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1 Introduction

Consider differential system of the form{
x′ = −y + P,

y′ = x + Q,
(1.1)

where P = ∑m
k=2 Pk(x, y) and Q = ∑m

k=2 Qk(x, y), Pk and Qk are homogeneous polynomials
in x and y of degree k . The equilibrium point O(0, 0) is a center if there exists an open
neighborhood U of O where all the orbits contained in U/O are periodic. The center-focus
problem asks about the conditions on the coefficients of P and Q under which the origin
of system (1.1) is a center. The study of the centers of analytical or polynomial differential
system (1.1) has a long history. The first works are due to Poincaré [13] and Dulac [8], and
continued by Liapunov [9] and many others. Unfortunately, the center-focus problem has
been solved only for quadratic system and some special cubic system and others [2, 6, 7, 12].
Up to now, very little is known about the center conditions for polynomial differential system
with arbitrary degree m (m > 2).

A center of (1.1) is called a weak center if the Poincaré–Liapunov first integral can be writ-
ten as H = 1

2 (x2 + y2)(1 + h.o.t.). By literature [10, 11] we know that a center of a polynomial
differential system (1.1) is a weak center if and only if it can be written as{

x′ = −y(1 + Λ) + xΩ,

y′ = x(1 + Λ) + yΩ,
(1.2)
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where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials of degree at most m − 1 such that
Λ(0, 0) = Ω(0, 0) = 0. The weak centers contain the uniform isochronous centers and the
holomorphic isochronous centers [10], they also contain the class of centers studied by Alwash
and Lloyd [5], but they do not coincide with all classes of isochronous centers [10].

The class of differential system (1.2) is called the Λ–Ω system. The reason of called such
system in this way is due to the fact that a subclass of these systems already appears in physics
[11].

In [11] the authors put forward such conjectures:

Conjecture 1.1. The polynomial differential system of degree m{
x′ = −y(1 + µ(a2x− a1y)) + x((a1x + a2y) + Φm−1),

y′ = x(1 + µ(a2x− a1y)) + y((a1x + a2y) + Φm−1),
(1.3)

where (µ + m − 2)(a2
1 + a2

2) 6= 0 and Φm−1 = Φm−1(x, y) is a homogeneous polynomial of degree
m − 1, has a weak center at the origin if and only if system (1.3) after a linear change of variables
(x, y)→ (X, Y) is invariant under the transformations (X, Y, t)→ (−X, Y,−t).

Conjecture 1.2. The polynomial differential system of degree m{
x′ = −y(1 + a1x + a2y) + xΦm−1,

y′ = x(1 + a1x + a2y) + yΦm−1
(1.4)

has a weak center at the origin if and only if system (1.4) after a linear change of variables (x, y) →
(X, Y) is invariant under the transformations (X, Y, t)→ (−X, Y,−t).

The authors of [11] have used Poincaré–Liapunov first integral and Reeb inverse integrat-
ing factor to prove that Conjecture 1.1 and Conjecture 1.2 are correct when m = 2, 3, 4, 5, 6.
They remarked that the only difficulty for proving Conjectures 1.1 and 1.2 for the Λ–Ω sys-
tem of degree m with m > 6 is the huge number of computations for obtaining the conditions
that characterize the centers.

In this paper we will research the weak center problem of the Λ–Ω system{
x′ = −y(1 + µ(a2x− a1y)) + x(ν(a1x + a2y) + Λm−1 + Ω2m−1),

y′ = x(1 + µ(a2x− a1y)) + y(ν(a1x + a2y) + Λm−1 + Ω2m−1),
(1.5)

in which m > 2 and (µ2 + ν2)(µ + ν(m − 2))(a2
1 + a2

2) 6= 0, Λm−1 = Λm−1(x, y), Ω2m−1 =

Ω2m−1(x, y) are respectively homogeneous polynomials of degree m− 1 and 2m− 1. In the
section 3 we will see that by suitable transformation this system can be transformed into{

x′ = −y(1− µy) + x(νx + Φm−1 + Ψ2m−1),

y′ = x(1− µy) + y(νx + Φm−1 + Ψ2m−1).
(1.6)

In the following we use a method different from Llibre [11] and more simply, without huge
number of computation, to prove that for system (1.6), under several restrictive conditions, it
has a weak center at the origin if and only if∫ 2π

0
sini θ Φm−1(cos θ, sin θ)dθ = 0 (i = 0, 1, 2, . . . , m− 1) (1.7)
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and ∫ 2π

0
sinj θ Ψ2m−1(cos θ, sin θ)dθ = 0 (j = 0, 1, 2, . . . , 2m− 1). (1.8)

As corollaries, we also show that for arbitrary m (> 2), Conjecture 1.1 with µ = 1 and Conjec-
ture 1.2 are correct; When µ 6= 1 under several restrictive conditions Conjecture 1.1 is correct,
too.

