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Abstract. This paper is devoted to a general stochastic delay differential equation with
infinite-dimensional diffusions in a Hilbert space. We not only investigate the existence
of invariant measures with either Wiener process or Lévy jump process, but also obtain
the existence of a pullback attractor under Wiener process. In particular, we prove the
existence of a non-trivial stationary solution which is exponentially stable and is gener-
ated by the composition of a random variable and the Wiener shift. At last, examples of
reaction-diffusion equations with delay and noise are provided to illustrate our results.
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1 Introduction

Delay differential equations arise from evolution phenomena in physical process and biolog-
ical systems (see e.g. [19, 21, 25]), in which time-delay is used for mathematical modelling to
describe the dynamical influence from the past. Recently, the effect of noise on such functional
differential equations is increasingly a focus of investigation, in particular, in the combined
influence of noise and delay in dynamical systems (see e.g. [5, 6, 13, 35, 37]). In this paper, we
consider the following stochastic delay differential equation in a separable Hilbert space H:{

dX(t) = [AX(t) + F(Xt)]dt + G(Xt)dZ(t), t > 0,

X(t) = φ(t), t ∈ [−τ, 0],
(1.1)

where A: Dom(A) ⊆ H → H is the infinitesimal generator of a semigroup, Xt(s) = X(t + s)
for s ∈ [−τ, 0] and t ≥ 0. Here, Dom(A) denotes the domain of A and is a Banach space
under the usual graph norm. Let L = L2([−τ, 0], H), and ∥ · ∥, ∥ · ∥L denote the norms in
H and L, respectively. For a process X(t) ∈ H, we denote by {Xt : t ≥ 0} the segment
process, which takes values in L for each t. Z = {Z(t),Ft, t ≥ 0} could be an abstract
Q-Wiener process or Lévy jump process with values in some separable Hilbert space U , and
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φ = {φ(t) : t ∈ [−τ, 0]} is a given real-valued stochastic process, both defined on a probability
space (Ω,F , P) where filtration {Ft : t ≥ 0} is the P-completion of the Borel σ-algebra on Ω.

For stochastic delay differential equations, there has been a rather comprehensive math-
ematical literature on both theories and applications. The existence of invariant measures is
well studied in both finite and infinite dimensions by using Krylov–Bogoliubov theorem (see
e.g. [7, 17, 18]). Scheutzow [35] formulated a sufficient condition ensuring the existence of an
invariant probability measure with additive noise. For a similar approach and connections to
stochastic partial differential equations, see Bakhtin and Mattingly [4]. For stochastic delay
differential equations driven by Brownian motion, Mohammed [31] investigated the existence
and uniqueness of strong or weak solutions under random functional Lipschitz conditions,
Mao [30] discussed the method of steps, which provides a unique solution without a regular
dependence of the coefficients on values in the past, Liptser and Shiryaev [26] considered
weak solutions, Itô and Nisio [23] investigated the existence of weak solutions for equations
with finite and infinite delay, Butkovsky and Scheutzow [8] established a general sufficient
conditions ensuring the existence of an invariant measure for stochastic functional differential
equations and exponential or subexponential convergence to the equilibrium. For stochastic
delay differential equations driven by a Lévy process, Gushchin and Küchler [20] established
some necessary and sufficient conditions ensuring the existence and uniqueness of stationary
solutions, Reiß, Riedle, and van Gaans [32] proved that the segment process is eventually
Feller, but in general not eventually strong Feller on the Skorokhod space, and also investi-
gated the existence of an invariant measure by proving the tightness of the segments using
semimartingale characteristics and the Krylov-Bogoliubov method. Existence and uniqueness
of global solutions have been established under local Lipschitz and linear growth conditions
(see e.g. [30,40]) or weak one-sided local Lipschitz (or monotonicity) conditions. Recently, Liu
[28] considered stationary distributions of a class of second-order stochastic delay evolution
equations driven by Wiener process or Lévy jump process in Hilbert space. In this paper we
shall prove the existence of an invariant measure for (1.1) without boundedness conditions
on the diffusion coefficient. Note that the segment process takes values in the infinite dimen-
sional space L, boundedness in probability does not generally imply tightness. In this case,
one usually uses compactness of the orbits of the underlying deterministic equation to obtain
tightness. However, such a compactness property does not hold for functional differential
equation (1.1). For more details, see [7]. In this work, we will study the existence of invariant
measures of (1.1) by applying the Krylov–Bogoliubov method.

A criterion for the existence of random attractors for random dynamical systems is es-
tablished by Crauel and Flandoli [14], who also obtained the invariant Markov measures
supported by the random attractor. Caraballo, Kloeden and Keal [10] proved the existence
of random attractors of an ordinary differential equation with a random stationary delay.
Kloeden and Lorenz [24] pointed out that the classical theory of pathwise random dynamical
systems with a skew product (see e.g. [3]) does not apply to nonlocal dynamics such as when
the dynamics of a sample path depends on other sample paths through an expectation or
when the evolution of random sets depends on nonlocal properties such as the diameter of
the sets. In [24], Kloeden and Lorenz showed that such nonlocal random dynamics can be
characterized by a deterministic two-parameter process from the theory of nonautonomous
dynamical systems acting on a state space of random variables or random sets with the mean-
square topology and provided a definition of mean-square random dynamical systems and
their attractors. Wu and Kloeden [39] investigated the existence of a random attractor for a
mean-square random dynamical system (MS-RDS) generated by a stochastic delay differential
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equation with random delay for which the drift term is dominated by a nondelay compo-
nent satisfying a one-sided dissipative Lipschitz condition. The exponential stability of trivial
stationary solutions for stochastic partial differential equations has been extensively analyzed
(see e.g. [12, 22, 29]). Caraballo, Kloeden and Schmalfuß [11] obtained the existence of a non-
trivial stationary solution and a random fixed point which is exponentially stable. In this
paper, we shall generalize the relevant results of Caraballo, Kloeden and Schmalfuß [11] to
such a stochastic evolution equation with delay as (1.1). In particular, we shall prove the exis-
tence of a random fixed point, which generates the exponentially stable stationary solution of
(1.1). Moreover, this stationary solution attracts bounded sets of initial conditions.

In this paper, we first establish a non-autonomous random dynamical system generated
by equation (1.1). Then we show the existence of an invariant measure of (1.1) driven by
Wiener process. In particular, we obtain a random pullback attractor consisting of a single
point which is exponentially stable. Next, the existence of invariant measures of (1.1) driven
by Lévy jump process is obtained by using Lévy–Itô decomposition formula. Finally, we apply
our results to reaction-diffusion equations with noise and delay.

2 Preliminaries

Throughout this paper, we always assume that H is a separable Hilbert space, and there exists
a Gelfand triplet V ⊂ H ⊂ V ′ of separable Hilbert spaces, where V ′ denotes the dual of V and
V = Dom(A

1
2 ) (see page 55 of [38] for more details). The inner product in H is denoted by

⟨·, ·⟩, and the duality mapping between V ′ and V by ⟨·, ·⟩V . We denote by a1 > 0 the constant
of the injection V ⊂ H, i.e.,

a1∥u∥2 ≤ ∥u∥2
V for u ∈ V,

and let −A : V → V ′ be a positive, linear and continuous operator for which there exists an
a2 > 0 such that

⟨−Au, u⟩V ≥ a2∥u∥2
V for all u ∈ V.

It is well known (see, for instance, [6, 9, 15]) that A is the generator of a strongly continuous
semigroup Φ(t) = etA on H satisfying that

∥ exp{tA}∥L (H) ≤ e−λt, (2.1)

where λ = a1a2 > 0 and L (H) is a space of bounded linear operators on H.
For any φ ∈ L2([−τ, 0], H), the mild solution X(t, φ) of (1.1) with the intimal data φ

satisfies 
X(t, φ) = Φ(t)φ(0) +

∫ t

0
Φ(t − s)F(Xs(φ))ds

+
∫ t

0
Φ(t − s)G(Xs(φ))dZ(s), t ≥ 0,

X(t, φ) = φ(t), t ∈ [−τ, 0],

(2.2)

where Xt(φ) represents Xt(φ)(s) = X(t + s, φ) for s ∈ [−τ, 0] and t ≥ 0.

