
+ CUCf

]

N3 = 2a3
[
2Na

(
Cg

(
(1 + 2Cκ)r + 2C̃κ

)
+ C̃g

)
+ CUCg(1 + Cκ)

]

N4 = 2a
[
2Na Tr(Q)

(
Cσr + C̃σ

)
+ CU Tr(Q)Cσ

]

N5 = 2m
[
2Na2

( m∑

k=1

βkr +

m∑

k=1

β̃k

)
+ CU

m∑

k=1

βk

]
.
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3 Controllability Result

Theorem: 3.1 If the conditions (H1) − (H9) are satisfied and if 0 ≤ ν < 1, then

the system (1.1) is controllable on J .

Proof: Using the hypothesis (H2) for an arbitrary function x(·), define the control

u(t) = W−1
[
x1 − U(a, 0; x)

[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
−
∫ a

0

U(a, s; x)f(s, x(s))ds

−
∫ a

0

U(a, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds

−
∫ a

0

U(a, s; x)σ(s, x(s))dw(s) −
∑

0<τk<a

U(a, τk; x)Ik(x(τ
−
k ))
]
(t). (3.1)

Let Yr be a nonempty closed subset of PC(J, L2) defined by

Yr = {x : x ∈ PC(J, L2)|E‖x(t)‖2 ≤ r}.

Consider a mapping Φ : Yr → Yr defined by

(Φx)(t) = U(t, 0; x)
[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
+

∫ t

0

U(t, s; x)BW−1
[
x1 −

U(a, 0; x)
[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
−
∫ a

0

U(a, s; x)f(s, x(s))ds

−
∫ a

0

U(a, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds

−
∫ a

0

U(a, s; x)σ(s, x(s))dw(s) −
∑

0<τk<a

U(a, τk; x)Ik(x(τ
−
k ))
]
(s)ds

+

∫ t

0

U(t, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds

+

∫ t

0

U(t, s; x)f(s, x(s))ds+

∫ t

0

U(t, s; x)σ(s, x(s))dw(s)

+
∑

0<τk<t

U(t, τk; x)Ik(x(τ
−
k )).

We have to show that by using the above control the operator Φ has a fixed point.

Since all the functions involved in the operator are continuous therefore Φ is contin-

uous. For our convenience we take

V (µ, x) = BW−1
[
x1 −U(a, 0; x)

[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
−
∫ a

0

U(a, s; x)f(s, x(s))ds

−
∫ a

0

U(a, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds

−
∫ a

0

U(a, s; x)σ(s, x(s))dw(s) −
∑

0<τk<a

U(a, τk; x)Ik(x(τ
−
k ))
]
(µ).
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From our assumptions we have

E‖V (µ, x)‖2 ≤ 7CW

{
‖x1‖2+CU(‖x0‖2+C̃h)+2a2CU(Cfr+C̃f)+2a3CU

[
Cg

(
(1 + 2Cκ)r

+2C̃κ

)
+ C̃g

]
+ 2aCUTr(Q)

(
Cσr + C̃σ

)
+ 2mCU

[ m∑

k=1

βkr +
m∑

k=1

β̃k

]}

:= G.

and

E‖V (µ, x) − V (µ, y)‖2 ≤ 6CW

{
Na2‖x0‖2+2(Na2C̃h + CUCh)+2a2

[
2Na

(
Cfr + C̃f

)

+CUCf

]
+ 2a3

[
2Na

(
Cg

(
(1 + 2Cκ)r + 2C̃κ

)
+ C̃g

)

+CUCg(1+Cκ)
]
+2a

[
2NaTr(Q)

(
Cσr+C̃σ

)
+CUTr(Q)Cσ

]

+2m
[
2Na2

( m∑

k=1

βkr +
m∑

k=1

β̃k

)
+ CU

m∑

k=1

βk

]}
‖x− y‖2

≤ 6CW

(
N1 +N2 +N3 +N4 +N5

)
‖x− y‖2.

First we show that the operator Φ maps Yr into itself. Now

E‖(Φx)(t)‖2 ≤ 7
{
E
∥∥∥U(t, 0; x)

[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]∥∥∥
2

+E
∥∥∥
∫ t

0

U(t, µ; x)V (µ, x)dµ
∥∥∥

2

+ E
∥∥∥
∫ t

0

U(t, s; x)f(s, x(s))ds
∥∥∥

2

+E
∥∥∥
∫ t

0

U(t, s; x)
[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]
ds
∥∥∥

2

+E
∥∥∥
∫ t

0

U(t, s; x)σ(s, x(s))dw(s)
∥∥∥

2

+E
∥∥∥
∑

0<τk<t

U(t, τk; x)Ik(x(τ
−
k ))
∥∥∥

2}

≤ 7
{
CU(‖x0‖2+C̃h)+a

2CUG+2a2CU(Cfr+C̃f)+2a3CU

[
Cg

(
(1 + 2Cκ)r

+2C̃κ

)
+ C̃g

]
+ 2aCUTr(Q)

(
Cσr+ C̃σ

)
+ 2mCU

[ m∑

k=1

βkr +

m∑

k=1

β̃k

]}

≤ r.