2 Several lemmas

In polar coordinates, the system (1.1) becomes

dr
dθ

=
∑m

k=2 Ak(θ)rk

1 + ∑m
k=2 Bk(θ)rk−1 ,

where

Ak(θ) = cos θPk(cos θ, sin θ) + sin θQk(cos θ, sin θ),

Bk(θ) = cos θQk(cos θ, sin θ)− sin θPk(cos θ, sin θ).

By [3, 4], the composition condition is satisfied if there exists a trigonometric polynomial
u(θ) such that

Ak(θ) = u′(θ)∑ akjuj(θ), Bk(θ) = ∑ bkjuj(θ) (k = 2, 3, . . . , m), (2.1)

where akj, bkj are real numbers.

Lemma 2.1 ([4]). If the conditions (2.1) are satisfied, then the origin point of (1.1) is a center and this
center is called composition center.

Lemma 2.2 ([14]). If
Pn = ∑

i+j=n
pij cosi θ sinj θ, pij ∈ R,

P̂1 = p10 sin θ − p01 cos θ, p2
10 + p2

01 6= 0

and ∫ 2π

0
P̂k

1 Pndθ = 0 (k = 0, 1, 2, . . . , n),

then

Pn = P1

n

∑
i=1

λi P̂i−1
1 ,

where λi (i = 1, 2, . . . , n) are real numbers.

Lemma 2.3. Let Φm−1(x, y) = ∑i+j=m−1 φijxiyj (φij ∈ R). If relation (1.7) holds, then

Φm−1(cos θ, sin θ) = cos θ
m−1

∑
i=1

λi sini−1 θ,

where λi (i = 1, 2, . . . , m− 2) are real numbers and

λm−1 =
[m−2

2 ]

∑
i=0

(−1)iφ2i+1 m−2−2i. (2.2)
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Proof. In Lemma 2.2, taking P1 = cos θ, P̂1 = sin θ we get

Φm−1(cos θ, sin θ) = cos θ
m−1

∑
i=1

λi sini−1 θ,

thus

Φm−1(x, y) = ∑
i+j=2n

φijxiyj = x
n

∑
i=1

λ2iy2i−1(x2 + y2)n−i, m− 1 = 2n;

Φm−1(x, y) = ∑
i+j=2n+1

φijxiyj = x
n

∑
i=0

λ2i+1y2i(x2 + y2)n−i, m− 1 = 2n + 1.

Equating the corresponding coefficients of the same power of x, y, we obtain

λm−1 =
n−1

∑
i=0

(−1)iφ2i+1 2(n−i)−1, m− 1 = 2n;

λm−1 =
n

∑
i=0

(−1)iφ2i+1 2(n−i), m− 1 = 2n + 1.

Therefore, the conclusion of the present lemma is valid.

By this lemma, it is easy to deduce the following conclusion.

Lemma 2.4. Let Φm−1(x, y) be a homogeneous polynomial of degree m− 1. Then it can be written as

Φm−1(x, y) = xΦ̌(x2 + y2, y)

if and only if the relation (1.7) holds. Where Φ̌ is a polynomial on x2 + y2 and y.

3 Main results

As a2
1 + a2

2 6= 0, taking the linear change:

X = a1x + a2y, Y = −a2x + a1y, (3.1)

the system (1.5) becomes{
X′ = −Y(1− µY) + X(νX + Φm−1 + Ψ2m−1),

Y′ = X(1− µY) + Y(νX + Φm−1 + Ψ2m−1),

where Φm−1 = Λm−1
( a1X−a2Y

a2
1+a2

2
, a1Y+a2X

a2
1+a2

2

)
, Ψ2m−1 = Ω2m−1

( a1X−a2Y
a2

1+a2
2

, a1Y+a2X
a2

1+a2
2

)
, and they are re-

spectively homogeneous polynomials of degree m− 1 and 2m− 1.
Obviously, if Φm−1 = XΦ̆m−1(X2 + Y2, Y), Ψ2m−1 = XΨ̆2m−1(X2 + Y2, Y), then the Λ–Ω

system (1.5) after a linear change of variables (x, y) → (X, Y) is invariant under the transfor-
mations (X, Y, t) → (−X, Y,−t). By Lemma 2.4, in order to find the necessary and sufficient
conditions for (1.5) to have a weak center, only need to seek the conditions under which the
identities (1.7) and (1.8) are valid.

