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Abstract. In the article, we investigate three classes of fourth-order boundary value
problems with dependence on all derivatives in nonlinearities under the boundary con-
ditions involving Stieltjes integrals. A Gronwall-type inequality is employed to get an a
priori bound on the third-order derivative term, and the theory of fixed-point index is
used on suitable open sets to obtain the existence of positive solutions. The nonlinear-
ities have quadratic growth in the third-order derivative term. Previous results in the
literature are not applicable in our case, as shown by our examples.
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1 Introduction

In the article, we investigate the existence of positive solutions to the following three classes
of fourth-order boundary value problems (BVPs) with dependence on all derivatives in non-
linearities under the boundary conditions involving Stieltjes integrals{

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0,

(1.1)

{
−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = β1[u], u′(0) = β2[u], u′′(0) = β3[u], u′′′(1) = 0,

(1.2)

and {
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = u(1) = η1[u], u′′(0) + η2[u] = 0, u′′(1) + η2[u] = 0,

(1.3)

where

αi[u] =
∫ 1

0
u(t)dAi(t) (i = 1, 2, 3), βi[u] =

∫ 1

0
u(t)dBi(t) (i = 1, 2, 3),
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ηi[u] =
∫ 1

0
u(t)dHi(t) (i = 1, 2)

are Stieltjes integrals with Ai, Bi, Hi of bounded variation.
The BVPs (1.1) and (1.2) share the common features that the derivatives of Green’s func-

tions, from first to third order in t, do not change sign, however the first-and third-order
derivatives of Green’s function for the BVP (1.3) are sign-changing. The existence of positive
solutions for the BVPs (1.1), (1.2) and (1.3) have been studied respectively in [9] and [5] with
f (t, u(t), u′′(t)). The BVP (1.3) with η1[u] = η2[u] = 0 is also considered by [16] in which the
fourth-order equation is transformed into a second-order problem by order reduction method.
The authors in [10] discuss the second-order BVP with non-local boundary conditions{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],
au(0)− bu′(0) = α[u], cu(1) + du′(1) = β[u],

(1.4)

where a, b, c and d are nonnegative constants with ρ = ac + ad + bc > 0. It is supposed in
[10] that the nonlinear term has linear growth in both u and u′ and some conditions related to
the spectral radius of a related linear operator are used, moreover, the Nagumo condition is
applied in one of their results. The BVP (1.4) with a = d = 1, b = c = 0 is studied by Zhang et
al. [17], but the conditions of theorems in [10] can not contain the ones in [17], see [10, Remark
3.10, Remark 3.11].

Recently, Webb in [12] employs a Gronwall-type inequality proved in [13] to deal with a
second order equation with nonlinearity having quadratic dependence in derivative terms,
but no growth restriction in the function term. This new Gronwall inequality is used instead
of a Nagumo condition to get an a priori bound on the derivative term. The theory of fixed-
point index on suitable open sets is applied to obtain the existence of positive solutions to
second-order non-local problems.

Motivated by the works mentioned above, in the present paper we adopt the idea and the
techniques provided in [12] to consider the positive solutions of the fourth-order BVPs (1.1),
(1.2) and (1.3). The nonlinearities contain all terms of the derivatives, and there is quadratic
growth in u′′′ but no growth restriction in u, u′ and u′′. Li and Chen in [8] investigate the
nontrivial solutions to fourth-order BVP with quadratic growth subject to local boundary
conditions. In [9], the nonlinearity has linear growth in u and all derivatives with some
conditions related to the spectral radius of a related linear operator, the results are not valid for
the problems presented in this paper although the Nagumo condition also allows quadratic
growth (see Example 2.7 and Remark 2.8). Making use of several different methods, the
authors in [3, 5, 11] discuss the existence of positive solutions to some fourth-order BVPs,
however not all of the derivatives is included in the nonlinearities since some derivatives of
the Green’s functions are sign-changing. Some relevant works may refer to [1] for fourth-order
BVP with local boundary conditions via an application of contraction mapping theorem, [6]
for certain perturbed Hammerstein integral equations with first-order derivative dependence,
[7] for fourth-order BVP with local boundary conditions.

We recall the basic properties of fixed point index that we use.

Lemma 1.1 ([2, 4]). Let Ω be a bounded open set relative to a cone P in Banach space X with 0 ∈ Ω.
If A : Ω → P is a completely continuous operator, and Au 6= λu for u ∈ ∂PΩ, λ ≥ 1, then the fixed
point index i(A, Ω, P) = 1, where Ω and ∂PΩ are respectively the closure and boundary of Ω relative
to P.
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Lemma 1.2 ([2,4]). Let Ω be a bounded open set relative to a cone P in Banach space X. If A : Ω→ P
is a completely continuous operator, and there exists v0 ∈ P \ {0} such that u − Au 6= σv0 for
u ∈ ∂PΩ and σ ≥ 0, then the fixed point index i(A, Ω, P) = 0.

2 Positive solutions to the BVP (1.1)

Let [α, β] ⊂ [0, 1], we write Lp
+[α, β] (1 ≤ p ≤ ∞) to denote functions that are non-negative al-

most everywhere (a.e.) and belong to Lp[α, β]. The proof of the following lemma is completely
similar to the method in [12].

Lemma 2.1. Suppose that there are a constant d0 > 0 and functions d1, d2 ∈ L1
+[α, β] such that

u ∈ L∞
+ [α, β] satisfies

u(t) ≤ d0 +
∫ β

t
d1(s)u(s)ds +

∫ β

t
d2(s)u2(s)ds for a.e. t ∈ [α, β].

If there is a constant R > 0 such that
∫ β

α d2(s)u(s)ds ≤ R, then u(t) ≤ d0 exp(R) exp(D1(t)) for
a.e. t ∈ [α, β], where D1(t) :=

∫ β
t d1(s)ds.

Proof. Let v(t) := d0 +
∫ β

t d1(s)u(s)ds +
∫ β

t d2(s)u2(s)ds. Then v is absolutely continuous,
v(β) = d0, v(t) ≥ d0 > 0 for all t ∈ [α, β], and u(t) ≤ v(t) for a.e. t ∈ [α, β]. Moreover, we have

v′(t) = −d1(t)u(t)− d2(t)u2(t) ≥ −d1(t)v(t)− d2(t)u(t)v(t) for a.e. t ∈ [α, β].

Then v′(t)/v(t) ≥ −d1(t)− d2(t)u(t) which can be integrated to give

ln
(

v(β)

v(t)

)
≥ −D1(t)−

∫ β

t
d2(s)u(s)ds,

hence u(t) ≤ v(t) ≤ d0 exp(R) exp(D1(t)) for a.e. t ∈ [α, β].

For BVP (1.1){
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0,

we make the following assumptions:

(C1) f : [0, 1]× [0, ∞)× (−∞, 0]3 → [0, ∞) is continuous;

(C2) Ai is of bounded variation, moreover

Ki(s) :=
∫ 1

0
G0(t, s)dAi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3),

where

G0(t, s) =


1
2 s(1− s) + 1

6 (s
3 − t3), 0 ≤ t ≤ s ≤ 1,

1
2 s(1− s)− 1

2 ts(t− s), 0 ≤ s ≤ t ≤ 1;
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(C3) The 3 × 3 matrix [A] is positive whose (i, j)th entry is αi[γj], i.e., it has nonnegative
entries, where γ1(t) = 1 − t, γ2(t) = 1

2 (1 − t2) and γ3(t) = 1 are the solutions of
u(4) = 0 respectively subject to boundary conditions:

u′(0) + 1 = 0, u′′(0) = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) + 1 = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 0, u(1) = 1, u′′′(1) = 0.

Furthermore assume that its spectral radius r([A]) < 1.

Webb and Infante [14] in a general framework convert the BVP{
u(4)(t) = f (t, u(t)), t ∈ [0, 1],
u′(0) + α1[u] = 0, u′′(0) + α2[u] = 0, u(1) = α3[u], u′′′(1) = 0

(2.1)

into the perturbed Hammerstein integral equation of the type

u(t) =
3

∑
i=1

γi(t)αi[u] +
∫ 1

0
G0(t, s) f (s, u(s))ds,

where G0(t, s) is the Green’s function associated with{
u(4)(t) = f (t, u(t)), t ∈ [0, 1],
u′(0) = u′′(0) = u(1) = u′′′(1) = 0.

Immediately after this they prove that if (C1)–(C3) are satisfied, (2.1) is equivalent to

u(t) =
∫ 1

0
G1(t, s) f (s, u(s))ds,

where

G1(t, s) = 〈(I − [A])−1K(s), γ(t)〉+ G0(t, s) =
3

∑
i=1

κi(s)γi(t) + G0(t, s),

〈(I− [A])−1K(s), γ(t)〉 is the inner product in R3, κi(s) is the ith component of (I−[A])−1K(s).
Similar to the method of Webb–Infante, we define the operator S as

(Su)(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds.

Lemma 2.2. If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2, 3) and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ G1(t, s) ≤ Φ0(s), (2.2)

where

Φ0(s) =
3

∑
i=1

κi(s) +
1
2

s(1− s) +
1
6

s3, c0(t) =
1
2
(1− t2),

and

c1(t)Φ1(s) ≤ −
∂G1(t, s)

∂t
≤ Φ1(s), c2(t)Φ2(s) ≤ −

∂2G1(t, s)
∂t2 ≤ Φ2(s), (2.3)

where
∂G1(t, s)

∂t
= −κ1(s)− tκ2(s)−

1
2

{
t2, 0 ≤ t ≤ s ≤ 1,
s(2t− s), 0 ≤ s ≤ t ≤ 1,
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∂2G1(t, s)
∂t2 = −κ2(s)−

{
t, 0 ≤ t ≤ s ≤ 1,
s, 0 ≤ s ≤ t ≤ 1,

Φ1(s) =
2

∑
i=1

κi(s) +
1
2

s(2− s), c1(t) = t2, Φ2(s) = κ2(s) + s, c2(t) = t.