From (H9) we get E‖(Φx)(t)‖2 ≤ r. Hence Φ maps Yr into Yr. Let x, y ∈ Yr, then

E‖(Φx)(t) − (Φy)(t)‖2 ≤ 7
{
E
∥∥∥U(t, 0; x)

[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]

−U(t, 0; y)
[
x0 − h

(
t1, t2, · · · , tp, y(·)

)]∥∥∥
2

+E
∥∥∥
∫ t

0

[
U(t, µ; x)V (µ, x) − U(t, µ; y)V (µ, y)

]
dµ
∥∥∥

2

+E
∥∥∥
∫ t

0

[
U(t, s; x)f(s, x(s)) − U(t, s; y)f(s, y(s))

]
ds
∥∥∥

2
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+E
∥∥∥
∫ t

0

[
U(t, s; x)

[ ∫ s

0

g
(
s, η, x(η),

∫ η

0

κ
(
η, γ, x(γ)

)
dγ
)
dη
]

−U(t, s; y)
[ ∫ s

0

g
(
s, η, y(η),

∫ η

0

κ
(
η, γ, y(γ)

)
dγ
)
dη
]]
ds
∥∥∥

2

+E
∥∥∥
∫ t

0

[
U(t, s; x)σ(s, x(s)) − U(t, s; y)σ(s, y(s))

]
dw(s)

∥∥∥
2

+E
∥∥∥
∑

0<τk<t

[
U(t, τk; x)Ik(x(τ

−
k )) − U(t, τk; y)Ik(y(τ

−
k ))
]∥∥∥

2}

≤ 7
{

(1 + 12a2CUCW )(N1+N2+N3+N4+N5) + 2a3NG
}
‖x− y‖2

≤ ν‖x− y‖2.

Since ν < 1, the mapping Φ is a contraction and hence by Banach fixed point theorem

there exists a unique fixed point x ∈ Yr such that (Φx)(t) = x(t). This fixed point is

then the solution of the system (1.1) and clearly, x(a) = (Φx)(a) = x1 which implies

that the system (1.1) is controllable on J .

4 Stochastic Quasilinear Delay Integrodifferential

System

In this section we consider the following class of impulsive stochastic quasilinear delay

integrodifferential system with nonlocal conditions

dx(t) =
[
A(t, x)x(t)+Bu(t)+f(t, x(α(t)))+

∫ t

0

g
(
t, s, x(β(s)),

∫ s

0

κ
(
s, η, x(γ(η))

)
dη
)
ds
]
dt

+ σ(t, x(ρ(t)))dw(t), t ∈ J := [0, a], t 6= τk,

△x(τk) = x(τ+
k ) − x(τ−k ) = Ik(x(τ

−
k )), k = 1, 2, · · · , m,

x(0) + h
(
t1, t2, · · · , tp, x(·)

)
= x0. (4.1)

where A,B, f, g, κ, h, σ are as before and α, β, γ, ρ are continuous on J . Assume the

following additional condition

(H10) The function α, β, γ, ρ : J → J are absolutely continuous and there exist con-

stants δ1, δ2, δ3, δ4 > 0 such that α′(t) ≥ δ1, β
′(t) ≥ δ2, γ

′(t) ≥ δ3, ρ
′(t) ≥ δ4 for

0 ≤ t ≤ a.

(H11) There exists a constant r > 0 such that

7
{
CU (‖x0‖2+ C̃h)+a

2CUG∗+2a2CU(C∗
fr+ C̃f )+2a3CU

[
C∗

g

(
(1+2C∗

κ)r+2C̃κ

)
+ C̃g

]

+ 2aCUTr(Q)
(
C∗

σr + C̃σ

)
+ 2mCU

[∑m
k=1 βkr +

∑m
k=1 β̃k

]}
≤ r
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and

ν∗ = 7
{

(1 + 12a2CUCW )(N1 +N∗
2 +N∗

3 +N∗
4 +N5) + 2a3NG∗

}

where

N1 = Na2‖x0‖2 + 2(Na2C̃h + CUCh)

N∗
2 = 2a2

[
2Na

(
C∗

fr + C̃f

)
+ CUC∗

f

]