Case A. If ν 6= 0, applying the transformation X = 1
ν x, Y = 1

ν y, we get
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{
x′ = −y(1− µ̂y) + x(x + Φ̂m−1 + Ψ̂2m−1),

y′ = x(1− µ̂y) + y(x + Φ̂m−1 + Ψ̂2m−1),

where µ̂ = µ
ν , Φ̂m−1 = 1

νm−1 Φm−1(x, y), Ψ̂2m−1 = 1
ν2m−1 Ψ2m−1(x, y). Thus, if the identities (1.7)

and (1.8) are valid, then replacing Φm−1 and Ψ2m−1 by Φ̂m−1 and Ψ̂2m−1 respectively, these
identities also hold.

Case 1. ν 6= 0, µ̂ = 1.
Consider the Λ–Ω system{

x′ = −y(1− y) + x(x + Φm−1 + Ψ2m−1),

y′ = x(1− y) + y(x + Φm−1 + Ψ2m−1).
(3.2)

Theorem 3.1. Suppose that
∏

m−1≤k≤2m−3
Lk 6= 0; (3.3)

L2m−2 +
m(2m− 1)
2(m− 1)2 λ2

m−1 6= 0; (3.4)

L2m−1 +

(
2d1 + e1

m(m + 1)
(m− 1)2

)
λ2

m−1 6= 0, (3.5)

where λm−1 is expressed by (2.2),

Lk := ek +
k−m+1

∑
i=0

k + 1− 2i
m− 1 + i

diek−m+1−iλm−1 (k = m− 1, m, . . . , 2m− 1),

dk = (m− 1)
(m + k− 1)k−1

k!
, ek = (2m− 1)

(2m + k− 1)k−1

k!
(k = 1, 2, 3, . . . ), d0 = 1, e0 = 1.

(3.6)

Then the origin point of (3.2) is a center if and only if (1.7) and (1.8) hold.
Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.2) can be written as

dr
dθ

=
r2 cos θ + Φm−1rm + Ψ2m−1r2m

1− r sin θ
,

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).
Taking ρ = r

er sin θ , the above equation becomes

dρ

dθ
= ρme(m−1)r sin θΦm−1 + ρ2me(2m−1)r sin θΨ2m−1. (3.7)

Now we recall the Langrange–Bürman formula [1]. If real or complex w and z satisfy that
w = z

φ(z) , where φ(0) = 1 and φ(z) is analytic at z = 0, then in a neighborhood of w = 0, the
analytic function F(z) can be expressed as a power series:

F(z) = F(0) +
∞

∑
n=1

wn

n!
dn−1(F′(x)φn(x))

dxn−1

∣∣∣∣
x=0

,

which is analytic at w = 0.
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Applying the Langrange–Bürman formula we have

e(m−1)r sin θ = 1 + (m− 1)
∞

∑
n=1

(m + n− 1)n−1

n!
ρn sinn θ,

e(2m−1)r sin θ = 1 + (2m− 1)
∞

∑
n=1

(2m + n− 1)n−1

n!
ρn sinn θ.

Thus the equation (3.7) can be written as

dρ

dθ
= Φm−1

∞

∑
n=0

dnρm+n sinn θ + Ψ2m−1

∞

∑
n=0

enρ2m+n sinn θ, (3.8)

where dn, en (n = 0, 1, 2, . . . ) are expressed by (3.6).
Therefore, the system (3.2) has a center at (0, 0) if and only if all the solutions ρ(θ) of

equation (3.8) near ρ = 0 are periodic [2].
Let ρ(θ, c) be the solution of (3.8) such that ρ(0, c) = c (0 < c� 1). We write

ρ(θ, c) = c
∞

∑
n=0

an(θ)cn,

where a0(0) = 1 and an(0) = 0 for n ≥ 1. The origin point of (3.2) is a center if and only if
ρ(θ + 2π, c) = ρ(θ, c), i.e., a0(2π) = 1, an(2π) = 0 (n = 1, 2, 3, . . . ) [5].

Substituting ρ(θ, c) into (3.8) we obtain

c
∞

∑
i=0

a′i(θ)c
n=Φm−1

∞

∑
n=0

dn sinn θ

(
c

∞

∑
i=0

ai(θ)ci
)m+n

+ Ψ2m−1

∞

∑
n=0

en sinn θ

(
c

∞

∑
i=0

ai(θ)ci
)2m+n

. (3.9)

Equating the corresponding coefficients of cn of (3.9) yields

a0(θ) = 1, ai(θ) = 0, (i = 1, 2, . . . , m− 2).