Proof. κi(s) ≥ 0(i = 1, 2, 3) by hypotheses (C2) and (C3). For 0 ≤ s ≤ t ≤ 1, ∂
∂t G0(t, s) =

1
2 s(s− 2t) ≤ 0 which implies that

G0(t, s) ≤ G0(s, s) =
1
2

s(1− s);

For 0 ≤ t < s ≤ 1, ∂
∂t G0(t, s) = − 1

2 t2 ≤ 0 which implies that

G0(t, s) ≤ G0(0, s) =
1
2

s(1− s) +
1
6

s3.

Then G0(t, s) ≤ 1
2 s(1− s) + 1

6 s3, ∀(t, s) ∈ [0, 1]× [0, 1].
Now we find the best function C0(t) such that G0(t, s) ≥ C0(t)

( 1
2 s(1− s) + 1

6 s3) , ∀(t, s) ∈
[0, 1]× [0, 1].

For 0 ≤ s ≤ t ≤ 1, this is

1
2

s(1− s)− 1
2

ts(t− s) ≥ C0(t)
(

1
2

s(1− s) +
1
6

s3
)

,

thus

C0(t) ≤
3(1− t)(1 + t− s)

3− 3s + s2 .

Denote

g1(t, s) =
(1− t)(1 + t− s)

3− 3s + s2 ,

from
∂

∂s
g1(t, s) =

(1− t)(s2 − 2s(1 + t) + 3t)
(3− 3s + s2)2 ≥ 0

it follows that C0(t) ≤ 3g1(t, 0) = 1− t2.
For 0 ≤ t < s ≤ 1, this is

1
2

s(1− s) +
1
6
(s3 − t3) ≥ C0(t)

(
1
2

s(1− s) +
1
6

s3
)

,

thus

C0(t) ≤
3s− 3s2 + s3 − t3

s(3− 3s + s2)
.

Denote

g2(t, s) =
3s− 3s2 + s3 − t3

s(3− 3s + s2)
,

from
∂

∂s
g2(t, s) =

3(1− s)2t3

s2(3− 3s + s2)2 ≥ 0

it follows that C0(t) ≤ g2(t, t) = 3(1−t)
3−3t+t2 .
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Therefore

C0(t) = min
{

1− t2,
3(1− t)

3− 3t + t2

}
= 1− t2.

Since
1
2
(1− t2)

3

∑
i=1

κi(s) ≤
3

∑
i=1

κi(s)γi(t) ≤
3

∑
i=1

κi(s),

1
2
(1− t2)

(
1
2

s(1− s) +
1
6

s3
)
≤ (1− t2)

(
1
2

s(1− s) +
1
6

s3
)
≤ G0(t, s) ≤ 1

2
s(1− s) +

1
6

s3,

we know that (2.2) holds. As for (2.3), it comes directly from the inequalities

t2
2

∑
i=1

κi(s) ≤ t
2

∑
i=1

κi(s) ≤ −
3

∑
i=1

κi(s)γ′i(t) ≤
2

∑
i=1

κi(s),

1
2

t2s(2− s) ≤ −∂G0(t, s)
∂t

≤ 1
2

s(2− s),

tκ2(s) ≤ κ2(s) = −
3

∑
i=1

κi(s)γ′′i (t), ts ≤ −∂2G0(t, s)
∂t2 ≤ s

for t, s ∈ [0, 1].

Let C3[0, 1] be the Banach space which consists of all third-order continuously differen-
tiable functions on [0, 1] with the norm ‖u‖C3 = max{‖u‖C, ‖u′‖C, ‖u′′‖C, ‖u′′′‖C}. In C3[0, 1]
we define the cone

K =
{

u ∈ C3[0, 1] : u(t) ≥ c0(t)‖u‖C, −u′(t) ≥ c1(t)‖u′‖C,

− u′′(t) ≥ c2(t)‖u′′‖C, ∀t ∈ [0, 1]; u′′′(1) = 0
}

. (2.4)

Lemma 2.3. If (C1)–(C3) hold, then S : K → K is completely continuous and the positive solutions
to BVP (1.1) are equivalent to the fixed points of S in K.

Proof. Because G1(t, s), and the first- and second-order derivatives are continuous, the third
order derivative is integrable in s, from Lemma 2.2 it is easy to prove that S : K → K is
continuous. Let F be a bounded set in K, then there exists M > 0 such that ‖u‖C3 ≤ M for all
u ∈ K. Denote

C = max
(t,x0,x1,x2,x3)∈[0,1]×[0,M]×[−M,0]3

f (t, x0, x1, x2, x3).

By (C1) and Lemma 2.2 we have that ∀u ∈ F and t ∈ [0, 1],

|(Su)(t)| ≤ C
∫ 1

0
Φ0(s)ds, |(Su)′(t)| ≤ C

∫ 1

0

∣∣∣∂G1(t, s)
∂t

∣∣∣ds ≤ C
∫ 1

0
Φ1(s)ds,

|(Su)′′(t)| ≤ C
∫ 1

0

∣∣∣∂2G1(t, s)
∂t2

∣∣∣ds ≤ C
∫ 1

0
Φ2(s)ds, |(Su)′′′(t)| ≤ C

∫ 1

0

∣∣∣∂3G1(t, s)
∂t3

∣∣∣ds ≤ C,

then S(F) is uniformly bounded in C3[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(Su)(t1)− (Su)(t2)| ≤
∫ 1

0
|G1(t1, s)− G1(t2, s)| f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0
|G1(t1, s)− G1(t2, s)|ds,
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|(Su)′(t1)− (Su)′(t2)| ≤
∫ 1

0

∣∣∣∣∂G1

∂t
(t1, s)− ∂G1

∂t
(t2, s)

∣∣∣∣ f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣∂G1

∂t
(t1, s)− ∂G1

∂t
(t2, s)

∣∣∣∣ ds,

|(Su)′′(t1)− (Su)′′(t2)| ≤
∫ 1

0

∣∣∣∣∂2G1

∂t2 (t1, s)− ∂2G1

∂t2 (t2, s)
∣∣∣∣ f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣∂2G1

∂t2 (t1, s)− ∂2G1

∂t2 (t2, s)
∣∣∣∣ ds,

|(Su)′′′(t1)− (Su)′′′(t2)|

=

∣∣∣∣∫ 1

t1

f (s, u(s), u′(s), u′′(s), u′′′(s))ds−
∫ 1

t2

f (s, u(s), u′(s), u′′(s), u′′′(s))ds
∣∣∣∣ ≤ C(t2 − t1),

thus S(F) and S(i)(F) =: {v(i) : v(i)(t) = (Su)(i)(t), u ∈ F} (i = 1, 2, 3) are equicontinuous.
Therefore S : K → K is completely continuous by the Arzelà–Ascoli theorem. Similar to

[14], the positive solutions to BVP (1.1) are equivalent to the fixed points of S in K.

Lemma 2.4. Suppose that (C1)–(C3) hold, there exist constants p0 > 0, p3 ≥ 0 and functions p1, p2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)× (−∞, 0]3,

f (t, x0, x1, x2, x3) ≤ p0 + p1(t)g(x0, x1, x2) + p2(t)|x3|+ p3|x3|2, (2.5)

where g : [0, ∞)× (−∞, 0]2 → [0, ∞) is continuous, non-decreasing in the first variable, and non-
increasing in the second and third variables. Let λ ≥ 1, σ ≥ 0, r > 0, define Di :=

∫ 1
0 pi(s)ds (i =

1, 2) and
Q(r) := (p0 + g(r,−r,−r)D1) exp(D2) exp(p3r). (2.6)

If u ∈ K with ‖u‖C2 ≤ r such that λu(t) = (Su)(t) + σ, then ‖u′′′‖C ≤ Q(r).

Proof. Since u ∈ K and λu(t)=(Su)(t)+ σ, we have that λu(4)(t)= f (t, u(t), u′(t), u′′(t), u′′′(t))
and λu′′′(t) = −

∫ 1
t f (s, u(s), u′(s), u′′(s), u′′′(s))ds ≤ 0. From ‖u‖C2 ≤ r it follows that

|u′′′(t)| ≤ λ|u′′′(t)| =
∫ 1

t
f (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤
∫ 1

t

(
p0 + p1(s)g(u(s), u′(s), u′′(s)) + p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds

≤ (p0 + g(r,−r,−r)D1) +
∫ 1

t

(
p2(s)|u′′′(s)|+ p3|u′′′(s)|2

)
ds

and
∫ 1

0 p3|u′′′(s)|ds = −
∫ 1

0 p3u′′′(s)ds = p3(u′′(0)− u′′(1)) ≤ p3r. By Lemma 2.1, we deduce
that

|u′′′(t)| ≤ (p0 + g(r,−r,−r)D1) exp(D2) exp(p3r) = Q(r),

the proof is complete.

Let [a, b] be a subset of (0, 1) and denote

γ := min
{

min
t∈[a,b]

c0(t), min
t∈[a,b]

c1(t), min
t∈[a,b]

c2(t)
}

= min
{

1
2
(1− b2), a2

}
,
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1
m

:= max
{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds,

∫ 1

0
Φ2(s)ds

}
,

1
M

:= min
{∫ b

a
Φ0(s)ds,

∫ b

a
Φ1(s)ds,

∫ b

a
Φ2(s)ds

}
,

where ci(t) and Φi(s)(i = 0, 1, 2) are provided in Lemma 2.2. Obviously, γ ∈ (0, 1/2) and
m < M.