N∗
3 = 2a3

[
2Na

(
C∗

g

(
(1 + 2C∗

κ)r + 2C̃κ

)
+ C̃g

)
+ CUC∗

g (1 + C∗
κ)
]

N∗
4 = 2a

[
2Na Tr(Q)

(
C∗

σr + C̃σ

)
+ CU Tr(Q)C∗

σ

]

N5 = 2m
[
2Na2

( m∑

k=1

βkr +

m∑

k=1

β̃k

)
+ CU

m∑

k=1

βk

]

G∗ = 7CW

{
‖x1‖2+CU(‖x0‖2+C̃h)+2a2CU (C∗

fr+C̃f)+2a3CU

[
C∗

g

(
(1+2C∗

κ)r

+2C̃κ

)
+C̃g

]
+2a CU Tr(Q)

(
C∗

σr+C̃σ

)
+2mCU

[ m∑

k=1

βkr +

m∑

k=1

β̃k

]}

C∗
f =

Cf

δ2
1

, C∗
g =

Cg

δ2
2

, C∗
κ =

Cκ

δ2
3

, C∗
σ =

Cσ

δ2
4

.

The mild solution of the system (4.1) is given by

x(t) = U(t, 0; x)
[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
+

∫ t

0

U(t, s; x)[Bu(s) + f(s, x(α(s)))]ds

∫ t

0

U(t, s; x)
[ ∫ s

0

g
(
s, η, x(β(η)),

∫ η

0

κ
(
η, ξ, x(γ(ξ))

)
dξ
)
dη
]
ds

+

∫ t

0

U(t, s; x)σ(s, x(ρ(s)))dw(s) +
∑

0<τk<t

U(t, τk; x)Ik(x(τ
−
k )), t ∈ J. (4.2)

Theorem: 4.1 If the conditions from (H1) − (H8), (H10) and (H11) are satisfied

and if 0 ≤ ν∗ < 1, then the system (4.1) is controllable on J .

Proof: Using the hypothesis (H2) for an arbitrary function x(·), define the control

u(t) =W−1
[
x1 − U(a, 0; x)

[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
−
∫ a

0

U(a, s; x)f(s, x(α(s)))ds

−
∫ a

0

U(a, s; x)
[ ∫ s

0

g
(
s, η, x(β(η)),

∫ η

0

κ
(
η, ξ, x(γ(ξ))

)
dξ
)
dη
]
ds

−
∫ a

0

U(a, s; x)σ(s, x(ρ(s)))dw(s) −
∑

0<τk<a

U(a, τk; x)Ik(x(τ
−
k ))
]
(t).

Let Yr be a nonempty closed subset of PC(J, L2) defined by

Yr = {x : x ∈ PC(J, L2)|E‖x(t)‖2 ≤ r}.
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Consider the nonlinear operator ψ : Yr → Yr defined by

(ψx)(t) = U(t, 0; x)
[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
+

∫ t

0

U(t, s; x)BW−1
[
x1 −

U(a, 0; x)
[
x0 − h

(
t1, t2, · · · , tp, x(·)

)]
−
∫ a

0

U(a, s; x)f(s, x(α(s)))ds

−
∫ a

0

U(a, s; x)
[ ∫ s

0

g
(
s, η, x(β(η)),

∫ η

0

κ
(
η, ξ, x(γ(ξ))

)
dξ
)
dη
]
ds

−
∫ a

0

U(a, s; x)σ(s, x(ρ(s)))dw(s) −
∑

0<τk<a

U(a, τk; x)Ik(x(τ
−
k ))
]
(s)ds

+

∫ t

0

U(t, s; x)
[ ∫ s

0

g
(
s, η, x(β(η)),

∫ η

0

κ
(
η, ξ, x(γ(ξ))

)
dξ
)
dη
]
ds

+

∫ t

0

U(t, s; x)f(s, x(α(s)))ds+

∫ t

0

U(t, s; x)σ(s, x(ρ(s)))dw(s)

+
∑

0<τk<t

U(t, τk; x)Ik(x(τ
−
k )).

Obviously ψ maps Yr into itself by (H11) and

E‖ψx(t) − ψy(t)‖2 ≤ 7
{
(1 + 12a2CUCW )(N1+N

∗
2 +N∗

3 +N∗
4 +N5)+2a3NG∗

}
‖x− y‖2

≤ ν∗‖x− y‖2.

Since ν∗ < 1, the mapping ψ is a contraction and hence by Banach fixed point theorem

there exists a unique fixed point x ∈ Yr such that (ψx)(t) = x(t). This fixed point

is then the mild solution of the system (4.1) and clearly, x(a) = (ψx)(a) = x1 which

implies that the system (4.1) is controllable on J .