Definition 2.1. A measure µ is called an invariant measure for (1.1) if

µ( f ) = µ(Pt f ), t ≥ 0,

where
µ( f ) =

∫
L

f (ϕ)µ(dϕ) and Pt f (ϕ) = E f (Xt(ϕ))
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for f ∈ Cb(L), where Pt is called the transition operator of (1.1) and Cb(L) denotes the set
of all bounded and continuous real-valued functions on L. Let µXt(ϕ) be the distribution of
Xt(ϕ), t ≥ 0. If an F0-measurable ϕ ∈ L2(Ω,L) is such that µXt(ϕ) = µϕ for all t ≥ 0, then µϕ

is called a stationary distribution of (1.1) and X(t, ϕ) is then called a stationary solution.

It follows from the above definition that an invariant measure µ is a stationary distribution
of (1.1) if and only if ∫

L
∥ϕ∥2

Lµ(dϕ) < ∞,

when F0 is assumed to be rich enough to allow the existence of an F0-measurable random
variable with distribution µ.

Definition 2.2. Denote by P(L) the set of Borel probability measures on L endowed with the
topology of weak convergence of measures. For µ1, µ2 ∈ P(L) define a metric on P(L) by

d(µ1, µ2) = sup
f∈M

∣∣∣∣∫L f (ϕ)µ1(dϕ)−
∫
L

f (ϕ)µ2(dϕ)

∣∣∣∣ ,

where

M = { f ∈ C(L, R) : | f (ϕ)− f (ψ)| ≤ ∥ϕ − ψ∥L for all ϕ, ψ ∈ L and | f (·)| ≤ 1}.

It is well known that P(L) is complete under the metric d(·, ·) (see [16, Theorem 2.4.9]).
In order to show the existence of an invariant measure, we consider the segments of a

solution. In contrast to the scalar solution process, the process of segment {Xt(ϕ) : t ≥ 0} is
a Markov process [17, 18]. It is shown that the segment process is also Feller and there exists
a solution of which the segments are tight (see, for example, [17] for more details). Then we
apply the Krylov–Bogoliubov method. In fact, we have the following result.

Lemma 2.3. Suppose that for any bounded subset U of L,

(i) limt→∞ supϕ,ψ∈U E∥Xt(ϕ)− Xt(ψ)∥2
L = 0;

(ii) supt≥0 supϕ∈U E∥Xt(ϕ)∥2
L < ∞.

Then, for any initial condition ϕ ∈ L, the solution of equation (1.1) converges to an invariant measure.

Proof. It suffices to show that for any initial condition ϕ ∈ L, {P(ϕ, t, ·) : t ≥ 0} is Cauchy
in the space P(L) with the metric d(·, ·) in Definition 2.2. For this purpose, we only need to
show that for any initial data ϕ ∈ L and ε > 0, there exists a time T > 0 such that

d(P(ϕ, t + s, ·), P(ϕ, t, ·)) = sup
f∈M

|E f (Xt+s(ϕ))− E f (Xt(ϕ))| ≤ ε, ∀t ≥ T, s > 0. (2.3)

The proof is referred to Lemma 5.1 in [28]. Here we shall provide the details for the sake of
completeness. For any f ∈ M and t, s > 0, note that

|E f (Xt+s(ϕ))− E f (Xt(ϕ))|
= |E[E f (Xt+s(ϕ))|Fs]− E f (Xt(ϕ))|

=

∣∣∣∣∫L E f (Xt(ψ))P(Xs(ϕ), dψ)− E f (Xt+s(ϕ))

∣∣∣∣
≤
∫
L
|E f (Xt(ψ))− E f (Xt(ϕ))|P(Xs(ϕ), dψ)

≤ 2P(Xs(ϕ),Lc
R) +

∫
LR

|E f (Xt(ψ))− E f (Xt(ϕ))|P(Xs(ϕ), dψ),

(2.4)
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where LR = {ϕ ∈ L : ∥ϕ∥L ≤ R} and Lc
R = L− LR. By virtue of condition (i), there exists a

time T2 > 0 such that

sup
f∈M

|E f (Xt(ϕ))− E f (Xt(ψ))| ≤
ε

2
, t ≥ T2.

On the other hand, condition (ii) implies that there exists a positive sufficiently large constant
R such that

P(Xs(ϕ),Lc
R) ≤

ε

4
, ∀s > 0.

Hence (2.3) holds and the transition probability P(Xs(ϕ), ·) of Xt(ϕ) converges weakly to some
µ ∈ P(L). For every f ∈ Cb(L) the Markovian property of Xt(ϕ), t ≥ 0 gives that

Pt+s f (ϕ) = PtPs f (ϕ) t, s ≥ 0, ϕ ∈ L.

Let s → ∞, it follows that
µ( f ) = µ(Pt f ), f ∈ Cb(L).

That is, µ is an invariant measure for Xt(ϕ), t ≥ 0. The proof is completed.

3 Stochastic systems driven by Wiener process

In this section we consider equation (1.1) with Z = {W(t) : t ≥ 0}, which denotes a U -valued
{Ft : t ≥ 0}-Wiener process defined on {Ω,F , P} with covariance operator Q, i.e.,

E⟨W(t), x⟩⟨W(s), y⟩ = (t ∧ s)⟨Qx, y⟩ for all x, y ∈ U ,

where Q is a linear, symmetric and nonnegative bounded operator on U. In particular, we
shall call {W(t) : t ≥ 0}, a U -valued Q-Wiener process with respect to {Ft : t ≥ 0}.

First, we shall show the solution process is tight. Let LQ
2 (U , H) is the space of all Hilbert–

Schmidt operators from U to H with ∥G∥2
LQ

2
:= TrH(GQG∗). For any t ≥ 0 and G(t) ∈

LQ
2 (U , H), let

Qt =
∫ t

0
Φ(s)G(s)QG∗(s)Φ∗(s)ds,

where G∗(s) and Φ∗(s) are the adjoint operators of G(s) and Φ(s), respectively. We suppose
that

Tr(Qt) =
∫ t

0
Tr[Φ(s)G(s)QG∗(s)Φ∗(s)]ds < ∞ for any t ≥ 0. (3.1)

Throughout this section, the operator F: L → H is supposed to be Lipschitz continuous
while the operator G: L → LQ

2 (U , H) is supposed to be Lipschitz continuous with respect to
the Hilbert-Schmidt norm LQ

2 (U , H) of linear operators from U to H:

∥F(x)− F(y)∥+ ∥G(x)− G(y)∥
LQ

2
≤ K∥x − y∥L,

∥F(x)∥+ ∥G(x)∥
LQ

2
≤ K1∥x∥L + K2

(3.2)

for all x, y ∈ L, where K, K1, K2 are nonpositive constants. Note that under hypotheses
(2.1) and (3.2), (1.1) has a unique mild solution of which the segment is a Markov and Feller
process (see [33, 34, 39] for more details). In the subsequent two subsections, we investigate
the existence of invariant measure and random attractor as well as the exponential stability of
stationary solutions.
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3.1 Invariant measure

Lemma 3.1. Assume that 2K2e2λτ(1+ λ−1e−λτ) < λ, Then all trajectories of solution processes (2.2)
converge exponentially together in the mean-square sense. In particular, for any bounded subset U of L,

lim
t→∞

sup
ϕ,ψ∈U

E∥Xt(ϕ)− Xt(ψ)∥2
L = 0.

Proof. It follows from 2(1 + ε)K2e2λτ(1 + λ−1e−λτ) < λ that there exists ε > 0 such that
2(1 + ε)K2e2λτ(1 + λ−1e−λτ) < λ. Note that

(A + B + C)2 ≤ (1 + ε)(A + B)2 +

(
1 +

1
ε

)
C2 ≤ 2(1 + ε)(A2 + B2) +

(
1 +

1
ε

)
C2

for all A, B, C ≥ 0. Then it follows from (2.2) that for t > τ,

E∥Xt(ϕ)− Xt(ψ)∥2
L

≤ E

{(
1 +

1
ε

) ∫ 0

−τ
∥Φ(t + θ)(ϕ(0)− ψ(0))∥2dθ

+ 2(1 + ε)
∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥2

dθ

+ 2(1 + ε)
∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)(G(Xs(ϕ))− G(Xs(ψ)))dW

∥∥∥∥2}
dθ

=:
(

1 +
1
ε

)
I1 + 2(1 + ε)I2 + 2(1 + ε)I3.