Rewriting

ρ = c(1 + cm−1h), h =
∞

∑
i=0

hi(θ)ci, hi(0) = 0, (i = 0, 1, 2 . . . .).

Substituting it into (3.8) we get

∞

∑
k=0

h′k(θ)c
k = Φm−1

∞

∑
k=0

dkck sink θ
m+k

∑
j=0

Cj
m+khjc(m−1)j (3.10)

+ Ψ2m−1

∞

∑
k=0

ekcm+k sink θ
2m+k

∑
j=0

Cj
2m+khjc(m−1)j, hk(0) = 0 (k = 0, 1, 2, . . . ).

In the following we denote

gk = dk sink θ Φm−1, βk = ek sink θ Ψ2m−1, (k = 0, 1, 2, . . . .), (3.11)

where

sink θ Φm−1 =
∫ θ

0
sink θΦm−1dθ, sink θ Ψ2m−1 =

∫ θ

0
sink θΨ2m−1dθ.
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Equating the corresponding coefficients of ck of the equation (3.10) we obtain

h′k = dk sink θ Φm−1, hk(0) = 0 (k = 0, 1, 2, . . . ., m− 2),

h′m−1 = Φm−1C1
mh0 + Φm−1dm−1 sinm−1 θ, hm−1(0) = 0,

solving these equations we get

hk(θ) = gk, (k = 0, 1, 2, . . . , m− 2),

hm−1(θ) = gm−1 + α0, α0 =
m
2

Φ̄2
m−1.

As dk 6= 0 (k = 0, 1, 2 . . . .), from hk(2π) = 0 (k = 0, 1, 2, . . . , m− 1) follow that∫ 2π

0
sink θ Φm−1dθ = 0 (k = 0, 1, 2, . . . , m− 1),

i.e., the condition (1.7) is a necessary condition for ρ = 0 to be a center. By Lemma 2.3 which
implies that

Φm−1 = cos θ
m−1

∑
k=1

λk sink−1 θ, Φ̄m−1 =
∫ θ

0
Φm−1dθ =

m−1

∑
k=1

λk

k
sink θ, (3.12)

where λk (k = 1, 2, . . . , m− 1) are real numbers and λm−1 is expressed by (2.2).
Applying (3.12) we get∫ 2π

0
sink θ Φm−1dθ = 0, gk = gk(sin θ), gk(2π) = 0 (k = 0, 1, 2, . . . .). (3.13)

Equating the corresponding coefficients of cm−1+k of the equation (3.10) we obtain

h′m−1+k = Φm−1

k

∑
i=0

di sini θC1
m+ihk−i + dm−1+k sinm−1+k θΦm−1 + ek−1 sink−1 θΨ2m−1,

hm−1+k(0) = 0 (k = 1, 2, . . . , m− 2),

solving these equations we get

hm−1+k(θ) = gm−1+k + αk + βk−1 (k = 1, 2, . . . , m− 2),

where gm−1+k and βk−1 are expressed by (3.11), αk is the solution of the following equation

α′k = Φm−1

k

∑
i=0

didk−i sini θC1
m+isink−i θΦm−1, αk(0) = 0. (3.14)

By this we get: when k = 2n,

αk =
n−1

∑
i=0

didk−i

(
C1

m+isini θΦm−1 sink−i θΦm−1 + (C1
m+k−i − C1

m+i)sini θΦm−1 sink−i θΦm−1

)
+

1
2

d2
nC1

m+nsinn θΦm−1
2
; (3.15)
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when k = 2n + 1,

αk =
n

∑
i=0

didk−i

(
C1

m+isini θΦm−1 sink−i θΦm−1 + (C1
m+k−i − C1

m+i)sini θΦm−1 sink−i θΦm−1

)
.

(3.16)
By (3.13) we see that αk = αk(sin θ), αk(2π) = 0 (k = 0, 1, 2, 3, . . . ). Then from

hm−1+k(2π) = gm−1+k(2π) + αk(2π) + βk−1(2π) = 0 (k = 1, 2, . . . , m− 2)

imply that
βk(2π) = 0 (k = 0, 1, 2, . . . , m− 3),

in view of ek 6= 0 (k = 0, 1, 2 . . . .), so∫ 2π

0
sink θΨ2m−1dθ = 0 (k = 0, 1, 2 . . . , m− 3). (3.17)

Equating the corresponding coefficients of c2m−2 of the equation (3.10) we get

h′2m−2 = Φm−1

m−1

∑
i=0

di sini θC1
m+ihm−1−i + Φm−1(C1

mα0 + C2
mh2

0)

+ d2m−2 sin2m−2 θΦm−1 + em−2 sinm−2 θΨ2m−1, h2m−2(0) = 0,

by this we get
h2m−2(θ) = g2m−2 + αm−1 + βm−2 + δ0,

where

δ0 =
m(2m− 1)

6
Φ̄3

m−1.