5 Example

Consider the following partial integrodifferential equation of the form

∂z(t, y) =

(
∂3

∂y3
z(t, y) + z(t, y)

∂

∂y
z(t, y) + µ(t, y) +

1

4
(1 + e−t) sin z(t, y)

+
1

t(1 + t)(1 + t2)

[∫ t

0

[
sin z(s, y) + z(s, y)

∫ s

0

e−z(η,y)dη
]
ds

])
∂t

+
1

4
e−2t(t+ 2)z(t, y)dw(t), y ∈ R, t ∈ J := [0, 1], t 6= τk,

z(0, y) +

p∑

i=1

1

ki

∫ ti+ki

ti

hi z(η, y)dη = z0(y),

△z|t=τk
= Ik(z(y)) = (αk|z(y)| + τk)

−1, k = 1, 2, · · · , m. (5.1)
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where ki, hi, 1 ≤ i ≤ p are constants such that ki > 0, ti + ki ≤ 1 and the constants

αk, k = 1, 2, · · · , m. are small.

For every real s we introduce a Hilbert space Hs(R) as follows [31]. Let z ∈ L2(R)

and set

‖z‖s =
( ∫

R

(1 + ξ2)s|ẑ(ξ)|2dξ
)1/2

,

where ẑ is the Fourier transform of z. The linear space of functions z ∈ L2(R) for

which ‖z‖s is finite is a pre-Hilbert space with the inner product

(z, y)s =
(∫

R

(1 + ξ2)sẑ(ξ)ŷ(ξ)dξ
)1/2

.

The completion of this space with respect to the norm ‖ · ‖s is a Hilbert space which

we denote by Hs(R). It is clear that H0(R) = L2(R).

Take H = U = K = L2(R) = H0(R) and Y = Hs(R), s ≥ 3. Define an operator

A0 by D(A0) = H3(R) and A0z = D3z for z ∈ D(A0) where D = d/dy. Then A0 is

the inifinitesimal generator of a C0-group of isometries on H . Next we define for every

v ∈ Y an operator A1(v) by D(A1(v)) = H1(R) and z ∈ D(A1(v)), A1(v)z = vDz.

Then for every v ∈ Y the operator A(v) = A0 +A1(v) is the infinitesimal generator of

C0 semigroup U(t, 0; v) on H satisfying ‖U(t, 0; v)‖ ≤ eβt for every β ≥ c0‖v‖s, where

c0 is a constant independent of v ∈ Y . Let Yr be the ball of radius r > 0 in Y and it is

proved that the family of operators A(v), v ∈ Yr, satisfies the conditions (E1)− (E4)

and (H1) (see [31]). Put x(t) = z(t, ·) and u(t) = µ(t, ·) where µ : J × R → R is

continuous,

f(t, x(t)) =
1

4
(1 + e−t) sin z(t, y) , σ(t, x(t)) =

1

4
e−2t(t+ 2)z(t, y),

h(t1, t2, · · · , tp, x(·)) =

p∑

i=1

1

ki

∫ ti+ki

ti

hi z(η, y)dη,

∫ t

0

g
(
t, s, x(s),

∫ s

0

κ(s, η, x(η))dη
)
ds =

1

t(1 + t)(1 + t2)
×

×
[ ∫ t

0

[
sin z(s, y) + z(s, y)

∫ s

0

e−z(η,y)dη
]
ds
]
.

With this choice of A(v), Ik, f, g, h, σ, B = I, the identity operator and w(t), one

dimensional standard wiener process, we see that (5.1) is an abstract formulation of

the system (1.1). Further we have
∥∥∥∥∥

1

t(1 + t)(1 + t2)

[∫ t

0

[
sin z(s, y) + z(s, y)

∫ s

0

e−z(η,y)dη
]
ds

]∥∥∥∥∥ ≤ 1

1 + t2
‖z‖.

Assume that the operator W : L2(J, U)/KerW → H defined by

Wu =

∫ 1

0

U(1, s; x)µ(s, ·)ds
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has an inverse operator and satisfies condition (H2) for every x ∈ Yr.

Further other assumptions (H3) − (H9) are obviously satisfied and it is possible to

choose ki, hi, αk in such a way that the constant ν < 1. Hence, by Theorem 3.1, the

system (5.1) is controllable on J .

6 Conclusion

Our paper contains some controllability results for impulsive stochastic quasilinear

systems. The result proves that the Banach fixed point theorem can effectively be used

in control problems to obtain sufficient conditions. We can extend the controllability

result for neutral impulsive stochastic quasilinear systems with different types of

delays in our subsequent papers.
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