(3.3)

Following (2.1) we have

I1 ≤ e−2λt(e2λτ − 1)
2λ

∥ϕ(0)− ψ(0)∥2. (3.4)

From (2.1), (3.2) and Hölder’s inequality, it follows that for t > τ,

I2 ≤ E

∫ 0

−τ

[∫ t+θ

0
∥Φ(t + θ − s)∥L (H)ds∫ t+θ

0
∥Φ(t + θ − s)∥L (H)∥F(Xs(ϕ))− F(Xs(ψ))∥2ds

]
dθ

≤ K2

λ

∫ 0

−τ

∫ t+θ

0
(1 − e−λ(t+θ))e−λ(t+θ−s)E∥Xs(ϕ)− Xs(ψ)∥2

Ldsdθ

≤ K2eλτ

λ

∫ t

0
e−λ(t−s)E∥Xs(ϕ)− Xs(ψ)∥2

Lds.

(3.5)

Using (2.1), (3.2) and the Burkholder–Davis–Gundy inequatlity (see, for example [27, Theo-
rem 6.1]), we get

I3 ≤ E

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥2

L (H)∥G(Xs(ϕ))− G(Xs(ψ))∥2
LQ

2
dsdθ

≤ K2
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)E∥Xs(ϕ)− Xs(ψ)∥2

Ldsdθ

≤ K2e2λτ
∫ t

0
e−λ(t−s)E∥Xs(ϕ)− Xs(ψ)∥2

Lds

(3.6)
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for t > τ. Then from (3.4), (3.5) and (3.6), we obtain

eλtE∥Xt(ϕ)− Xt(ψ)∥2 ≤ (e2λτ − 1)(1 + ε)

2λε
∥ϕ(0)− ψ(0)∥2

+ 2(1 + ε)K2(e2λτ + λ−1eλτ)
∫ t

0
eλsE∥Xs(ϕ)− Xs(ψ)∥2

Lds.

Using Gronwall’s inequality, we have

eλtE∥Xt(ϕ)− Xt(ψ)∥2
L ≤ (e2λτ − 1)(1 + ε)

2λε
∥ϕ(0)− ψ(0)∥2 (3.7)

The proof is completed.

Then we will prove the segment process of solution to (1.1) is bounded with Wiener pro-
cess.

Lemma 3.2. Assume that 2K2
1e2λτ(1 + λ−1e−λτ) < λ. Then the solution process (2.2) is ultimately

bounded in the mean-square sense, i.e., for any bounded set U of L,

sup
t≥0

sup
ϕ∈U

E∥Xt(ϕ)∥2
L < ∞.

Proof. It follows from 2K2
1e2λτ(1 + λ−1e−λτ) < λ that there exists ε > 0 such that 2K2

1(e
2λτ +

λ−1eλτ)(1 + ε)2 < λ. Similar to (3.3), it follows from (2.2) that for all t ≥ 0

E∥Xt(ϕ)∥2
L ≤ E

{(
1 +

1
ε

) ∫ 0

−τ
∥Φ(t + θ)ϕ(0)∥2dθ

+ 2 (1 + ε)
∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥2

dθ

+ 2 (1 + ε)
∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dW

∥∥∥∥2

dθ

}
=:
(

1 +
1
ε

)
J1 + 2 (1 + ε) J2 + 2 (1 + ε) J3.

(3.8)

From (2.1) we have

J1 ≤ e−2λt(e2λτ − 1)
2λ

∥ϕ(0)∥2. (3.9)

Note that

(A + B)2 ≤ (1 + ε)A2 +

(
1 +

1
ε

)
B2.

Following (2.1), (3.2) and Hölder’s inequality we have

J2 ≤ E

∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥2

dθ

≤ E

∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)[K1∥Xs(ϕ)∥L + K2]ds

∥∥∥∥2

dθ

≤
(

1 +
1
ε

)
K2

2

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥2

L (H) dsdθ

+(1 + ε)K2
1

∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s)∥L (H) ds

∫ t+θ

0
∥Φ(t + θ − s)∥L (H)∥Xs(ϕ)∥2

Ldsdθ
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≤ (1 + ε)τK2
2

2ελ
+

(1 + ε)K2
1

λ

∫ 0

−τ

∫ t+θ

0
(1 − e−λ(t+θ))e−λ(t+θ−s)E∥Xs(ϕ)∥2

Ldsdθ

≤ (1 + ε)τK2
2

2ελ
+

(1 + ε)eλτK2
1

λ

∫ t

0
e−λ(t−s)E∥Xs(ϕ)∥2

Lds (3.10)

for t > τ. It follows from (2.1), (3.2) and the Burkholder–Davis–Gundy inequality that

J3 ≤
∫ 0

−τ

∫ t+θ

0
E ∥Φ(t + θ − s)G(Xs(ϕ))∥2 dsdθ

≤
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

[
(1 + ε)K2

1E∥Xs(ϕ)∥2
L +

(
1 +

1
ε

)
K2

2

]
dsdθ

≤ (1 + ε)K2
2

2ελ

∫ 0

−τ
(1 − e−2λ(t+θ))dθ + (1 + ε)K2

1

∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)E∥Xs(ϕ)∥2

Ldsdθ

≤ (1 + ε) τK2
2

2ελ
+ (1 + ε)K2

1e2λτ
∫ t

0
e−λ(t−s)E∥Xs(ϕ)∥2

Lds

(3.11)

for t > τ. Thus, (3.9), (3.10) and (3.11) together imply that for t > τ,

eλtE∥Xt(ϕ)∥2 ≤ (1 + ε) (e2λτ−1)

2ελ
∥ϕ(0)∥2 +

(1 + ε)2K2
2τ

ελ
eλt

+ 2K2
1(1 + ε)2(λ−1eλτ + e2λτ)

∫ t

0
eλsE∥Xs(ϕ)∥2

Lds

= α1 + γ1eλt + β1

∫ t

0
eλsE∥Xs(ϕ)∥2

Lds,

where

α1 =
(1 + ε) (e2λτ−1)

2ελ
∥ϕ(0)∥2,

γ1 =
(1 + ε)2K2

2τ

ελ
,

β1 = 2K2
1(1 + ε)2(e2λτ + λ−1eλτ).

Then Gronwall’s inequality gives that

eλtE∥Xt(ϕ)∥2
L ≤ α1 + γ1eλt + β1

∫ t

0

(
γ1eλs + α1

)
eβ1(t−s)ds

and hence that

E∥Xt(ϕ)∥2
L ≤ γ1 + α1e−λt + β1e(β1−λ)t

∫ t

0

(
γ1eλs + α1

)
e−β1sds

≤ γ1 + 2α1 +
β1γ1

λ − β1

for t > τ. This completes the proof.

By Lemmas 2.3, 3.1 and 3.2, we can have the following result about the existence of in-
variant measures of equation (1.1) driven by Wiener process. Now we show the uniqueness
of invariant measures. If µ, µ′ ∈ P(L) are two different invariant measures for Xt of (1.1), for
any f ∈ M, by virtue of (3.7), Hölder’s inequality and the invariance of µ(·), µ′(·), it follows
that

|µ( f )− µ′( f )| ≤
∫
L×L

|Pt f (ϕ)− Pt f (ψ)|µ(dϕ)µ(dψ) ≤ K3eαt, t ≥ 0,

for some constant K3 > 0, where α = K2(e2λτ + λ−1eλτ)− 1
2 λ < 0 under the assumption in

Lemma 3.1. We obtain the uniqueness of invariant measures by letting t → ∞.
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Theorem 3.3. Under the assumptions of Lemmas 3.1 and 3.2, equation (1.1) driven by Wiener process
has a unique invariant measure.