αm−1 is a solution of (3.14) with k = m− 1 and αm−1 = αm−1(sin θ). Thus, using (3.12) and
(3.13), from h2m−2(2π) = 0 follows that βm−2(2π) = 0, i.e.,∫ 2π

0
sinm−2 θ Ψ2m−1dθ = 0. (3.18)

Equating the corresponding coefficients of c2m−2+k of the equation (3.10) we obtain

h′2m−2+k = Φm−1

m−1+k

∑
i=0

di sini θC1
m+ihm−1+k−i + Φm−1

k

∑
i=0

di sini θC2
m+i ∑

j+l=k−i
hjhl

+ d2m−2+k sin2m−2+k θΦm−1 + em−2+k sinm−2+k θΨ2m−1

+ Ψ2m−1

k−1

∑
i=0

ei sini θC1
2m+ihk−1−i,

h2m−2+k(0) = 0 (k = 1, 2, . . . , m− 2),

solving these equations we get

h2m−2+k = g2m−2+k + αk+m−1 + βk+m−2 + δk + εk−1 (k = 1, 2, . . . , m− 2),

where αk+m−1 is a solution of (3.14), δk and εk−1 are the solutions of the following equations,
respectively,

δ′k = Φm−1

(
k

∑
i=0

di sini θC1
m+iαk−i +

k

∑
i=0

C2
m+idi sini θ ∑

j+l=k−i
hlhj

)
,
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ε′k−1 = Φm−1

k−1

∑
i=0

C1
m+idi sini θβk−1−i + Ψ2m−1

k−1

∑
i=0

ei sini θC1
2m+igk−1−i. (3.19)

By (3.12) and (3.13) we see that δk = δk(sin θ) and δk(2π) = 0.
Solving (3.19) we get

εk−1 =
k−1

∑
i=0

diek−1−i

(
C1

m+isini θΦm−1 sink−1−i θΨ2m−1

+ (C1
2m+k−1−i − C1

m+i)sini θΦm−1 sink−1−i θΨ2m−1

)
. (3.20)

Therefore, from h2m−2+k(2π) = 0 (k = 1, 2, . . . , m− 2) implies that

βk+m−2(2π) + εk−1(2π) = 0 (k = 1, 2, . . . , m− 2),

simplifying this relation by using (3.17) and (3.18), (3.20) and (3.12) we get(
ek +

k−m+1

∑
i=0

k + 1− 2i
m− 1 + i

diek−m+1−iλm−1

) ∫ 2π

0
sink θΨ2m−1dθ = Lk

∫ 2π

0
sink θΨ2m−1dθ = 0,

(k = m− 1, m, . . . , 2m− 4).

By the hypothesis (3.3), Lk 6= 0, so∫ 2π

0
sink θΨ2m−1dθ = 0 (k = m− 1, m, . . . , 2m− 4). (3.21)

Equating the corresponding coefficients of c3m−3 of the equation (3.10) we obtain

h3m−3 = g3m−3 + α2m−2 + β2m−3 + δm−1 + εm−2,

where α2m−2 is a solution of (3.14) with k = 2m− 2 and α2m−2 = α2m−2(sin θ), εm−2 is expressed
by (3.20) with k = m− 1, δm−1 is a solution of the following equation

δ′m−1=Φm−1

(m−1

∑
i=0

di sini θC1
m+iαm−1−i +

m−1

∑
i=0

C2
m+idi sini θ ∑

j+l=m−1−i
gl gj+C1

mδ0+2C2
mh0α0+C3

mh3
0

)
.