Theorem 2.5. Suppose that (C1)-(C3) hold and f satisfies the growth assumption (2.5). The BVP
(1.1) has at least one positive solution u ∈ K if either of the following conditions (F1), (F2) holds,
where Q is given by (2.6).

(F1) There exist 0 < r1 < r2 with r1 < r2γ, such that

(F1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]× [−r1, 0]2 × [−Q(r1), 0],

f (t, x0, x1, x2, x3) < mr1; (2.7)

(F1b) for (t, x0, x1, x2, x3) ∈W1 := W1,0 ∪W1,1 ∪W1,2,

f (t, x0, x1, x2, x3) > Mr2, (2.8)

where

W1,0 = [a, b]× [r2γ, r2]× [−r2, 0]2 × [−Q(r2), 0],

W1,1 = [a, b]× [0, r2]× [−r2,−r2γ]× [−r2, 0]× [−Q(r2), 0],

W1,2 = [a, b]× [0, r2]× [−r2, 0]× [−r2,−r2γ]× [−Q(r2), 0].

(F2) There exist 0 < r1 < r2 with Mr1 < mr2, such that

(F2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]× [−r2, 0]2 × [−Q(r2), 0],

f (t, x0, x1, x2, x3) < mr2; (2.9)

(F2b) for (t, x0, x1, x2, x3) ∈W2 := W2,0 ∪W2,1 ∪W2,2,

f (t, x0, x1, x2, x3) > Mr1, (2.10)

where

W2,0 = [a, b]× [r1γ, r1]× [−r1, 0]2 × [−Q(r1), 0],

W2,1 = [a, b]× [0, r1]× [−r1,−r1γ]× [−r1, 0]× [−Q(r1), 0],

W2,2 = [a, b]× [0, r1]× [−r1, 0]× [−r1,−r1γ]× [−Q(r1), 0].

Proof. Suppose that (F1) holds. Define an open (relative to K) bounded set

Ur1 :=
{

u ∈ K : ‖u‖C2 < r1, ‖u′′′‖C < Q(r1) + 1
}

.

Then the boundary ∂KUr1 of Ur1 (relative to K) satisfies ∂KUr1 ⊂ Ur1,0 ∪Ur1,1 ∪Ur1,2, where

Ur1,0 := {u ∈ K : ‖u‖C = r1, ‖u′‖C ≤ r1, ‖u′′‖C ≤ r1, ‖u′′′‖C ≤ Q(r1) + 1},



Three classes of non-local fourth-order problems with derivative-dependent nonlinearities 9

Ur1,1 := {u ∈ K : ‖u‖C ≤ r1, ‖u′‖C = r1, ‖u′′‖C ≤ r1, ‖u′′′‖C ≤ Q(r1) + 1},

Ur1,2 := {u ∈ K : ‖u‖C ≤ r1, ‖u′‖C ≤ r1, ‖u′′‖C = r1, ‖u′′′‖C ≤ Q(r1) + 1}.

We will show that Su 6= λu for all u ∈ ∂KUr1 and all λ ≥ 1. If not, there exist u ∈ ∂KUr1 and
λ ≥ 1 such that λu(t) = (Su)(t). It is clear that ‖u′′′‖C ≤ Q(r1) by Lemma 2.4.

From Lemma 2.2 and (2.7) it follows that when u ∈ Ur1,0,

λu(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds <

∫ 1

0
Φ0(s)mr1ds ≤ r1;

when u ∈ Ur1,1,

−λu′(t) = −
∫ 1

0

∂G1(t, s)
∂t

f (s, u(s), u′(s), u′′(s), u′′′(s))ds <
∫ 1

0
Φ1(s)mr1ds ≤ r1;

when u ∈ Ur1,2,

−λu′′(t) = −
∫ 1

0

∂2G1(t, s)
∂t2 f (s, u(s), u′(s), u′′(s), u′′′(s))ds <

∫ 1

0
Φ2(s)mr1ds ≤ r1.

Taking the maximum over [0, 1] we give a contradiction λr1 < r1.
By Lemma 1.1 the fixed point index i(S, Ur1 , K) = 1.
Define an open (relative to K) set

Vr2 :=
{

u ∈ K : min
t∈[a,b]

u(t) < r2γ, min
t∈[a,b]

(−u′(t))< r2γ, min
t∈[a,b]

(−u′′(t))< r2γ, ‖u′′′‖C < Q(r2) + 1
}

.

It is clear that Ur1 ⊂ Vr2 by r1 < r2γ and Q(r1) < Q(r2). Since ‖u‖C2 ≤ r2 for u ∈ Vr2 by (2.4),
Vr2 is bounded. The boundary ∂KVr2 of Vr2 (relative to K) satisfies ∂KVr2 ⊂ Vr2,0 ∪ Vr2,1 ∪ Vr2,2,
where

Vr2,0 :=
{

u ∈ K : min
t∈[a,b]

u(t) = r2γ, min
t∈[a,b]

(−u′(t))≤ r2γ, min
t∈[a,b]

(−u′′(t))≤ r2γ, ‖u′′′‖C ≤Q(r2) + 1
}

,

Vr2,1 :=
{

u ∈ K : min
t∈[a,b]

u(t)≤r2γ, min
t∈[a,b]

(−u′(t)) = r2γ, min
t∈[a,b]

(−u′′(t))≤ r2γ, ‖u′′′‖C ≤ Q(r2) + 1
}

,

Vr2,2 :=
{

u ∈ K : min
t∈[a,b]

u(t)≤r2γ, min
t∈[a,b]

(−u′(t))≤ r2γ, min
t∈[a,b]

(−u′′(t)) = r2γ, ‖u′′′‖C ≤Q(r2) + 1
}

.

Let v0(t) ≡ 1 and note that v0 ∈ K. We claim that u 6= Su + σv0 for all u ∈ ∂KVr2 and all
σ ≥ 0. If the claim is false, there exist u ∈ ∂KVr2 and σ ≥ 0 such that u = Su + σv0. Thus
‖u′′′‖C ≤ Q(r2) for u ∈ Vr2 by Lemma 2.4. From Lemma 2.2 and (2.8) we have the following
contradictions. When u ∈ Vr2,0,

u(t) =
∫ 1

0
G1(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds + σ >

∫ b

a
c0(t)Φ0(s)Mr2ds + σ ≥ r2γ + σ,

taking the minimum for t ∈ [a, b] gives the contradiction r2γ > r2γ + σ. When u ∈ Vr2,1,

−u′(t) = −
∫ 1

0

∂G1(t, s)
∂t

f (s, u(s), u′(s), u′′(s), u′′′(s))ds >
∫ b

a
c1(t)Φ1(s)Mr2ds ≥ r2γ,
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taking the minimum for t ∈ [a, b] gives the contradiction r2γ > r2γ. When u ∈ Vr2,2,

−u′′(t) = −
∫ 1

0

∂2G1(t, s)
∂t2 f (s, u(s), u′(s), u′′(s), u′′′(s))ds >

∫ b

a
c2(t)Φ2(s)Mr2ds ≥ r2γ,

taking the minimum for t ∈ [a, b] also gives the contradiction r2γ > r2γ.
By Lemma 1.2 the fixed point index i(S, Vr2 , K) = 0.
From the additivity property of fixed point index we have i(S, Vr2\Ur1 , K) = −1. So there

is a fixed point of S in the set Vr2\Ur1 which is clearly nonzero and the positive solutions to
BVP (1.1) by Lemma 2.3.

Suppose that (F2) holds, notice that f is well defined since Mr1 < mr2. Define open
(relative to K) bounded sets Ur2 := {u ∈ K : ‖u‖C2 < r2, ‖u′′′‖C < Q(r2) + 1} and

Vr1 :=
{

u ∈ K : min
t∈[a,b]

u(t)< r1γ, min
t∈[a,b]

(−u′(t)) < r1γ, min
t∈[a,b]

(−u′′(t))< r1γ, ‖u′′′‖C < Q(r1) + 1
}

.

It is clear that Vr1 ⊂ Ur2 . The rest of proof is similar to the above.

Example 2.6. Consider the following fourth-order boundary problems under mixed multi-
point and integral boundary conditions with sign-changing coefficients and kernel functions.