3.2 Random attractor

We consider the canonical probability space (Ω,F , P), where

Ω = {ω ∈ C(R; H) : ω(0) = 0},

and F is the Borel σ-algebra induced by the compact open topology of Ω (see [3]), while P is
the corresponding Wiener measure on (Ω,F , P). Define a shift operators by flow θ = {θt}t∈R

on Ω:
θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω.

Then, (Ω,F , P, (θt)t∈R) is a metric dynamical system, that is, θ : R×Ω → Ω is (B(R)×F ,F )-
measurable, θ0 is the identity on Ω, θs+t = θtθs for all s, t ∈ R, and θt(P) = P for all t ∈ R.
More precisely, P is ergodic with respect to θ. In addition, with respect to the filtration we
have that

θ−1
s F̄t = F̄t+s (3.12)

for any t, s ∈ R, where F̄ is the completion of F , see [3, Definition 2.3.4] for more details. For
the sake of convenience, from now on, we will abuse the notation slightly and write the space
Ω as Ω.

The Wiener process with covariance Q is adapted to the filtration {F̄s+t}t≥0. First we
define a mean-square random dynamical system referring to [24, 39]. Let

R2
≥ ≜ {(t, t0) ∈ R2 : t ≥ t0},

and
Π ≜ L2((Ω,F , P);L), Πt ≜ L2((Ω,Ft, P);L)

for each t ∈ R.

Definition 3.4 ([39, Definition 10]). A mean-square random dynamical system (MS-RDS) Ψ
on L with probability space (Ω,F ,Ft, P) is a family of mappings

Ψ(t, t0, ·) : Πt0 → Πt, (t, t0) ∈ R2
≥,

which satisfies

(i) initial value property: Ψ(t, t0, ψ) = ψ for every ψ ∈ Πt0 ;

(ii) two-parameter semigroup property: Ψ(t2, t0, ψ) = Ψ(t2, t1, Ψ(t1, t0, ψ)) for all t2 ≥ t1 ≥ t0;

(iii) continuity property: (t, t0, ψ) 7→ Ψ(t, t0, ψ) is continuous in the space R2
≥ × Π.

Definition 3.5 ([39, Definition 11]). A family A = {At}t∈R of nonempty subsets of Π with
At ⊂ Πt is said to be Ψ-invariant if

Ψ(t, t0, At0) = At for all (t, t0) ∈ R2
≥,

and Ψ-positively invariant if

Ψ(t, t0, At0) ⊂ At for all (t, t0) ∈ R2
≥.
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Definition 3.6 ([39, Definition 12]). A Ψ-invariant family A = {At}t∈R of nonempty compact
subsets of {Πt}t∈R is called a mean-square pullback attractor if it pullback attracts all families
B = {Bt}t∈R of uniformly bounded subsets of {Πt}t∈R, i.e., for any fixed t ∈ R

dist(Ψ(t, t0, Bt0), At) → 0 as t0 → −∞.

Let X(·, t0, ϕ0) be the solution of the following equation with initial value ϕ0 ∈ Πt0 ,{
dX(t) = [AX(t) + F(Xt)]dt + G(Xt)dW(t), t > t0,

X(t0 + s) = ϕ0(s), s ∈ [−τ, 0].
(3.13)

For each (t, t0, ϕ0) ∈ R2
≥ × Πt0 , define solution mapping of (3.13):

Ψ(t, t0, ϕ0) = Xt(·, t0, ϕ0) = X(t + ·, t0, ϕ0).

It is easy to see that Ψ satisfies the initial value property,

Ψ(t0, t0, ϕ0) = Xt0(·, t0, ϕ0) = X(t0 + ·) = ϕ0

for all (t0, ϕ0) ∈ R × Πt0 . Existence and uniqueness of solution of (3.13) show that Ψ satisfies
the two-parameter semigroup evolution property. Moreover, Ψ is continuous for all (t, t0, ϕ0) ∈
R2

≥ × Πt0 since solution Xt(·, t0, ϕ0) is continuous with respect to t, ϕ0. Thus, (3.13) generates
a continuous MS-RDS Ψ = {Ψ(t, t0, ·), (t, t0) ∈ R2

≥} with state space L.
It follows from Lemma 3.2 that for any bounded set U of Π there exist constants B > 0

and TU ≥ 0 such that for all t ≥ t0 + TU and ϕ0 ∈ U ∩ Πt0 ,

E∥Ψ(t, t0, ϕ0)∥2 < B,

which can be represented in the pullback sense that

E∥Ψ(t, tn, ϕn)∥2 < B

for all tn ≤ t − TB and ϕn ∈ U ∩ Πtn . Lemma 3.1 shows that any two solutions converge to-
gether in the mean-square sense uniformly for different initial conditions at the same starting
time. Namely, for any ϕ0, ψ0 ∈ Πt0 ,

E∥Ψ(t, t0, ϕ0)− Ψ(t, t0, ψ0)∥2 → 0 as t → ∞,

with the convergence being uniform for initial values in a common bounded subset as well as
in the initial time t0. Let UB be a bounded ball about the origin of radius B in L. Consider a
sequence tn → −∞ as n → ∞ with tn < −TU − τ and tn+1 ≤ tn − TBU and define a sequence
{χn}∞

n=1 in UB ∩ Π0 by
χn ≜ Ψ(0, tn, ϕn) (3.14)

for an arbitrary ϕn ∈ UB ∩ Πtn . Namely,

χn(s) = Ψ(s, tn, ϕn)

for all s ∈ [−τ, 0]. Then {χn}∞
n=1 are obviously mean-square bounded by B for all ϕn taking

values in UB ∩ Πtn .

Lemma 3.7. {χn}n∈N is a Cauchy sequence with values in UB ∩ Π0 and there exists a unique limit
χ∗

0 ∈ UB ∩ Π0 such that
E∥χn − χ∗

0∥2 → 0 as n → ∞.
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Proof. It suffices to prove that for every ε > 0 there exists Nε > 0 such that

E∥χn − χm∥2 ≤ ε for all n, m ≥ Nε. (3.15)

Let tm < tn < 0. Then we have

χm = Ψ(0, tm, ϕm) = Ψ(0, tn, Ψ(tn, tm, ϕm)) = Ψ(0, tn, ϕ̂n,m),

where ϕ̂n,m := Ψ(tn, tm, ϕm) ∈ UB ∩ Πtn . Indeed,

E∥χn − χm∥2 = E∥Ψ(0, tn, ϕn)− Ψ(0, tm, ϕm)∥2 = E∥Ψ(0, tn, ϕn)− Ψ(0, tn, ϕ̂n,m)∥2.

Thus, it follows from Lemma 3.1 that (3.15) holds and all solutions starting in the common
bounded subset UB converge in Π0. Since Π0 is complete, the Cauchy sequence has a unique
limit χ∗

0 ∈ UB ∩ Π0. The proof is completed.

From the above process, we can repeat with 0 in (3.14) replaced by −1 to obtain a limit
χ∗
−1 ∈ Π−1. It is easy to see from the construction that χ∗

0 = Ψ(0,−1, χ∗
−1). Follow this way,

we can construct a sequence {χ∗
−n}n∈N and hence obtain an entire MS-RDS χ∗

t for all t ∈ R.
Moreover, all other MS-RDS trajectories converge to χ∗

t in the mean-square sense.

Theorem 3.8. Under the assumptions of Lemmas 3.1 and 3.2, there exists a pullback random attractor
for the random dynamical system generated by (1.1) which consists of singleton sets. Furthermore, the
random attractor pullback attracts all other solution processes in mean-square sense.

Proof. The above arguments shows the existence of random attractor consisting of singleton
sets At = {χ∗

t } and attracts all other solution processes in the mean-square sense. Next we
show the random attractor is unique. Suppose there is another entire trajectory χ̄∗

t ∈ At for
all t ∈ R and there exists a constant ε0 > 0 such that

E∥χ∗
0 − χ̄∗

0∥2 ≥ ε0.