By (3.12) and (3.13) we see that gk = gk(sin θ) (k = 0, 1, 2, . . . , m− 1) and δm−1 = δm−1(sin θ).
Thus, from h3m−3(2π) = 0 follows that

β2m−3(2π) + εm−2(2π) = 0,

simplifying this relation by using (3.17) and (3.18) and (3.21), (3.20) and (3.12) we get

L2m−3

∫ 2π

0
sin2m−3 θΨ2m−1dθ = 0,

as L2m−3 6= 0, ∫ 2π

0
sin2m−3 θΨ2m−1dθ = 0. (3.22)

Equating the corresponding coefficients of c3m−2 of the equation (3.10) we obtain
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h3m−2(θ) = g3m−2 + α2m−1 + β2m−2 + δm + εm−1 + η0,

where α2m−1 is a solution of (3.14) with k = 2m− 1, εm−1 is a solution of (3.19) with k = m, δm

is a solution of the following equation

δ′m = Φm−1

(
m

∑
i=0

di sini θC1
m+iαm−i +

m

∑
i=0

di sini θC2
m+i ∑

j+l=m−i
gjgl

)
+ Φm−1(C1

mδ1 + d1 sin θC1
m+1δ0 + C2

m(2h0α1 + 2h1α0) + 3C3
mh2

0h1 + d1 sin θC3
m+1h3

0),

by (3.12) and (3.13) we see that δm = δm(sin θ). η0 is a solution of equation

η′0 = Φm−1(C1
mε0 + 2C2

mh0β0) + Ψ2m−1(C2
2mh2

0 + C1
2mα0),

solving this we get

η0 =
1
2

m(m− 1)Φ̄2
m−1Ψ̄2m−1 + m2Φ̄m−1Φ̄m−1Ψ2m−1 +

2m2 −m
2

Φ̄2
m−1Ψ2m−1. (3.23)

Thus, from h3m−2(2π) = 0 follows that

β2m−2(2π) + εm−1(2π) + η0(2π) = 0,

calculating this relation by using (3.17) and (3.18) and (3.20)–(3.23) and (3.12) we get(
L2m−2 +

2m2 −m
2(m− 1)2 λ2

m−1

) ∫ 2π

0
sin2m−2 Ψ2m−1dθ = 0,

in view of the condition (3.4) we have∫ 2π

0
sin2m−2 θΨ2m−1dθ = 0. (3.24)

Equating the corresponding coefficients of c3m−1 of the equation (3.10) we obtain

h3m−1(θ) = g3m−1 + α2m + β2m−1 + δm+1 + εm + η1, (3.25)

where g3m−1, α2m, β2m−1 and εm are the same as above, δm+1 is a solution of the equation

δ′m+1 = Φm−1

( m+1

∑
i=0

di sini θC1
m+iαm+1−i +

m+1

∑
i=0

di sini θC2
m+i ∑

j+l=m+1−i
gjgl

+
2

∑
i=0

di sini θ

(
C1

m+iδ2−i + C2
m+i ∑

l+j=2−i
gjαi + C3

m+i ∑
l+j+k=2−i

gl gjgk

))
.

By (3.12) and (3.13) and αk = αk(sin θ) (k = 0, 1, 2 . . . ), δi = δi(sin θ) (i = 0, 1, 2), which imply
that δm+1 = δm+1(sin θ). η1 is a solution of the following equation

η′1 = Φm−1(C1
mε1 + d1 sin θC1

m+1ε0 + C2
m(2h0β1 + 2h1β0) + d1 sin θC2

m+12h0β0)

+ Ψ2m+1(C2
2m2h0h1 + e1 sin θC2

2m+1h2
0 + C1

2m(α1 + β0) + e1 sin θC1
2m+1α0),
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solving this equation we get

η1 = mΨ̄2
2m−1 + e1

((
m2 − m

2

)
Φ̄2

m−1sin θΨ2m−1 + m(m + 1)Φ̄m−1Φ̄m−1 sin θΨ2m−1

+ m(m + 1)sin θΨ2m−1Φ̄2
m−1

)
+ d1

(
2m2Φ̄m−1 Ψ̄2m−1 sin θΦm−1 + m(m− 1)Φ̄m−1 sin θΦm−1Ψ2m−1

+ m(m + 1)sin θΦm−1 Φ̄m−1Ψ2m−1

+ 2mΨ̄2m−1Φ̄m−1Ψm−1 sin θ + 2(m2 −m)Φ̄m−1Ψ2m−1sin θΦm−1

)
. (3.26)

By (3.25) we see that if h3m−1(2π) = 0, then

β2m−1(2π) + εm(2π) + η1(2π) = 0,

simplifying this equation by using (3.17) and (3.18) and (3.20)–(3.24), (3.26) and (3.12) we get(
L2m−1 +

(
2d1 + e1

m(m + 1)
(m− 1)2

)
λ2

m−1

) ∫ 2π

0
sin2m−1 θΨ2m−1dθ = 0,

by the hypothesis (3.5) we obtain∫ 2π

0
sin2m−1 θΨ2m−1dθ = 0.