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + 1
4 u( 1

4 )−
1

12 u( 3
4 ) = 0, u′′(0) +

∫ 1
0 u(t) cos(πt)dt = 0,

u(1) = 1
2 u( 1

2 )−
1
4 u( 3

4 ), u′′′(1) = 0,

(2.11)

thus α1[u] = 1
4 u( 1

4 )−
1
12 u( 3

4 ), α2[u] =
∫ 1

0 u(t) cos(πt)dt, α3[u] = 1
2 u( 1

2 )−
1
4 u( 3

4 ). Then

0 ≤ K1(s) = 1
4 G0

( 1
4 , s
)
− 1

12 G0
( 3

4 , s
)

=


− 1

12 s2 + 19
192 s, 0 ≤ s ≤ 1

4 ,

1
24 s3 − 11

96 s2 + 41
384 s− 1

1536 , 1
4 < s ≤ 3

4 ,

1
36 s3 − 1

12 s2 + 1
12 s + 1

192 , 3
4 < s ≤ 1,

K2(s) =
∫ 1

0
G0(t, s) cos(πt)dt =

2s− s2

2π2 +
cos πs

π4 − 1
π4 ≥ 0 (0 ≤ s ≤ 1),

0 ≤ K3(s) = 1
2 G0

( 1
2 , s
)
− 1

4 G0
( 3

4 , s
)

=


− 3

32 s2 + 17
128 s, 0 ≤ s ≤ 1

2 ,

1
12 s3 − 7

32 s2 + 25
128 s− 1

96 , 1
2 < s ≤ 3

4 ,

1
24 s3 − 1

8 s2 + 1
8 s + 11

1536 , 3
4 < s ≤ 1,

the 3× 3 matrix

[A] =

 α1[γ1] α1[γ2] α1[γ3]

α2[γ1] α2[γ2] α2[γ3]

α3[γ1] α3[γ2] α3[γ3]

 =


1
6

19
192

1
6

2
π2

1
π2 0

3
16

17
128

1
4


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and its spectral radius r([A]) ≈ 0.4479 < 1 (Some values here and later are calculated using
the mathematical software Mathematica). Therefore, (C2) and (C3) are satisfied. We choose
[a, b] = [1/4, 3/4] and note that γ = 1/16,

κ1(s) =



−74+2π4(37−30s)s+23π2s2+74 cos(πs)
4π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−592+π2(3−36s+328s2−192s3)+π4(−3+628s−624s2+192s3)+592 cos(πs)
32π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,
−1776+π2(41−300s+1368s2−832s3)+π4(−41+2076s−2256s2+832s3)+1776 cos(πs)

96π2(−151+114π2)
, 1

2 < s ≤ 3
4 ,

−888+π2(−47+120s+324s2−256s3)+π4(47+768s−768s2+256s3)+888 cos(πs)
48π2(−151+114π2)

, 3
4 < s ≤ 1,

κ2(s) =



−114+π2(151−87s)s+114 cos(πs)
π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−1824+π2(−3+2452s−1536s2+192s3)+1824 cos(πs)
16π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,
−5472+π2(−41+7548s−4992s2+832s3)+5472 cos(πs)

48π2(−151+114π2)
, 1

2 < s ≤ 3
4 ,

−2736+π2(47+3504s−2136s2+256s3)+2736 cos(πs)
24π2(−151+114π2)

, 3
4 < s ≤ 1,

κ3(s) =

−794+157π2s2−2π4s(−397+288s)+794 cos(πs)
32π2(−151+114π2)

, 0 ≤ s ≤ 1
4 ,

−12704+4π4(−3+3212s−2448s2+192s3)+π2(−5+60s+2272s2+320s3)+12704 cos(πs)
512π2(−151+114π2)

, 1
4 < s ≤ 1

2 ,
−38112+π2(3153−18828s+44832s2−24384s3)+4π4(−649+13476s−15024s2+5696s3)+38112 cos(πs)

1536π2(−151+114π2)
, 1

2 < s ≤ 3
4 ,

−19056+π2(−1029+1008s+8520s2−6016s3)+256π4(4+69s−69s2+23s3)+19056 cos(πs)
768π2(−151+114π2)

, 3
4 < s ≤ 1,

and hence ∫ 1

0
Φ0(s)ds =

−483264 + 96736π2 + 79071π4

57984π2 − 43776π4 ,

∫ 1

0
Φ1(s)ds =

50880 + 539π2 − 16421π4

3072π2(−151 + 114π2)
,

∫ 1

0
Φ2(s)ds =

21888 + 5371π2 − 10944π4

28992π2 − 21888π4)
,

1
m

= max
{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds,

∫ 1

0
Φ2(s)ds

}
=

21888 + 5371π2 − 10944π4

28992π2 − 21888π4)
,

∫ 3/4

1/4
Φ0(s)ds =

−483264 + 103739π2 + 89136π4

6144π2(−151 + 114π2)
,

∫ 3/4

1/4
Φ1(s)ds =

25440 + 262π2 − 9013π4

57984π2 − 43776π4 ,

∫ 3/4

1/4
Φ2(s)ds =

10944 + 2225π2 − 5472π4

28992π2 − 21888π4)
,

1
M

= min
{∫ 3/4

1/4
Φ0(s)ds,

∫ 3/4

1/4
Φ1(s)ds,

∫ 3/4

1/4
Φ2(s)ds

}
=
−483264 + 103739π2 + 89136π4

6144π2(−151 + 114π2)
,

m ≈ 1.8624, M ≈ 6.4045.
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Let f (t, x0, x1, x2, x3) = d
(
xk0

0 + (−x1)
k1 + (−x2)

k2 + x2
3
)

for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)

× (−∞, 0]3, here ki > 1 (i = 0, 1, 2), and d > 0 is a constant which is determined by the next
step. Clearly (C1) holds. For a given r1 > 0, choosing d0 > 0 and d sufficiently small such that

d
(

rk0
1 + rk1

1 + rk2
1 +

((
d0 +

(
rk0

1 + rk1
1 + rk2

1

)
d
)

exp(dr1)
)2
)
< mr1,

we have that (2.5) and (2.7) are satisfied with g(x0, x1, x2) = xk0
0 + (−x1)

k1 + (−x2)
k2 . Choosing

r2 large enough such that r2 > r1/γ and rki−1
2 > Md−1γ−ki (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈W1,i (see Theorem 2.5),

f (t, x0, x1, x2, x3) ≥ d (r2γ)ki > Mr2 (i = 0, 1, 2),

i.e., (2.8) is satisfied. By Theorem 2.5 the BVP (2.11) has at least one positive solution. Of course
0 is also a solution of this problem. Especially, if r1 = 0.01, d0 = 0.01 and k0 = k1 = k2 = 2, we
may take d = 20.

Example 2.7. Consider BVP (2.11) with f (t, x0, x1, x2, x3) = d
(

xk0
0 + (−x1)

k1 + (−x2)
k2 + x2

3

)
for (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) × (−∞, 0]3, here ki ∈ (0, 1) (i = 0, 1, 2), and d > 0 is
a constant which is determined by the next step. Clearly (C1) holds. For a given r2 > 0,
choosing d0 > 0 and d sufficiently small such that

d
(

rk0
2 + rk1

2 + rk2
2 +

((
d0 +

(
rk0

2 + rk1
2 + rk2

2

)
d
)

exp(dr2)
)2
)
< mr2,

we have that (2.5) and (2.9) are satisfied with g(x0, x1, x2) = xk0
0 + (−x1)

k1 + (−x2)
k2 . Choosing

r1 small enough such that r1 < mr2M−1 and r1−ki
1 < dγki M−1 (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈W2,i (see Theorem 2.5),

f (t, x0, x1, x2, x3) ≥ d (r1γ)ki > Mr1 (i = 0, 1, 2),

i.e., (2.10) is satisfied. By Theorem 2.5 the BVP (2.11) has at least one positive solution. Of
course 0 is also a solution of this problem. Especially, if r2 = 1, d0 = 0.01 and k0 = k1 = k2 =

1/2, we may take d = 7/20.

Remark 2.8. For f as in Example 2.7, if x0 = x1 = x2 = 0, x3 → −∞,

f (t, x0, x1, x2, x3) ≤ a0x0 − a1x1 − a2x2 − a3x3 + C0

does not hold; if x0 → 0+, x1 = x2 = x3 = 0,

f (t, x0, x1, x2, x3) ≤ b0x0 − b1x1 − b2x2 − b3x3

does not hold, where ai, bi(i = 0, 1, 2, 3) and C0 are positive constants. Therefore, the con-
ditions in [9, Theorem 2.1, Theorem 2.2] are not satisfied and the results in [9] can not be
applied.
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3 Positive solutions to the BVP (1.2)

For BVP (1.2) {
−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = β1[u], u′(0) = β2[u], u′′(0) = β3[u], u′′′(1) = 0,

we make the following assumptions:

(C̃1) f̃ : [0, 1]× [0, ∞)4 → [0, ∞) is continuous;

(C̃2) Bi is of bounded variation, moreover

K̃i(s) :=
∫ 1

0
G̃0(t, s)dBi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3),

where

G̃0(t, s) =


1
6 t3, 0 ≤ t ≤ s ≤ 1,

1
6 s(3t2 − 3ts + s2), 0 ≤ s ≤ t ≤ 1;

(C̃3) The 3× 3 matrix [B] is positive whose (i, j)th entry is βi[δj], where δ1(t) = 1, δ2(t) = t
and δ3(t) = 1

2 t2 are the solutions of u(4) = 0 respectively subject to boundary conditions:

u′(0) = 1, u′′(0) = 0, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 1, u(1) = 0, u′′′(1) = 0;

u′(0) = 0, u′′(0) = 0, u(1) = 1, u′′′(1) = 0.

Furthermore assume that its spectral radius r([B]) < 1.
Define the operator S̃ as

(S̃u)(t) =
∫ 1

0
G2(t, s) f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds,

where

G2(t, s) = 〈(I − [B])−1K̃(s), δ(t)〉+ G̃0(t, s) =
3

∑
i=1

κ̃i(s)δi(t) + G̃0(t, s),

〈(I− [B])−1K̃(s), δ(t)〉 is the inner product in R3, κ̃i(s) is the ith component of (I− [B])−1K̃(s).