On the other hand, it follows from the convergence in Lemma 3.1 that there exists T ≥ 0 such
that

E∥Ψ(0,−t, χ∗
−t)− Ψ(0,−t, χ̄∗

−t)∥2 ≤ ε0

2
for all t ≥ T. Note that χ∗

0 = Ψ(0,−t, χ∗
−t) and χ̄∗

0 = Ψ(0,−t, χ̄∗
−t). Hence

ε0 ≤ E∥χ∗
0 − χ̄∗

0∥2 = E∥Ψ(0,−t, χ∗
−t)− Ψ(0,−t, χ̄∗

−t)∥2 ≤ ε0

2
for t ≥ T, which is a contradiction. This completes the proof.

Remark 3.9. If the random attractor A(ω), ω ∈ Ω consists of a single point, then A defines a
random fixed point which attracts tempered random sets.

3.3 Exponential stability of stationary solutions

Note that zero is not a solution to the equation (1.1). In this subsection we shall prove that
the non-trivial stationary solutions to equation (1.1) with Wiener process are exponentially
stable. Consider the process θsW(·, ω) = W(·, θsω) = W(·+ s, ω)− W(s, ω), for s ∈ R which
is adapted to the filtration {Ft+s}t≥0. The following equality holds for ψ0 ∈ Π0, t ≥ 0, s ∈ R:

Ψ(t, 0, ψ0)(θs·) = Ψ(t, s, ψs)(·) almost surely t, s ∈ R, (3.16)

where ψs(·) := ψ0(θs·). It follows from (3.12) that x0(θs·) is F̄s-measurable. The following
lemma is obvious from the proof of Lemma 3.1.
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Lemma 3.10. For s ∈ R, ϵ ≥ 0, ψ ∈ Πs,

Ψ(·, s + ϵ, Ψ(ϵ, s, ψ)) = Ψ(·+ ϵ, s, ψ) almost surely.

Now we can show the existence of the fixed point.

Theorem 3.11. Under the assumptions in Lemma 3.1, there exists an exponentially attracting fixed
point X∗ ∈ Π0 which generates an exponentially stable stationary solution for (1.1). In addition, the
process (t, ω) → X∗(θtω) has a continuous version given by Ψ(·, 0, X∗).

Proof. First we claim that (Ψ(k,−k, ψ0(θ−k·)))k∈N is a Cauchy sequence in Π0. It follows from
Lemma 3.10 and (3.16) that

E∥Ψ(k,−k, ψ0(θ−k·))− Ψ(k − 1, 1 − k, ψ0(θ1−k·))∥2

= E∥Ψ(k − 1, 1 − k, Ψ(k,−k, ψ0(θ−k·))))− Ψ(k − 1, 1 − k, ψ0(θ1−k·))∥2

≤ eσ(k−1)E∥Ψ(1,−k, ψ0(θ−k·))− ψ0(θ1−k·))∥2

= eσ(k−1)E∥Ψ(1, 0, ψ0(·))− ψ0(θ1·))∥2.

It follows from Lemma 3.1 that σ < 0 and then the Cauchy sequence property holds. Let
X∗ ∈ Π0 be the limit of this sequence, i.e. in L2-norm sense,

X∗(θt·) = lim
k→∞

Ψ(k,−k, ψ0(θ−k·))(θtω),

which is equal to
X∗(θt·) = lim

k→∞
Ψ(k, t − k, ψ0(θt−k·))(ω).

For ψ0, ϕ0 ∈ Π0, we have

E∥Ψ(k,−k, ψ0(θ−k·))− Ψ(k,−k, ϕ0(θ−k·))∥2

= E∥Ψ(k, 0, ψ0(·))− Ψ(k, 0, ϕ0(·))∥2 ≤ eσkE∥ψ0 − ϕ0∥2
L,

which tends to zero as k goes to infinity. Thus X∗ ∈ Π0 is exponentially stable and indepen-
dent of the choice of ψ0 ∈ Π0.

Next, we show that X∗ is a fixed point, i.e., for any t ∈ R+

Ψ(t, 0, X∗)(·) = X∗(θt·) almost surely.

Indeed, for any fixed t, from (3.16), Lemma 3.10 and semigroup property we have

E∥Ψ(t, 0, X∗)− X∗(θt·)∥2

= E

∥∥∥∥Ψ
(

t, 0, lim
k→∞

Ψ(k,−k, ψ0(θ−k·))
)
− lim

k→∞
Ψ(k, t − k, ψ0(θt−k·))

∥∥∥∥2

= lim
k→∞

E∥Ψ(k, t − k, Ψ(t,−k, ψ0(θ−k·))− Ψ(k, t − k, ψ0(θt−k·))∥2

≤ lim
k→∞

eσkE∥Ψ(t,−k, ψ0)− ψ0(θt·)∥2 = 0.

This completes the proof.
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4 Systems driven by Lévy jump process

In this section, we will give the existence of invariant measures of (1.1) with Lévy jump process
in separable Hilbert space U . To this end, it suffices to verify the assertions in Lemma 2.3 hold.

Let Z = {Z(t) : t ≥ 0} be a stochastic process defined on a probability space (Ω,F , P).
We say that Z is a Lévy process if:

(i) Z(0) = 0 (a.s.);

(ii) Z has independent and stationary increments;

(iii) Z is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P(∥Z(t)− Z(s)∥U > a) = 0.

We have the following property of Lévy measures on separable Hilbert spaces (see [36]).

Lemma 4.1. Let U be a separable Hilbert space. Then a σ-finite measure ν with ν({0}) = 0 is on U
if and only if ∫

U
(1 ∧ ∥y∥2

U )ν(dy) < ∞.

ν(·) is also called a Lévy measure.

The jump process ∆Z = {∆Z(t) : t ≥ 0} is defined by

∆Z(t) = Z(t)− Z(t−)

for each t ≥ 0, where Z(t−) is the left limit at the point t. Furthermore, ∆Z is a Poisson point
process. The Poisson process of intensity λ > 0 is a Lévy process with N taking values in
N ∪ {0} wherein each N(t) ∼ π(λt). For t > 0 and Γ ∈ B(U − {0}), define

N(t, Γ)(ω) = ∑
s∈(0,t]

1Γ(∆Z(s)(ω)), (4.1)

if ω ∈ Ω0, and N(t, Γ)(ω) = 0, if ω ∈ Ωc
0, where Ω0 ∈ F with P(Ω0) = 1 such that

t → Z(t)(ω) is càdlàg1 for all ω ∈ Ωc
0. We write ν(·) = E(N(1, ·)) and call it the intensity

measure associated with Z. We say that Γ ∈ B(U − {0}) is bounded below if 0 /∈ Γ̄. The
following results are from [2].

Lemma 4.2. (i) If Z is a Lévy process, then for fixed t > 0, ∆Z(t) = 0 (a.s.);

(ii) If Γ is bounded, then N(t, Γ) < ∞ (a.s.) for all t ≥ 0;

(iii) If Γ is bounded, then {N(t, Γ) : t ≥ 0} is a Poisson process with intensity ν(Γ).

Let S be a set and A be a ring of subsets of S. Clearly, if F is a σ-algebra then it is also a
ring. A random measure M on (S,A) is a collection of random variables {M(B) : B ∈ A} such
that (i) M(∅) = 0, (ii) given any disjoint A, B ∈ A, M(A ∪ B) = M(A) + M(B). A random
measure is said to be independently scattered if for each disjoint family {B1, . . . , Bn} in A, the
random variables M(B1), . . . , M(Bn) are independent.

1 Let I = [a, b] be an interval in R+. A mapping f : I → Rd is said to be càdlàg if, for all t ∈ [a, b], f has a left
limit at t and f is right-continuous at t.
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Let S be a σ-algebra of subsets of set S. Fix a non-trivial ring A ⊆ S , an independently
scattered σ-finite random measure M on (S,S) is called a Poisson random measure if M(B) < ∞
for each B ∈ A and each M(B) has a Poisson distribution. It follows from (4.1) and Lemma 4.2
that N(t, Γ) is a Poisson random measure and λ(·) = tν(·).