In summary, under the conditions (3.3)–(3.5), the (1.7) and (1.8) are the necessary condi-
tions for ρ = 0 to be a center of (3.2). Therefore, the necessity has been proved. On the other
hand, by Lemma 2.1 and Lemma 2.3, if the conditions (1.7) and (1.8) are satisfied, then ρ = 0 is
a center of equation (3.2), this means that the sufficiency is proved. By Lemma 2.3 this center
is a composition center, by Lemma 2.4 this center is a weak center.

Corollary 3.2. For arbitrary m (> 2), if µ = 1, then the origin point of (1.3) is a center if and only if
(1.7) is satisfied.

Proof. Under the linear change of variables (3.1) the system (1.3) becomes{
x′ = −y(1− y) + x(x + Φm−1),

y′ = x(1− y) + y(x + Φm−1),

which in polar coordinates becomes

dr
dθ

=
r2 cos θ + Φm−1rm

1− r sin θ
.

Taking ρ = r
er sin θ we get

dρ

dθ
= Φm−1ρm

∞

∑
n=0

dnρn sinn θ,

where d0 = 1, dn = 1
n! (m− 1)(m + n− 1)n−1, (n = 1, 2, 3, . . . ). Similar to Theorem 3.1, it can

be deduced that the solution ρ of this equation such that ρ(0) = c (0 < |c| � 1) is

ρ = c + cm
m−2

∑
k=0

ckdksink θΦm−1 + c2m−1
(

dm−1sinm−1 θΦm−1 +
m
2

Φ̄2
m−1

)
+ o(c2m−1).

As dn 6= 0 (n = 0, 1, 2 . . . .), from ρ(2π) = c it follows that the condition (1.7) is satisfied. Using
Lemma 2.3 and Lemma 2.4, the conclusion of the present corollary is valid.
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Remark 3.3. By Corollary 3.2, when µ = 1, Conjecture 1.1 is correct for arbitrary m > 2.

Case 2. ν 6= 0, µ̂ 6= 1.
Consider Λ–Ω system{

x′ = −y(1− µ̂y) + x(x + Φm−1 + Ψ2m−1),

y′ = x(1− µ̂y) + y(x + Φm−1 + Ψ2m−1).
(3.27)

Theorem 3.4. Suppose that

∏
1≤n≤m−1

d̃n 6= 0; ∏
m−1≤k≤2m−3

L̃k 6= 0;

L̃2m−2 +
m(2m− 1)
2(m− 1)2 λ2

m−1 6= 0;

L̃2m−1 +

(
2d̃1 + ẽ1

m(m + 1)
(m− 1)2

)
λ2

m−1 6= 0,

where λm−1 is expressed by (2.2),

L̃k := ẽk +
k−m+1

∑
i=0

k + 1− 2i
m− 1 + i

d̃i ẽk−m+1−iλm−1, (k = m− 1, m, . . . , 2m− 1),

d̃n =
d̃1

n! ∏
0≤r≤n−2

(σ− r(1− µ̂))

(n = 2, 3, . . . ), d̃0 = 1, d̃1 = m + µ̂− 2, σ = n + m + 2µ̂− 3; (3.28)

ẽn =
ẽ1

n! ∏
0≤r≤n−2

(ε− r(1− µ̂))

(n = 2, 3, . . . ), ẽ0 = 1, ẽ1 = 2m + µ̂− 2, ε = n + 2m + 2µ̂− 3. (3.29)

Then the origin point of (3.27) is a center if and only if (1.7) and (1.8) hold.
Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.27) becomes

dr
dθ

=
r2 cos θ + Φm−1rm + Ψ2m−1r2m

1− µ̂r sin θ
, (3.30)

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).
Taking

ρ =
r

(1 + (1− µ̂)r sin θ)
1

1−µ̂

,

the equation (3.30) can be written as

dρ

dθ
= ρmΦm−1(1 + (1− µ̂)r sin θ)

m+µ̂−2
1−µ̂ + ρ2mΨ2m−1(1 + (1− µ̂)r sin θ)

2m+µ̂−2
1−µ̂ . (3.31)



Weak center for a class of Λ–Ω differential systems 13

Applying the Langrange–Bürman formula we have

(1 + (1− µ̂)r sin θ)
m+µ̂−2

1−µ̂ =
∞

∑
n=0

d̃nρn sinn θ;

(1 + (1− µ̂)r sin θ)
2m+µ̂−2

1−µ̂ =
∞

∑
n=0

ẽnρn sinn θ,

where d̃n, ẽn are expressed by (3.28), (3.29), respectively.
Substituting them into (3.31) we get

dρ

dθ
= Φm−1ρm

∞

∑
n=0

d̃nρn sinn θ + ρ2mΨ2m−1

∞

∑
n=0

ẽnρn sinn θ. (3.32)

Comparing the equations (3.8) and (3.32), we see that they have the same form, only with
different coefficients. Similar to Theorem 3.1, the present theorem can be derived.