Lemma 3.1. If (C̃2) and (C̃3) hold, then κ̃i(s) ≥ 0 (i = 1, 2, 3) and, for t, s ∈ [0, 1],

c̃0(t)Φ̃0(s) ≤ G2(t, s) ≤ Φ̃0(s), (3.1)

where

Φ̃0(s) =
3

∑
i=1

κ̃i(s) +
1
6

s3 +
1
2

s(1− s), c̃0(t) =
1
2

t3,

and

c̃1(t)Φ̃1(s) ≤
∂G2(t, s)

∂t
≤ Φ̃1(s), c̃2(t)Φ̃2(s) ≤

∂2G2(t, s)
∂t2 ≤ Φ̃2(s), (3.2)
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where
∂G2(t, s)

∂t
= κ̃2(s) + tκ̃3(s) +

1
2

{
t2, 0 ≤ t ≤ s ≤ 1,
s(2t− s), 0 ≤ s ≤ t ≤ 1,

∂2G2(t, s)
∂t2 = κ̃3(s) +

{
t, 0 ≤ t ≤ s ≤ 1,
s, 0 ≤ s ≤ t ≤ 1,

Φ̃1(s) =
3

∑
i=2

κ̃i(s) +
1
2

s(2− s), c̃1(t) = t2, Φ̃2(s) = κ̃3(s) + s, c̃2(t) = t.

Proof. κ̃i(s) ≥ 0 (i = 1, 2, 3) by hypotheses (C̃2) and (C̃3). For 0 ≤ s ≤ t ≤ 1, ∂
∂t G̃0(t, s) =

1
2 s(2t− s) ≥ 0 which implies that

G̃0(t, s) ≤ G̃0(1, s) =
1
6

s3 +
1
2

s(1− s);

For 0 ≤ t < s ≤ 1, ∂
∂t G̃0(t, s) = 1

2 t2 ≥ 0 which implies that

G̃0(t, s) ≤ G̃0(s, s) =
1
6

s3.

Then G̃0(t, s) ≤ 1
6 s3 + 1

2 s(1− s), ∀(t, s) ∈ [0, 1]× [0, 1].
Now we find the best function C̃0(t) such that G̃0(t, s) ≥ C̃0(t)

( 1
6 s3 + 1

2 s(1− s)
)

, ∀(t, s) ∈
[0, 1]× [0, 1].

For 0 ≤ s ≤ t ≤ 1, this is

1
6

s(3t2 − 3ts + s2) ≥ C̃0(t)
(

1
6

s3 +
1
2

s(1− s)
)

,

thus

C̃0(t) ≤
3t2 − 3ts + s2

3− 3s + s2 .

Denote

g̃1(t, s) =
3t2 − 3ts + s2

3− 3s + s2 ,

from
∂

∂s
g̃1(t, s) =

3(t− 1)(s2 − 2s(1 + t) + 3t)
(3− 3s + s2)2 ≤ 0

it follows that C̃0(t) ≤ g̃1(t, t) = t2

3−3t+t2 .
For 0 ≤ t < s ≤ 1, this is

1
6

t3 ≥ C̃0(t)
(

1
6

s3 +
1
2

s(1− s)
)

,

thus

C̃0(t) ≤
t3

s(3− 3s + s2)
.

Denote
g̃2(t, s) =

1
s(3− 3s + s2)

,

from
∂

∂s
g̃2(t, s) = − 3(1− s)2

s2(3− 3s + s2)2 ≤ 0
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it follows that C̃0(t) ≤ t3 g̃2(t, 1) = t3.
Therefore

C̃0(t) = min
{

t2

3− 3t + t2 , t3
}

= t3.

Since
1
2

t3
3

∑
i=1

κ̃i(s) ≤
1
2

t2
3

∑
i=1

κ̃i(s) ≤
3

∑
i=1

κ̃i(s)δi(t) ≤
3

∑
i=1

κ̃i(s),

1
2

t3
(

1
6

s3 +
1
2

s(1− s)
)
≤ t3

(
1
6

s3 +
1
2

s(1− s)
)
≤ G̃0(t, s) ≤ 1

6
s3 +

1
2

s(1− s),

we know that (3.1) holds. As for (3.2), it comes directly from the inequalities

t2
3

∑
i=2

κ̃i(s) ≤ t
3

∑
i=2

κ̃i(s) ≤
3

∑
i=1

κ̃i(s)δ′i(t) ≤
3

∑
i=2

κ̃i(s),

1
2

t2s(2− s) ≤ ∂G̃0(t, s)
∂t

≤ 1
2

s(2− s),

tκ̃3(s) ≤ κ̃3(s) =
3

∑
i=1

κ̃i(s)δ′′i (t), ts ≤ ∂2G̃0(t, s)
∂t2 ≤ s

for t, s ∈ [0, 1].

In C3[0, 1] we define the cone

K̃ =
{

u ∈ C3[0, 1] : u(t) ≥ c̃0(t)‖u‖C, u′(t) ≥ c̃1(t)‖u′‖C,

u′′(t) ≥ c̃2(t)‖u′′‖C, ∀t ∈ [0, 1]; u′′′(1) = 0
}

. (3.3)

Lemma 3.2. If (C̃1)–(C̃3) hold, then S̃ : K̃ → K̃ is completely continuous and the positive solutions
to BVP (1.2) are equivalent to the fixed points of S̃ in K̃.

Proof. Because G2(t, s), and the first- and second-order derivatives are continuous, the third-
order derivative is integrable in s, from Lemma 3.1 it is easy to prove that S̃ : K̃ → K̃ is
continuous. Let F be a bounded set in K̃, then there exists M > 0 such that ‖u‖C3 ≤ M for all
u ∈ K̃. Denote

C = max
(t,x0,x1,x2,x3)∈[0,1]×[0,M]4

f̃ (t, x0, x1, x2, x3).

By (C̃1) and Lemma 3.1 we have that ∀u ∈ F and t ∈ [0, 1],

|(S̃u)(t)| ≤ C
∫ 1

0
Φ̃0(s)ds, |(S̃u)′(t)| ≤ C

∫ 1

0

∣∣∣∂G2(t, s)
∂t

∣∣∣ds ≤ C
∫ 1

0
Φ̃1(s)ds,

|(S̃u)′′(t)| ≤ C
∫ 1

0

∣∣∣∂2G2(t, s)
∂t2

∣∣∣ds ≤ C
∫ 1

0
Φ̃2(s)ds, |(S̃u)′′′(t)| ≤ C

∫ 1

0

∣∣∣∂3G2(t, s)
∂t3

∣∣∣ds ≤ C,

then S̃(F) is uniformly bounded in C3[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(S̃u)(t1)− (S̃u)(t2)| ≤
∫ 1

0
|G2(t1, s)− G2(t2, s)| f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0
|G2(t1, s)− G2(t2, s)|ds,
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|(S̃u)′(t1)− (S̃u)′(t2)| ≤
∫ 1

0

∣∣∣∣∂G2

∂t
(t1, s)− ∂G2

∂t
(t2, s)

∣∣∣∣ f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣∂G2

∂t
(t1, s)− ∂G2

∂t
(t2, s)

∣∣∣∣ ds,

|(S̃u)′′(t1)− (S̃u)′′(t2)| ≤
∫ 1

0

∣∣∣∣∂2G2

∂t2 (t1, s)− ∂2G2

∂t2 (t2, s)
∣∣∣∣ f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds

≤ C
∫ 1

0

∣∣∣∣∂2G2

∂t2 (t1, s)− ∂2G2

∂t2 (t2, s)
∣∣∣∣ ds,

|(S̃u)′′′(t1)− (Su)′′′(t2)|

=

∣∣∣∣∫ 1

t1

f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds−
∫ 1

t2

f̃ (s, u(s), u′(s), u′′(s), u′′′(s))ds
∣∣∣∣ ≤ C(t2 − t1),

thus S̃(F) and S̃(i)(F) =: {v(i) : v(i)(t) = (S̃u)(i)(t), u ∈ F} (i = 1, 2, 3) are equicontinuous.
Therefore S̃ : K̃ → K̃ is completely continuous by the Arzelà–Ascoli theorem. Similar to

[14], the positive solutions to BVP (1.2) are equivalent to the fixed points of S̃ in K̃.

Lemma 3.3. Suppose that (C̃1)–(C̃3) hold, there exist constants p̃0 > 0, p̃3 ≥ 0 and functions p̃1, p̃2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)4,

f̃ (t, x0, x1, x2, x3) ≤ p̃0 + p̃1(t)g̃(x0, x1, x2) + p̃2(t)x3 + p̃3x2
3, (3.4)

where g̃ : [0, ∞)3 → [0, ∞) is continuous, non-decreasing in every variable. Let λ ≥ 1, σ ≥ 0, r > 0,
define D̃i :=

∫ 1
0 p̃i(s)ds (i = 1, 2) and

Q̃(r) := ( p̃0 + g̃(r, r, r)D̃1) exp(D̃2) exp( p̃3r). (3.5)

If u ∈ K̃ with ‖u‖C2 ≤ r such that λu(t) = (S̃u)(t) + σ, then ‖u′′′‖C ≤ Q̃(r).

Let [a, b] be a subset of (0, 1) and denote

γ̃ := min
{

min
t∈[a,b]

c̃0(t), min
t∈[a,b]

c̃1(t), min
t∈[a,b]

c̃2(t)
}

=
1
2

a3,

1
m̃

:= max
{∫ 1

0
Φ̃0(s)ds,

∫ 1

0
Φ̃1(s)ds,

∫ 1

0
Φ̃2(s)ds

}
,

1
M̃

:= min
{∫ b

a
Φ̃0(s)ds,

∫ b

a
Φ̃1(s)ds,

∫ b

a
Φ̃2(s)ds

}
,

where c̃i(t) and Φ̃i(s)(i = 0, 1, 2) are provided in Lemma 3.1. Obviously, γ̃ ∈ (0, 1/2) and
m̃ < M̃.

Similar to the proof of Theorem 2.5, we have the next theorem.