Now introduce the compensated Poisson process Ñ = {Ñ(t) : t ≥ 0} where Ñ(t) = N(t)− νt.
Note that E[Ñ(t)] = 0 and E[Ñ(t)2] = νt for each t ≥ 0. Then Ñ(t) is martingale, that is,
for all 0 ≤ s < t < ∞, E(Ñ(t)|Fs) = Ñ(s) a.s. For each t ≥ 0 and Γ bounded, we define the
compensated Poisson random measure by

Ñ(t, Γ) = N(t, Γ)− tν(Γ).

It is easy to see that Ñ(t, Γ) is a σ-finite independently scattered martingale-valued measure.
Let Γ ∈ B(U − {0}) with 0 /∈ Γ̄ and f : Γ → U measurable. Define the following integral∫

Γ
f (z)N(t, dz) = ∑

0<s≤t
f (∆Z(s))1Γ(∆Z(s)).

This is a finite sum P-a.s. since the number of summands is finite P-a.s. For f ∈ L2
ν ≜ L2(U −

{0}, ν|U−{0};U ), the next proposition defines the integral with respect to the compensated
Poisson random measure (see [36] for more details).

Proposition 4.3. Let f be strongly square-integrable with respect to Ñ(t, dz) and f ∈ L2
ν. Then for

any Γ ∈ B(U − {0}) with 0 /∈ Γ̄ we have∫
Γ

f (z)Ñ(t, dz) = ∑
0<s≤t

f (∆Z(s))1Γ(∆Z(s))− t
∫

Γ
f (z)ν(dz).

Proposition 4.4 (cf. [1] and [36]). Let f ∈ L2
ν then for any Γ ∈ B(U − {0}) the integral∫

Γ f (z)Ñ(t, dz) exists and

E

[∥∥∥∥∫Γ
f (z)Ñ(t, dz)

∥∥∥∥2
]
= t

∫
Γ
∥ f (z)∥2ν(dz) < ∞.

The following is a very important for Lévy processes called Lévy–Itô decomposition (see
e.g. [1, 2, 36]).

Theorem 4.5. Let Z = {Z(t) : t ≥ 0} be a Lévy process on a separable Hilbert space U where the
distribution of Z(t) has generating triplet [tb, tQ, tν] for each t ≥ 0,

Z(t) = bt + WQ(t) +
∫
∥z∥U<1

zÑ(t, dz) +
∫
∥z∥U≥1

zN(t, dz),

where
b = E

[
Z(1)−

∫
∥z∥U≥1

zN(1, dz)
]

and WQ = {WQ(t) : t ≥ 0} is a Wiener process with covariance operator Q independent of N(·, Γ)
for all Γ ∈ B(U − {0}) with 0 /∈ Γ̄.

Let Z be a U -valued Lévy process with its Lévy triplet (0, Q, ν) below. By Lemma 4.1, ν(Γ)
is a Lévy measure with Γ ∈ B(Γ − {0}). Note that an adapted Lévy process with zero mean
is martingale, and that a Lévy process is martingale if and only if it is integrable and

b +
∫
∥z∥U≥1

zν(dz) = 0.



Stochastic delay differential equations in Hilbert space 15

It follows from Lévy–Itô decomposition that the Lévy process can be written as

Z(t) = WQ(t) +
∫
U−{0}

zÑ(t, dz). (4.2)

In view of Proposition 4.4, we have

Kz ≜
∫
U−{0}

∥z∥2
Uν(dz) < ∞.

Throughout this section, we always assume that the operators F and G in (1.1) satisfy

∥F(x)− F(y)∥+ ∥G(x)− G(y)∥L (U ,H) ≤ K∥x − y∥L,

∥F(x)∥+ ∥G(x)∥L (U ,H) ≤ K1∥x∥L + K2
(4.3)

for all x, y ∈ L, where K, K1, K2 are nonnegative constants, L (U , H) is the space of bounded
linear operators from U to H.

The boundedness of solution with Lévy jump process is given as follows.

Lemma 4.6. Assume that 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ. Then for any bounded set U of L,

sup
t≥0

sup
ϕ∈U

E∥Xt(ϕ)∥2
L < ∞.

Proof. Using the similar arguments as the proof of Lemma 3.2 and the Lévy–Itô decomposition
(4.2), we can obtain that for all t ≥ 0

E∥Xt(ϕ)∥2
L ≤ 3E

∫ 0

−τ

{∥∥∥∥Φ(t + θ)ϕ(0) +
∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dWQ

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0

∫
U−{0}

Φ(t + θ − s)G(Xs(ϕ))zÑ(ds, dz)
∥∥∥∥2}

dθ

≤ 3E

{
(1 +

1
ε
)
∫ 0

−τ
e−2λ(t+θ)∥ϕ∥2

Ldθ

+ (1 + ε)
∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)F(Xs(ϕ))ds

∥∥∥∥2

dθ

}
+ 3E

∫ 0

−τ

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)G(Xs(ϕ))dWQ

∥∥∥∥2

dθ

+ 3E

∫ 0

−τ

∥∥∥∥∫ t+θ

0

∫
U−{0}

Φ(t + θ − s)G(Xs(ϕ))zÑ(ds, dz)
∥∥∥∥2

dθ

=:
3(1 + ε)e−2λt(e2λτ − 1)

2ελ
∥ϕ(0)∥2 + M1 + M2 + M3.

(4.4)

By virtue of (3.10), we have

M1 ≤ 3(1 + ε)

[
(1 + ε) τK2

2
2ελ

+
(1 + ε)K2

1eλτ

λ

∫ t

0
e−λ(t−s)E∥Xs(ϕ)∥2

Lds

]
. (4.5)
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Carrying out a similar argument to that of (3.11), we can easily get that

M2 ≤ 3Tr(Q)
∫ 0

−τ

∫ t+θ

0
E ∥Φ(t + θ − s)G(Xs(ϕ))∥2 dsdθ

≤ 3Tr(Q)
∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)

[
(1 + ε)K2

1E∥Xs(ϕ)∥2
L +

(
1 +

1
ε

)
K2

2

]
dsdθ

≤ 3 (1 + ε) τK2
2Tr(Q)

2ελ
+ 3(1 + ε)Tr(Q)K2

1e2λτ
∫ t

0
e−λ(t−s)E∥Xs(ϕ)∥2

Lds.

(4.6)

Moreover,

M3 ≤ 3
∫ 0

−τ

∫ t+θ

0

∫
U−{0}

E ∥Φ(t + θ − s)G(Xs(ϕ))z∥2 Ñ(ds, dz)dθ

≤ 3
∫
U−{0}

∥z∥2
Uν(dz)

[(
1 +

1
ε

)
K2

2

∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)dsdθ

+ (1 + ε)K2
1

∫ 0

−τ

∫ t+θ

0
e−λ(t+θ−s)∥Xs(ϕ)∥2

Ldsdθ

]
≤ 3 (1 + ε) τKzK2

2
2ελ

+ 3Kz(1 + ε)K2
1e2λτ

∫ t

0
e−λ(t−s)E∥Xs(ϕ)∥2

Lds.

(4.7)

Thus (4.5), (4.6) and (4.7) together imply that

eλtE∥Xt(ϕ)∥2
L ≤ α2 + γ2eλt + β2

∫ t

0
eλsE∥Xs(ϕ)∥2

Lds,

where

α2 =
3 (1 + ε) (e2λτ − 1)

2ελ
∥ϕ(0)∥,

γ2 =
3 (1 + ε) τK2

2
2ελ

(1 + ε + Tr(Q) + Kz),

β2 = 3K2
1(1 + ε)

[
(1 + ε)λ−1eλτ + Tr(Q)e2λτ + Kze2λτ

]
.

Then Gronwall’s inequality gives that

eλtE∥Xt(ϕ)∥2
L ≤ γ2eλt + α2 + β2

∫ t

0

(
γ2eλs + α2

)
eβ2(t−s)ds.