Remark 3.5. When µ̂ = 0, from Theorem 3.4 implies the Theorem 3.1 of [15].

Corollary 3.6. If µ 6= 1 and d̂n = d̃n|µ̂=µ 6= 0 (n = 1, 2, . . . , m − 1) (m > 2), where d̃n (n =

1, 2, . . . , m− 1) is expressed by (3.28). Then the origin point of (1.3) is a center if and only if (1.7) is
satisfied.

Proof. Similar to Theorem 3.4, when Ψ2m−1 = 0, the equation (1.3) can be transformed as
following

dρ

dθ
= Φm−1ρm

∞

∑
n=0

d̂nρn sinn θ. (3.33)

Similar to Theorem 3.1, we get that the solution of (3.33) such that ρ(0) = c (0 < |c| � 1) is

ρ = c + cm
m−2

∑
k=0

ckd̂ksink θΦm−1 + c2m−1
(

d̂m−1sinm−1 θΦm−1 +
m
2

Φ̄2
m−1

)
+ o(c2m−1).

As d̂n = d̃n|µ̂=µ 6= 0 (n = 1, 2 . . . , m− 1), d̃0 = 1, from ρ(2π) = c follows that the condition
(1.7) is satisfied. Using Lemma 2.4, the conclusion of the present corollary is valid.

Remark 3.7. By Corollary 3.6, if µ 6= 1, Conjecture 1.1 is valid when ∏1≤n≤m−1 d̂n 6= 0, (m > 2).

Case B. ν = 0, µ 6= 0.
Consider Λ–Ω system{

x′ = −y(1− µy) + x(Φm−1 + Ψ2m−1),

y′ = x(1− µy) + y(Φm−1 + Ψ2m−1).
(3.34)

Theorem 3.8. Suppose that
∏

m−1≤k≤2m−3
L̂k 6= 0;

L̂2m−2 +
m(2m− 1)
2(m− 1)2 λ2

m−1 6= 0;

L̂2m−1 + µ

(
2 +

m(m + 1)
(m− 1)2

)
λ2

m−1 6= 0,

where λm−1 is expressed by (2.2), L̂k :=µk+µ1−m+k ∑k−m+1
i=0

k+1−2i
m−1+i λm−1, (k=m−1, m, . . . , 2m−1).

Then the origin point of (3.34) is a center if and only if (1.7) and (1.8) hold.
Moreover, this center is a composition center and weak center.
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Proof. In polar coordinates, the system (3.34) becomes

dr
dθ

= Φm−1

∞

∑
n=0

µnrm+n sinn θ + Ψ2m−1

∞

∑
n=0

µnr2m+n sinn θ, (3.35)

where Φm−1 = Φm−1(cos θ, sin θ), Ψ2m−1 = Ψ2m−1(cos θ, sin θ).
Obviously, the equation (3.35) has the same form as (3.8), in Theorem 3.1 taking dk = ek =

µk (k = 0, 1, 2, . . . ), the present theorem can be derived directly.

Corollary 3.9. For arbitrary m > 2, the origin point of (1.4) is a center if and only if (1.7) is satisfied.

Proof. Under the linear changes of variables (3.1) the system (1.4) becomes{
x′ = −y(1− y) + xΦm−1,

y′ = x(1− y) + yΦm−1.
(3.36)

In polar coordinates (3.36) can be written as

dr
dθ

= Φm−1

∞

∑
n=0

rm+n sinn θ. (3.37)

Similar to Theorem 3.1, we get that the solution of (3.37) such that r(0) = c (0 < |c| � 1) is

r = c + cm
m−2

∑
i=0

sink θΦm−1 + c2m−1
(

sinm−1 θΦm−1 +
m
2

Φ̄2
m−1

)
+ o(c2m−1).

Obviously, from r(2π) = c follows that the condition (1.7) is satisfied. Using Lemma 2.4 the
conclusion of the present corollary is correct.

Remark 3.10. By Corollary 3.9, Conjecture 1.2 is valid for m > 2.

Remark 3.11. In the case of µ = ν = 0, m = 2 the center problem of system (1.5) has been
discussed by [14].
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