Theorem 3.4. Suppose that (C̃1)-(C̃3) hold and f̃ satisfies the growth assumption (3.4). The BVP
(1.2) has at least one positive solution u ∈ K̃ either of the following conditions (F̃1), (F̃2) holds, where
Q̃ is given by (3.5).

(F̃1) There exist 0 < r1 < r2 with r1 < r2γ̃, such that
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(F̃1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]
3 × [0, Q̃(r1)],

f̃ (t, x0, x1, x2, x3) < m̃r1; (3.6)

(F̃1b) for (t, x0, x1, x2, x3) ∈ W̃1 := W̃1,0 ∪ W̃1,1 ∪ W̃1,2,

f̃ (t, x0, x1, x2, x3) > M̃r2, (3.7)

where

W̃1,0 = [a, b]× [r2γ̃, r2]× [0, r2]
2 × [0, Q̃(r2)],

W̃1,1 = [a, b]× [0, r2]× [r2γ̃, r2]× [0, r2]× [0, Q̃(r2)],

W̃1,2 = [a, b]× [0, r2]
2 × [r2γ̃, r2]× [0, Q̃(r2)].

(F̃2) There exist 0 < r1 < r2 with M̃r1 < m̃r2, such that

(F̃2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]3 × [0, Q̃(r2)],

f̃ (t, x0, x1, x2, x3) < m̃r2; (3.8)

(F̃2b) for (t, x0, x1, x2, x3) ∈ W̃2 := W̃2,0 ∪ W̃2,1 ∪ W̃2,2,

f̃ (t, x0, x1, x2, x3) > M̃r1, (3.9)

where

W̃2,0 = [a, b]× [r1γ̃, r1]× [0, r1]
2 × [0, Q̃(r1)],

W̃2,1 = [a, b]× [0, r1]× [r1γ̃, r1]× [0, r1]× [0, Q̃(r1)],

W̃2,2 = [a, b]× [0, r1]
2 × [r1γ̃, r1]× [0, Q̃(r1)].

Example 3.5. Consider
−u(4)(t) = f̃ (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = 1
2 u( 1

4 )−
1

160 u( 3
4 ), u′(0) =

∫ 1
0

(
t− 1

8

)
u(t)dt,

u′′(0) = 1
2 u( 1

2 )−
1
14 u( 3

4 ), u′′′(1) = 0,

(3.10)

thus β1[u] = 1
2 u( 1

4 )−
1

160 u( 3
4 ), β2[u] =

∫ 1
0

(
t− 1

8

)
u(t)dt, β3[u] = 1

2 u( 1
2 )−

1
14 u( 3

4 ). Then

0 ≤ K̃1(s) = 1
2 G̃0

( 1
4 , s
)
− 1

160 G̃0
( 3

4 , s
)

=


79

960 s3 − 77
1280 s2 + 71

5120 s, 0 ≤ s ≤ 1
4 ,

1
768 −

9
5120 s + 3

1280 s2 − 1
960 s3, 1

4 < s ≤ 3
4 ,

53
61440 , 3

4 < s ≤ 1,

K̃2(s) =
1
6

∫ s

0

(
t− 1

8

)
t3dt +

1
6

∫ 1

s

(
t− 1

8

)
s(3t2 − 3ts + s2)dt

=
1

960
s
(
100− 130s + 60s2 + 5s3 − 8s4) ≥ 0 (0 ≤ s ≤ 1),
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0 ≤ K̃3(s) = 1
2 G̃0

( 1
2 , s
)
− 1

14 G̃0
( 3

4 , s
)

=


1
14 s3 − 11

112 s2 + 19
448 s, 0 ≤ s ≤ 1

2 ,

1
96 −

9
448 s + 3

112 s2 − 1
84 s3, 1

2 < s ≤ 3
4 ,

29
5376 , 3

4 < s ≤ 1,

the 3× 3 matrix

[B] =

 β1[δ1] β1[δ2] β1[δ3]

β2[δ1] β2[δ2] β2[δ3]

β3[δ1] β3[δ2] β3[δ3]

 =


79
160

77
640

71
5120

3
8

13
48

5
48

3
7

11
56

19
448


and its spectral radius r([B]) ≈ 0.6600 < 1. Therefore, (C̃2) and (C̃3) hold. We choose
[a, b] = [1/4, 3/4] and note that γ̃ = 1/128,

κ̃1(s) =



s(176400−459360s+504520s2+4785s3−7656s4)
2252880 , 0 ≤ s ≤ 1

4 ,

6875+93900s−129360s2+64520s3+4785s4−7656s5

2252880 , 1
4 < s ≤ 1

2 ,

17425+165750s−214620s2+99640s3+9570s4−15312s5

4505760 , 1
2 < s ≤ 3

4 ,
22025+3828s(100−130s+60s2+5s3−8s4)

9011520 , 3
4 < s ≤ 1,

κ̃2(s) =



s(3986640−6524820s+4630400s2+171615s3−274584s4)
19900440 , 0 ≤ s ≤ 1

4 ,

36175+3552540s−4788420s2+2315200s3+171615s4−274584s5

19900440 , 1
4 < s ≤ 1

2 ,

155405+6606750s−8580180s2+3965960s3+343230s4−549168s5

39800880 , 1
2 < s ≤ 3

4 ,
181885+137292s(100−130s+60s2+5s3−8s4)

79601760 , 3
4 < s ≤ 1,

κ̃3(s) =



s(299565−649440s+553600s2+6765s3−10824s4)
2487555 , 0 ≤ s ≤ 1

4 ,

4325+247665s−441840s2+276800s3+6765s4−10824s5

2487555 , 1
4 < s ≤ 1

2 ,

66715+146940s−186900s2+89080s3+13530s4−21648s5

4975110 , 1
2 < s ≤ 3

4 ,
17900+1353s(100−130s+60s2+5s3−8s4)

2487555 , 3
4 < s ≤ 1,

and hence∫ 1

0
Φ̃0(s)ds =

1481629721
7641768960

,
∫ 1

0
Φ̃1(s)ds =

3339971
8547840

,
∫ 1

0
Φ̃2(s)ds =

41265293
79601760

,

1
m̃

= max
{∫ 1

0
Φ̃0(s)ds,

∫ 1

0
Φ̃1(s)ds,

∫ 1

0
Φ̃2(s)ds

}
=

41265293
79601760

,

∫ 3/4

1/4
Φ̃0(s)ds =

6666545149
61134151680

,
∫ 3/4

1/4
Φ̃1(s)ds =

14676709
68382720

,
∫ 3/4

1/4
Φ̃2(s)ds =

331536539
1273628160

,

1
M̃

= min
{∫ 3/4

1/4
Φ̃0(s)ds,

∫ 3/4

1/4
Φ̃1(s)ds,

∫ 3/4

1/4
Φ̃2(s)ds

}
=

331536539
1273628160

,

m̃ ≈ 1.9290, M̃ ≈ 9.1703.
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Let f̃ (t, x0, x1, x2, x3) = d̃
(

xk0
0 + xk1

1 + xk2
2 + x2

3

)
, (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞)4, here

ki > 1 (i = 0, 1, 2), and d̃ > 0 is a constant which is determined by the next step. Clearly (C̃1)

holds. For a given r1 > 0, choosing d̃0 > 0 and d̃ sufficiently small such that

d̃
(

rk0
1 + rk1

1 + rk2
1 +

((
d̃0 +

(
rk0

1 + rk1
1 + rk2

1

)
d̃
)

exp
(

d̃r1

))2
)
< m̃r1,

we have that (3.4) and (3.6) are satisfied with g̃(x0, x1, x2) = xk0
0 + xk1

1 + xk2
2 . Choosing r2

large enough such that r2 > r1/γ̃ and rki−1
2 > M̃d̃−1γ̃−ki (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W̃1,i (see Theorem 3.4),

f (t, x0, x1, x2, x3) ≥ d̃ (r2γ̃)ki > M̃r2 (i = 0, 1, 2),

i.e., (3.7) is satisfied. By Theorem 3.4 the BVP (3.10) has at least one positive solution. Of course
0 is also a solution of this problem. Especially, if r1 = 0.01, d̃0 = 0.01 and k0 = k1 = k2 = 2, we
may take d̃ = 23.

Example 3.6. Consider (3.10) with f̃ (t, x0, x1, x2, x3) = d̃
(
xk0

0 + xk1
1 + xk2

2 + x2
3
)
, (t, x0, x1, x2, x3) ∈

[0, 1]× [0, ∞)4, here ki ∈ (0, 1) (i = 0, 1, 2), and d̃ > 0 is a constant which is determined by
the next step. Clearly (C̃1) holds. For a given r2 > 0, choosing d̃0 > 0 and d̃ sufficiently small
such that

d̃
(

rk0
2 + rk1

2 + rk2
2 +

((
d̃0 +

(
rk0

2 + rk1
2 + rk2

2

)
d̃
)

exp
(

d̃r2

))2
)
< m̃r2,

we have that (3.4) and (3.8) are satisfied with g̃(x0, x1, x2) = xk0
0 + xk1

1 + xk2
2 . Choosing r1

small enough such that r1 < m̃r2M̃−1 and r1−ki
1 < d̃γ̃ki M̃−1 (i = 0, 1, 2), we have that for

(t, x0, x1, x2, x3) ∈ W̃2,i (see Theorem 3.4),

f (t, x0, x1, x2, x3) ≥ d̃ (r1γ̃)ki > M̃r1 (i = 0, 1, 2),

i.e., (3.9) is satisfied. By Theorem 3.4 the BVP (3.10) has at least one positive solution. Of course
0 is also a solution of this problem. Especially, if r2 = 1, d̃0 = 0.01 and k0 = k1 = k2 = 1/2, we
may take d̃ = 7/20.