It follows from 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ that there exists ε > 0 such that

3K2
1e2λτ(1 + ε)

[
(1 + ε)λ−1e−λτ + Tr(Q) + Kz

]
< λ

and hence that

E∥Xt(ϕ)∥2
L ≤ γ2 + α2e−λt + β2e(β2−λ)t

∫ t

0

(
γ2eλs + α2

)
e−β3sds

≤ γ2 + 2α2 +
β2γ2

λ − β2
.

This completes the proof.

Now we only need to show the tightness of solution (2.2) with Lévy jump process.
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Lemma 4.7. Suppose that 3K2
1e2λτ

[
λ−1e−λτ + Tr(Q) + Kz

]
< λ. Then for any bounded set U of L,

lim
t→∞

sup
ϕ,ψ∈U

E∥Xt(ϕ)− Xt(ψ)∥2
L = 0.

Proof. Using the similar arguments as the proof of Lemmas 3.1 and 4.6, we have

E∥Xt(ϕ)− Xt(ψ)∥2
L

≤ 3E

∫ 0

−τ

{∥∥∥∥Φ(t + θ)(ϕ(0)− ψ(0)) +
∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] dWQ

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0

∫
U−{0}

Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] zÑ(ds, dz)
∥∥∥∥2
}

dθ

≤ 3E

∫ 0

−τ

{(
1 +

1
ε

)
e−2λ(t+θ)∥ϕ − ψ∥2

L

+ (1 + ε)

∥∥∥∥∫ t+θ

0
Φ(t + θ − s)(F(Xs(ϕ))− F(Xs(ψ)))ds

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0
Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] dWQ

∥∥∥∥2

+

∥∥∥∥∫ t+θ

0

∫
U−{0}

Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] zÑ(ds, dz)
∥∥∥∥2
}

dθ

=:
e−2λt3(1 + ε)(e2λτ − 1)

2ελ
∥ϕ(0)− ψ(0)∥2 + N1 + N2 + N3.

(4.8)

Similar to (3.5) we have

N1 ≤ 3(1 + ε)K2eλτ

λ

∫ t

0
e−λ(t−s)E∥Xs(ϕ)− Xs(ψ)∥2

Lds. (4.9)

Burkholder–Davis–Gundy inequality implies that

N2 ≤ 3Tr(Q)E
∫ 0

−τ

∫ t+θ

0
∥Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] ∥2dsdθ

≤ 3Tr(Q)K2e2λτ
∫ t

0
e−λ(t−s)E∥Xs(ϕ)− Xs(ψ)∥2

Lds,
(4.10)

It follows from Proposition 4.4 that there exists Kz > 0 such that

N3 ≤ 3
∫ 0

−τ

∫ t+θ

0

∫
U−{0}

E ∥Φ(t + θ − s) [G(Xs(ϕ))− G(Xs(ψ))] z∥2 Ñ(ds, dz)dθ

≤ 3
∫
U−{0}

∥z∥2
Uν(dz)

∫ 0

−τ

∫ t+θ

0
e−2λ(t+θ−s)KE∥Xs(ϕ)− Xs(ψ)∥2

Ldsdθ

≤ 3KzK2e2λτ
∫ t

0
e−λ(t−s)E∥Xs(ϕ)− Xs(ψ)∥2

Lds.

(4.11)

Thus (4.9), (4.10) and (4.11) together imply that

eλtE∥Xt(ϕ)− Xt(ψ)∥2
L ≤ α3 + β3

∫ t

0
eλsE∥Xs(ϕ)− Xs(ψ)∥2

Lds,
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where

α3 =

(
3(1 + ε)e2λτ − 1

)
2ελ

∥ϕ(0)− ψ(0)∥2,

β3 = 3K2e2λτ
[
λ−1e−λτ(1 + ε) + Tr(Q) + Kz

]
.

It follows from 3K2e2λτ(λ−1e−λτ + Tr(Q) + Kz) < λ that there exists ε > 0 such that

3K2e2λτ(λ−1e−λτ(1 + ε) + Tr(Q) + Kz) < λ.

Then Gronwall’s inequality gives that

eλtE∥Xt(ϕ)− Xt(ψ)∥2
L ≤ α3eβ3t. (4.12)

This completes the proof.

In view of Lemmas 4.6 and 4.7, it suffices to show the uniqueness of invariant measures of
(1.1) driven by Lévy jump process. If µ, µ̃ ∈ P(L) are two different invariant measures, then
for any f ∈ M, it follows from (4.12) and the invariance of µ, µ̃ ∈ P(L) that

|µ( f )− µ̃( f )| =
∫
L

∫
L
|Pt f (ϕ)− Pt f (ψ)|µ(dϕ)µ̃(dψ) ≤ K4e−α̃t, t ≥ 0,

for some K4 > 0, where α̃ = 3
2 K2e2λτ(λ−1e−λτ + Tr(Q) + Kz) − 1

2 λ. Thus, we obtain the
following main result immediately.

Theorem 4.8. Under the assumptions of Lemmas 4.6 and 4.7, equation (1.1) driven by Lévy jump
process has a unique invariant measure.

5 Application

Let T := R/(2πZ) be equipped with the usual Riemannian metric, and let dξ denote the
Lebesgue measure on T. For any p ≥ 1, let

Lp(T, R) =

{
x : T → R; ∥x∥p ≜

[∫
T
|x(ξ)|pdξ

]1/p

< ∞

}
,

and

H =

{
x ∈ L2(T, R) :

∫
T

x(ξ)dξ = 0
}

.

It is easy to see that H is a real separable Hilbert space with the inner product

⟨x, y⟩ =
∫

T
x(ξ)y(ξ)dξ, x, y ∈ H,

and the norm ∥x∥ =
√
⟨x, x⟩. In the following two subsections, we consider two stochastic

reaction-diffusion equations on torus T.
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5.1 A Brownian motion case

Consider a stochastic reaction-diffusion equation driven by a Brownian motion {W(t)}t≥0 on
torus T as follows:du(t, ξ) =

[
∂2

∂ξ2 u(t, ξ) + f (u(t − 1, ξ))

]
dt + g(u(t − 1, ξ))dW(t, ξ), t ≥ 0,

u(t, ξ) = ϕ(t, ξ), t ∈ [−1, 0],
(5.1)

where ϕ ∈ C := C([−1, 0], W1,2(T)), f : R → R and g: R → R are Lipschitz continuous and
satisfy the linear growth, i.e., there exist positive constants K, K1, and K2 such that

f (u)− f (v)| ≤ L f |u − v|, |g(u)− g(v)| ≤ Lg|u − v|,
| f (u)| ≤ L1|u|+ L2, |g(u)| ≤ L3|u|+ L4

(5.2)

for all u, v ∈ R. Obviously, A = ∂2

∂ξ2 is a self-adjoint operator on H with the discrete spectral.
More precisely, there exist an orthogonal basis {ek = exp{ik(·)} : k ∈ Z∗} with Z∗ = Z \ {0},
and a sequence of real numbers {λk = k2 : k ∈ Z∗} such that −Aek = λkek. Let V be the
domain of the fractional operator (−A)1/2, that is,

V =

{
∑

k∈Z∗

√
λkakek : {ak}k∈Z∗ ⊂ R, ∑

k∈Z∗

a2
k < ∞

}

with the inner product

⟨u, v⟩V = ⟨(−A)1/2u, (−A)1/2v⟩ = ∑
k∈Z∗

λk⟨u, ek⟩⟨v, ek⟩,

and with the norm ∥u∥V =
√
⟨u, u⟩V = ∥(−A)1/2u∥. Clearly, V is densely and compactly

embedded in H.
For every u ∈ H, there exists {ak}k∈Z∗ ⊂ R such that u = ∑x∈Z∗ akek. Thus, we have

⟨−Au, u⟩V = ∑
k∈Z∗

λk⟨−Au, ek⟩⟨u, ek⟩

= ∑
k∈Z∗

λk⟨u,−Aek⟩⟨u, ek⟩ = ∑
k∈Z∗

a2
kλ2

k ≥ λ2
1∥u∥2.

Thus, we obtain (2.1) with λ = λ2
1.

We consider a symmetric positive linear operator Q in H such that Qek = qkek for k ∈
Z∗, where {qk}k∈Z∗ is a bounded sequence of nonnegative real numbers. Thus, Tr(Q) ≜
∑k∈Z∗⟨Qek, ek⟩ = ∑k∈Z∗ qk < ∞, and Q is also called a trace class operator. Let {W(t)}t≥0 be
a H-valued Q-Wiener process given by

W(t) = ∑
x∈Z∗

√
qkWk(t)ek,

where {Wk(t) : t ≥ 0}k∈Z∗ be a sequence of independent standard one-dimensional Brow-
nian motions on some filtered probability space (Ω,F , {Ft}t≥0, P), that is, Wk(t) ∼ N (0, t),
EWk(t) = 0, E[Wk(t)]2 = t, and E[Wk(t)Wk(s)] = min{t, s}. It is easy to see that the infinite
series of W(t) converges in L2(Ω), and satisfies

E⟨W(t), W(t)⟩ = tTr(Q), E (⟨W(t), a⟩⟨W(s), b⟩) = (t ∧ s)⟨a, b⟩.
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Then we can rewrite system (5.1) into the abstract form (1.1) with τ = 1, F(ut) = f (u(t − 1, ·))
and G(ut) = g(u(t − 1, ·)). Note that the segment process ut = u(t + s, ξ), s ∈ [−1, 0] is
equipped with norm in C, i.e.,

∥ut∥C = max
s∈[−1,0]

∥u(t + s, ξ)∥ = max
s∈[−1,0]

{∫
T
|u(t + s, ξ)|2dξ

} 1
2

.

In what follows, we shall verify that F and G satisfy hypothesis (3.2). In fact, it follows from
(5.2) and Minkowski inequality that

∥F(ut)− F(vt)∥ =

{∫
T
[ f (u(t − 1, ξ))− f (v(t − 1, ξ))]2 dξ

} 1
2

≤
{

L2
f

∫
T
[u(t − 1, ξ)− v(t − 1, ξ)]2 dξ

} 1
2

≤ L f ∥ut − vt∥C ,

∥G(ut)− G(vt)∥LQ
2
=

{
∑

k∈Z∗

⟨(G(ut)− G(vt))Q(G(ut)− G(vt))
∗ek, ek⟩

} 1
2

≤
{

∑
k∈Z∗

L2
g

∫
T
|u(t − 1, ξ)− v(t − 1, ξ)|2dξ ⟨Qek, ek⟩

} 1
2

≤
{

∑
k∈Z∗

L2
g∥ut − vt∥2

C ⟨Qek, ek⟩
} 1

2

= Lg

√
Tr(Q)∥ut − vt∥C ,

and

∥F(ut)∥ =

{∫
T
[ f (u(t − 1, ξ))]2 dξ

} 1
2

≤
{∫

T
(L1|u(t − 1, ξ)|+ L2)

2 dξ

} 1
2

≤
{

L1

∫
T
|u(t − 1, ξ)|2dξ

} 1
2

+

(∫
T

L2
2dξ

) 1
2

≤ L1∥ut∥C + L2,

∥G(ut)∥LQ
2
=

{
∑

k∈Z∗

⟨G(ut)QG(ut)
∗ek, ek⟩

} 1
2

=

{
∑

k∈Z∗

〈∫
T
|g(u(t − 1, ξ))|2dξQek, ek

〉} 1
2

≤
{

∑
k∈Z∗

∫
T
|L3u(t − 1, ξ) + L4|2dξ ⟨Qek, ek⟩

} 1
2

≤
[∫

T
|L3u(t − 1, ξ) + L4|2dξ

] 1
2
[

∑
k∈Z∗

qk

] 1
2

≤ (L3∥ut∥C + L4)
√

Tr(Q).



Stochastic delay differential equations in Hilbert space 21

Then we can set the parameter values in (3.2) as follows

K = L f + Lg

(
∑

k∈Z∗

qk

) 1
2

, K1 = L1 + L3

(
∑

k∈Z∗

qk

) 1
2

, K2 = L2 + L4

(
∑

k∈Z∗

qk

) 1
2

.

Thus, from Theorems 3.3 and 3.8 we have the following result.

Corollary 5.1. Assume that

max

L f + Lg

(
∑

k∈Z∗

qk

) 1
2

, L1 + L3

(
∑

k∈Z∗

qk

) 1
2
 ≤ (2e2 + 2e)−

1
2 .

Then equation (5.1) has a unique invariant measure and a pullback attractor.

5.2 A Poisson jumps case

Let {N(dt, dz) : t ∈ R+, z ∈ R} is a centered Poisson random measure with parameter
ν(dz)dt = 2m(z)dzdt, and Ñ(dt, dz) = N(dt, dz)− ν(dz)dt be a compensated Poisson random
measure, where

m(z) =
1√
2πz

exp

{
− ln2 z

2

}
, 0 ≤ z < ∞

is the density function of a lognormal random variable. Consider the following stochastic
delay differential equations with Poisson jumps on T:du(t, x) =

[
∂2

∂x2 u(t, x) + f (u(t − 1, x))
]

dt +
∫
U

g(u(t − 1, x))zÑ(dt, dz), t ≥ 0,

u(t, x) = ϕ(t, x), t ∈ [−1, 0],
(5.3)

where ϕ ∈ C := C([−1, 0], W1,2(T)), U = {z ∈ R : 0 < |z| ≤ 1}, f : R → R and g : R → R

satisfy (5.2).
Define A : H → H by A = ∂2

∂x2 . It follows from the arguments in Section 5.1 that the space
H and operator A is well defined. Note that λ = λ2

1 = 1. Note that A is the generator of an
analytic semigroup Φ(t), t ≥ 0, equation (5.3) can be given by the following integral equation

u(t, x) = Φ(t)ϕ(t, x) +
∫ t

0
Φ(t − s) f (u(t − 1, x))ds

+
∫ t+

0

∫
U

Φ(t − s)g(u(t − 1, x))zÑ(dz, ds)
(5.4)

for t ∈ [0,+∞) and x ∈ H. Note that ν(U ) = 1 and

Kz =
∫
U

z2ν(dz) =
∫ 1

0

z√
2π

exp

{
− ln2 z

2

}
dz ≤ e2.

Then we can rewrite system (5.3) into the abstract form (1.1) with τ = 1, F(ut) = f (u(t − 1, ·))
and G(ut) = g(u(t − 1, x)). Note that the segment process ut = u(t + s, ξ), s ∈ [−1, 0] is
equipped with norm in C, i.e.,

∥ut∥C = max
s∈[−1,0]

∥u(t + s, ξ)∥ = max
s∈[−1,0]

{∫
T
|u(t + s, ξ)|2dξ

} 1
2

.
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It follows from Section 5.1 that

∥F(ut)− F(vt)∥ ≤ L f ∥ut − vt∥C

and

∥F(ut)∥ ≤ L1∥ut∥C + L2.

It is easy to check that

∥G(ut)− G(vt)∥L (R,H) =

{∫
T
[g(u(t − 1, ξ))− g(v(t − 1, ξ))]2 dξ

} 1
2

≤
{

L2
g

∫
T
[u(t − 1, ξ)− v(t − 1, ξ)]2 dξ

} 1
2

≤ Lg∥ut − vt∥C

and

∥G(ut)∥L (R,H) =

{∫
T
[g(u(t − 1, ξ))]2 dξ

} 1
2

≤
{∫

T
(L3|u(t − 1, ξ)|+ L4)

2 dξ

} 1
2

≤
{

L3

∫
T
|u(t − 1, ξ)|2dξ

} 1
2

+

(∫
T

L2
4dξ

) 1
2

≤ L3∥ut∥C + L4.

Then we set the parameter values in (4.3) as follows

K = L f + Lg, K1 = L1 + L3, K2 = L2 + L4.

Thus the result of existence of invariant measure of (5.3) follows from Theorems 4.6 and 4.7.

Corollary 5.2. Assume that

max
{

L f + Lg, L1 + L3
}
≤ (3e + 3e4)−

1
2 .

Then equation (5.3) has a unique invariant measure.
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