Remark 3.7. For f̃ as in Example 3.6, if x0 = x1 = x2 = 0, x3 → +∞,

f̃ (t, x0, x1, x2, x3) ≤ ã0x0 + ã1x1 + ã2x2 + ã3x3 + C̃0

does not hold; if x0 → 0+, x1 = x2 = x3 = 0,

f̃ (t, x0, x1, x2, x3) ≤ b̃0x0 + b̃1x1 + b̃2x2 + b̃3x3

does not hold, where ãi, b̃i(i = 0, 1, 2, 3) and C̃0 are positive constants. Therefore, the con-
ditions in [9, Theorem 3.1, Theorem 3.2] are not satisfied and the results in [9] can not be
applied.
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4 Positive Solutions to the BVP (1.3)

For BVP (1.3) {
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = u(1) = η1[u], u′′(0) + η2[u] = 0, u′′(1) + η2[u] = 0,

we make the following assumptions:

(C1) f : [0, 1]× [0, ∞)× (−∞, ∞)× (−∞, 0]× (−∞, ∞)→ [0, ∞) is continuous;

(C2) Hi is of bounded variation, moreover

Ki(s) :=
∫ 1

0
G0(t, s)dHi(t) ≥ 0, ∀s ∈ [0, 1](i = 1, 2),

where

G0(t, s) =


1
6 t(1− s)(2s− t2 − s2), 0 ≤ t ≤ s ≤ 1,

1
6 s(1− t)(2t− s2 − t2), 0 ≤ s ≤ t ≤ 1;

(C3) The 2× 2 matrix [H] is positive whose (i, j)th entry is ηi[ξ j], where ξ1(t) = 1 and ξ2(t) =
1
2 t(1− t) are the solutions of u(4) = 0 respectively subject to boundary conditions:

u(0) = u(1) = 1, u′′(0) = u′′(1) = 0;

u(0) = u(1) = 0, u′′(0) = u′′(1) = −1.

Furthermore assume that its spectral radius r([H]) < 1.

Define the operator S as

(Su)(t) =
∫ 1

0
G3(t, s) f (s, u(s), u′(s), u′′(s), u′′′(s))ds,

where

G3(t, s) = 〈(I − [H])−1K(s), ξ(t)〉+ G0(t, s) =
2

∑
i=1

κi(s)ξi(t) + G0(t, s),

〈(I−[H])−1K(s), ξ(t)〉 is the inner product in R2, κi(s) is the ith component of (I−[H])−1K(s).

Lemma 4.1. If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2),

G3(0, s) = G3(1, s) = κ1(s),
∂2G3(0, s)

∂t2 =
∂2G3(1, s)

∂t2 = −κ2(s)

and for t, s ∈ [0, 1],
c0(t)Φ0(s) ≤ G3(t, s) ≤ Φ0(s), (4.1)

where
Φ0(s) = κ1(s) +

1
8

κ2(s) + Φ̂0(s),

c0(t) =

 3
√

3
2 t(1− t2), 0 ≤ t ≤ 1

2 ,
3
√

3
2 t(1− t)(2− t), 1

2 < t ≤ 1,
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Φ̂0(s) =


√

3
27 s(1− s2)3/2, 0 ≤ s ≤ 1

2 ,
√

3
27 (1− s)s3/2(2− s)3/2, 1

2 < s ≤ 1;

and

c1(t)Φ1(s) ≤ −
∂2G3(t, s)

∂t2 ≤ Φ1(s) (4.2)

where
∂2G3(t, s)

∂t2 = −κ2(s)−
{

t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1,

Φ1(s) = κ2(s) + s(1− s), c1(t) = min{t, 1− t}.

Proof. κi(s) ≥ 0 by hypotheses (C2) and (C3), and the following inequality is proved in [15]

c0(t)Φ̂0(s) ≤ G0(t, s) ≤ Φ̂0(s).

From

G3(t, s) =
2

∑
i=1

κi(s)ξi(t) + G0(t, s) ≤ κ1(s) +
1
8

κ2(s) + Φ̂0(s) = Φ0(s)

and

G3(t, s) = κ1(s) +
1
8
× 4t(1− t)κ2(s) + G0(t, s)

≥ 4t(1− t)
(

κ1(s) +
1
8

κ2(s)
)
+ c0(t)Φ̂0(s)

≥ 9
√

3
4

t(1− t)
(

κ1(s) +
1
8

κ2(s)
)
+ c0(t)Φ̂0(s) ≥ c0(t)Φ0(s),

it follows that (4.1) hold. As for (4.2), it can be checked easily.

In C3[0, 1] we define the cone

K =
{

u ∈ C3[0, 1] : u(t) ≥ c0(t)‖u‖C, −u′′(t) ≥ c1(t)‖u′′‖C, ∀t ∈ [0, 1];

u(0) = u(1), u′′(0) = u′′(1)
}

. (4.3)

Lemma 4.2. If (C1)–(C3) hold, then S : K → K is completely continuous and the positive solutions
to BVP (1.3) are equivalent to the fixed points of S in K.

Lemma 4.3. Suppose that (C1)-(C3) hold, there exist constants p0 > 0, p3 ≥ 0 and functions p1, p2 ∈
L1
+[0, 1] such that for all (t, x0, x1, x2, x3) ∈ [0, 1]× [0, ∞)× (−∞, ∞)× (−∞, 0]× (−∞, ∞),

f (t, x0, x1, x2, x3) ≤ p0 + p1(t)g(x0, x1, x2) + p2(t)|x3|+ p3|x3|2, (4.4)

where g : [0, ∞)× (−∞, ∞)× (−∞, 0] → [0, ∞) is continuous, non-decreasing in the first variable,
even and non-decreasing in [0, ∞) in the second variable, non-increasing in the third variable. Let
λ ≥ 1, σ ≥ 0, r > 0, define Di :=

∫ 1
0 pi(s)ds (i = 1, 2) and

Q(r) := (p0 + g(r, r,−r)D1) exp(D2) exp(p3r). (4.5)

If u ∈ K with ‖u‖C2 ≤ r such that λu(t) = (Su)(t) + σ, then ‖u′′′‖C ≤ Q(r).
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Proof. Since u ∈ K, there exists t0 ∈ (0, 1) such that u′′′(t0) = 0. From λu(t) = (Su)(t) + σ,
we have that λu(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)) ≥ 0. Therefore, u′′′(t) ≤ 0 (t ∈ [0, t0]),
u′′′(t) ≥ 0 (t ∈ [t0, 1]) and

λu′′′(t) =
∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds (t ∈ [0, 1]). (4.6)

If t ≤ t0, from ‖u‖C2 ≤ r and (4.6) it follows that

|u′′′(t)| ≤ λ|u′′′(t)| =
∣∣∣∣∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds
∣∣∣∣

≤
∫ t0

t

(
p0 + p1(s)g(u(s), u′(s), u′′(s)) + p2(s)|u

′′′(s)|+ p3|u
′′′(s)|2

)
ds

≤
(

p0 + g(r, r,−r)D1
)
+
∫ t0

t

(
p2(s)|u

′′′(s)|+ p3|u
′′′(s)|2

)
ds.

Since ∫ t0

0
p3|u

′′′(s)|ds = −
∫ t0

0
p3u′′′(s)ds = p3(u

′′(0)− u′′(t0)) ≤ p3r,

by Lemma 2.1 we deduce that

|u′′′(t)| ≤ (p0 + g(r, r,−r)D1) exp(D2) exp(p3r) = Q(r), t ∈ [0, t0].

If t ≥ t0, we change the variable from s to σ = t0 + 1− s. Denote w(σ) = u(t0 + 1− σ) and
then w′(σ) = −u′(s), w′′(σ) = u′′(s), w′′′(σ) = −u′′′(s). Setting τ = t0 + 1− t, from ‖u‖C2 ≤ r
and (4.6) we have that

|w′′′(τ)| = | − u′′′(t)| ≤ λ|u′′′(t)| =
∣∣∣∣∫ t

t0

f (s, u(s), u′(s), u′′(s), u′′′(s))ds
∣∣∣∣

=

∣∣∣∣− ∫ τ

1
f (t0 + 1− σ, w(σ),−w′(σ), w′′(σ),−w′′′(σ))dσ

∣∣∣∣
≤
∫ 1

τ

(
p0 + p1(t0 + 1− σ)g(w(σ),−w′(σ), w′′(σ)) + p2(t0 + 1− σ)|w′′′(σ)|+ p3|w

′′′(σ)|2
)
dσ

≤
(

p0 + g(r, r,−r)D1
)
+
∫ 1

τ

(
p2(t0 + 1− σ)|w′′′(σ)|+ p3|w

′′′(σ)|2
)
dσ.

Since ∫ 1

t0

p3|w
′′′(σ)|dσ = −

∫ 1

t0

p3u′′′(s)ds = p3(u
′′(t0)− u′′(1)) ≤ p3r,

by Lemma 2.1 we deduce that

|w′′′(τ)| ≤ (p0 + g(r, r,−r)D1) exp(D2) exp(p3r) = Q(r), τ ∈ [t0, 1],

i.e. |u′′′(t)| ≤ Q(r), t ∈ [t0, 1].
So the proof is complete.

Let [a, b] be a subset of (0, 1) and denote

γ := min
{

min
t∈[a,b]

c0(t), min
t∈[a,b]

c1(t)
}

= min

{
3
√

3
2

a(1− a2),
3
√

3
2

b(1− b)(2− b), a, 1− b

}
,

1
m

:= max
{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds

}
,

1
M

:= min
{∫ b

a
Φ0(s)ds,

∫ b

a
Φ1(s)ds

}
,

where ci(t) and Φi(s)(i = 0, 1) are provided in Lemma 4.1. Obviously, γ ∈ (0, 1/2) and
m < M.
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Theorem 4.4. Suppose that (C1)–(C3) hold and f satisfies the growth assumption (4.4). The BVP
(1.3) has at least one positive solution u ∈ K if either of the following conditions (F1), (F2) holds,
where Q is given by (4.5).

(F1) There exist 0 < r1 < r2 with r1 < r2γ, such that

(F1a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r1]× [−r1, r1]× [−r1, 0]× [−Q(r1), Q(r1)],

f (t, x0, x1, x2, x3) < mr1; (4.7)

(F1b) for (t, x0, x1, x2, x3) ∈W1 := W1,0 ∪W1,1,

f (t, x0, x1, x2, x3) > Mr2, (4.8)

where

W1,0 = [a, b]× [r2γ, r2]× [−r2, r2]× [−r2, 0]× [−Q(r2), Q(r2)],

W1,1 = [a, b]× [0, r2]× [−r2, r2]× [−r2,−r2γ]× [−Q(r2), Q(r2)].

(F2) There exist 0 < r1 < r2 with Mr1 < mr2, such that

(F2a) for (t, x0, x1, x2, x3) ∈ [0, 1]× [0, r2]× [−r2, r2]× [−r2, 0]× [−Q(r2), Q(r2)],

f (t, x0, x1, x2, x3) < mr2; (4.9)

(F2b) for (t, x0, x1, x2, x3) ∈W2 := W2,0 ∪W2,1,

f (t, x0, x1, x2, x3) > Mr1, (4.10)

where

W2,0 = [a, b]× [r1γ, r1]× [−r1, r1]× [−r1, 0]× [−Q(r1), Q(r1)],

W2,1 = [a, b]× [0, r1]× [−r1, r1]× [−r1,−r1γ]× [−Q(r1), Q(r1)].

Proof. Suppose that (F1) holds.
Define an open (relative to K) set

Ur1 :=
{

u ∈ K : ‖u‖C < r1, ‖u′′‖C < r1, ‖u′′′‖C < Q(r1) + 1
}

.

If u ∈ Ur1 , it follows from u(0) = u(1) that there is ζ ∈ (0, 1) such that u′(ζ) = 0, and |u′(t)| =∣∣ ∫ t
ζ u′′(s)ds

∣∣ ≤ ‖u′′‖C for all t ∈ [0, 1] which implies that ‖u′‖C < r1. Thus Ur1 is bounded.
Similar to the proof of Theorem 2.5, we have that the fixed point index i(S, Ur1 , K) = 1 by
Lemma 1.1.

Define an open (relative to K) set

Vr2 :=
{

u ∈ K : min
t∈[a,b]

u(t) < r2γ, min
t∈[a,b]

(−u′′(t)) < r2γ, ‖u′′′‖C < Q(r2) + 1
}

.

If u ∈ Vr2 , it follows from (4.3) that ‖u‖C < r2 and ‖u′′‖C < r2. Since u(0) = u(1), there is
τ ∈ (0, 1) such that u′(τ) = 0, and |u′(t)| =

∣∣ ∫ t
τ u′′(s)ds

∣∣ ≤ ‖u′′‖C for all t ∈ [0, 1] which
implies that ‖u′‖C < r2. Thus Vr2 is bounded. Again similar to the proof of Theorem 2.5, we
have that the fixed point index i(S, Vr2 , K) = 0 by Lemma 1.2.

It is obvious from r1 < r2γ that Ur1 ⊂ Vr2 . So there is a fixed point of S in the set Vr2 \Ur1

which is clearly nonzero and the positive solutions to BVP (1.3) by Lemma 4.2.
The other case is proved similarly.
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Example 4.5. Consider
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u(1) = 1
2 u( 1

4 )−
1
8 u( 1

2 ),

u′′(0) +
∫ 1

0 u(t)(t− 1
4 )dt = 0, u′′(1) +

∫ 1
0 u(t)(t− 1

4 )dt = 0,

(4.11)

thus η1[u] = 1
2 u( 1

4 )−
1
8 u( 1

2 ), η2[u] =
∫ 1

0 u(t)(t− 1
4 )dt. Then

0 ≤ K1(s) = 1
2 G0

( 1
4 , s
)
− 1

8 G0
( 1

2 , s
)

=


− 5

96 s3 + 5
256 s, 0 ≤ s ≤ 1

4 ,

1
32 s3 − 1

16 s2 + 9
256 s− 1

768 , 1
4 < s ≤ 1

2 ,

1
96 s3 − 1

32 s2 + 5
256 s + 1

768 , 1
2 < s ≤ 1,

K2(s) =
∫ 1

0
G0(t, s)

(
t− 1

4

)
dt =

1
120

s5 − 1
96

s4 − 1
144

s3 +
13

1440
s ≥ 0 (0 ≤ s ≤ 1),

the 2× 2 matrix

[H] =

 η1[ξ1] η1[ξ2]

η2[ξ1] η2[ξ2]

 =

(
3
8

1
32

1
4

1
48

)

and its spectral radius r([H]) = 19
48 < 1. Therefore, (C2) and (C3) hold. We choose [a, b] =

[1/4, 3/4] and note that γ = 1/128,

κ1(s) =


s(3577−9440s2−60s3+48s4)

111360 , 0 ≤ s ≤ 1
4 ,

−235+6397s−11280s2+5600s3−60s4+48s5

111360 , 1
4 < s ≤ 1

2 ,

235+3577s−5640s2+1840s3−60s4+48s5

111360 , 1
2 < s ≤ 1,

κ2(s) =


s(97−160s2−60s3+48s4)

5568 , 0 ≤ s ≤ 1
4 ,

−3+133s−144s2+32s3−60s4+48s5

5568 , 1
4 < s ≤ 1

2 ,

3+97s−72s2−16s3−60s4+48s5

5568 , 1
2 < s ≤ 1,

and hence ∫ 1

0
Φ0(s)ds = − 5051

712704
+

2
45
√

3
,

∫ 1

0
Φ1(s)ds =

15151
89088

,

1
m

= max
{∫ 1

0
Φ0(s)ds,

∫ 1

0
Φ1(s)ds

}
=

15151
89088

,

∫ 3/4

1/4
Φ0(s)ds = − 248861

28508160
+

5
√

5
512

,
∫ 3/4

1/4
Φ1(s)ds =

83365
712704

,

1
M

= min
{∫ 3/4

1/4
Φ0(s)ds,

∫ 3/4

1/4
Φ1(s)ds

}
= − 248861

28508160
+

5
√

5
512

,

m ≈ 5.8800, M ≈ 76.2943.
Let f (t, x0, x1, x2, x3) = d

(
xk0

0 + x4
1 + (−x2)

k1 + x2
3
)
, (t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) ×

(−∞, ∞) × (−∞, 0] × (−∞, ∞), here ki > 1 (i = 0, 1), and d > 0 is a constant which is



Three classes of non-local fourth-order problems with derivative-dependent nonlinearities 25

determined by the next step. Clearly (C1) holds. For a given r1 > 0, choosing d0 > 0 and d
sufficiently small such that

d
(

rk0
1 + r4

1 + rk1
1 +

((
d0 +

(
rk0

1 + r4
1 + rk1

1

)
d
)

exp(dr1)
)2
)
< mr1,

we have that (4.4) and (4.7) are satisfied with g(x0, x1, x2) = xk0
0 + x4

1 + (−x2)
k1 . Choosing

r2 large enough such that r2 > r1/γ and rki−1
2 > Md

−1
γ−ki (i = 0, 1), we have that for

(t, x0, x1, x2, x3) ∈W1,i,
f (t, x0, x1, x2, x3) ≥ d (r2γ)ki > Mr2,

i.e., (4.8) is satisfied. By Theorem 4.4 the BVP (4.11) has at least one positive solution. Of
course 0 is also a solution of this problem. Especially, if r1 = 0.01, d0 = 0.01 and k0 = k1 = 2,
we may take d = 48.

Example 4.6. Consider BVP (4.11) with f (t, x0, x1, x2, x3) = d
(
xk0

0 + x4
1 + (−x2)

k1 + x2
3
)

for
(t, x0, x1, x2, x3) ∈ [0, 1] × [0, ∞) × (−∞, ∞) × (−∞, 0] × (−∞, ∞), here ki ∈ (0, 1) (i = 0, 1),
and d > 0 is a constant which is determined by the next step. Clearly (C1) holds. For a given
r2 > 0, choosing d0 > 0 and d sufficiently small such that

d
(

rk0
2 + r4

2 + rk1
2 +

((
d0 +

(
rk0

2 + r4
2 + rk1

2

)
d
)

exp(dr2)
)2
)
< mr2,

we have that (4.4) and (4.9) are satisfied with g(x0, x1, x2) = xk0
0 + x4

1 + (−x2)
k1 . Choosing

r1 small enough such that r1 < mr2M−1 and r1−ki
1 < dγki M−1

(i = 0, 1), we have that for
(t, x0, x1, x2, x3) ∈W2,i,

f (t, x0, x1, x2, x3) ≥ d (r1γ)ki > Mr1 (i = 0, 1),

i.e., (4.10) is satisfied. By Theorem 4.4 the BVP (4.11) has at least one positive solution. Of
course 0 is also a solution of this problem. Especially, if r2 = 1, d0 = 0.01 and k0 = k1 = 1/2,
we may take d = 1/2
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