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Abstract. In the present paper we deal with a quasilinear problem involving a singular
term and a parametric superlinear perturbation. We are interested in the existence,
nonexistence and multiplicity of positive solutions as the parameter λ > 0 varies. In
our first result, the superlinear perturbation has an arbitrary growth and we obtain the
existence of a solution for the problem by using the sub-supersolution method. For the
second result, the superlinear perturbation has subcritical growth and we employ the
Mountain Pass Theorem to show the existence of a second solution.

Keywords: extended functional, sub-supersolution method, singular problem, varia-
tional methods.

2020 Mathematics Subject Classification: 35A01, 35A15, 35A16, 35B09.

1 Introduction

This paper is concerned with the existence, nonexistence and multiplicity of solutions for the
family of quasilinear problems with singular nonlinearity

−∆u− ∆(u2)u = a(x)u−γ + λup in Ω,

u > 0 in Ω,

u(x) = 0 on ∂Ω,

(Pλ)

where 0 < γ, 3 ≤ p < ∞, 0 ≤ λ is a parameter, Ω ⊂ RN(N ≥ 3) is a bounded smooth domain
and a(x) is a positive measurable function.

We say that a function u ∈ H1
0(Ω) ∩ L∞(Ω) is a weak solution (solution, for short) of (Pλ)

if u > 0 a.e. in Ω, and, for every ψ ∈ H1
0(Ω),

au−γψ, upψ ∈ L1(Ω)

and ∫
Ω
[(1 + 2u2)∇u∇ψ + 2u|∇u|2ψ] =

∫
Ω

a(x)u−γψ + λ
∫

Ω
upψ.
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Solutions of this type are related to the existence of standing wave solutions for quasilinear
Schrödinger equations of the form

i∂tz = −∆z + V(x)z + η(|z|2)z− κ∆ρ(|z|2)ρ′(|z|2)z, (1.1)

where z : R×Ω→ C, V(x) is a given potential, κ > 0 is a constant and η, ρ are real functions.
Quasilinear equations of form (1.1) appear more naturally in mathematical physics and have
been derived as models of several physical phenomena corresponding to various types of ρ.
The case of ρ(s) = s was used for the superfluid film equation in plasma physics by Kurihara
[20] (cf. [21]). In the case ρ(s) = (1 + s)1/2, equation (1.1) models the self-channeling of a
high-power ultrashort laser in matter, see [7, 9, 11, 28] and the references in [8].

Consider the following quasilinear Schrödinger equation

− ∆u− ∆(u2)u = g(x, u) in Ω, (1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. When g is a singular nonlin-
earity, problems of type (1.2) was studied by Do Ó–Moameni [25], Liu–Liu–Zhao [23], Wang
[32], Dos Santos–Figueiredo–Severo [29], Alves–Reis [2] and Bal–Garain–Mandal–Sreenadh
[6]. In particular, the authors in [23] considered the problem

−∆su− s
2s−1 ∆(u2)u = a(x)u−γ + λup in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where N ≥ 3, ∆s is the s-Laplacian operator, 2 < 2s < p + 1 < ∞, 0 < γ and a ≥ 0 is a
nontrivial measurable function satisfying the following condition:

(H) There are ϕ ∈ C1
0(Ω) and q > N such that ϕ > 0 on Ω and aϕ−γ ∈ Lq(Ω).

The authors used sub-supersolution method, truncation arguments and variational meth-
ods to prove the existence of solutions for (1.3) provided λ > 0 is small enough.

In [29], Dos Santos–Figueiredo–Severo studied the problem
−∆u− ∆(u2)u = a(x)u−γ + z(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

where N ≥ 3, the function a satisfies the hypothesis (H) and the nonlinearity z : Ω×R −→ R

is continuous and satisfies (among other conditions):
There exist C > 0, r ≥ 1 and b ∈ L∞(Ω), b ≥ 0 almost everywhere in Ω, such that

|z(x, t)| ≤ C(1 + b(x)|t|r−1), ∀t ∈ R and a.e. in Ω.

By using sub-supersolution method, truncation arguments and the Mountain Pass Theo-
rem they showed the existence of solutions provided ‖b‖∞ is small enough. When z(x, t) =

λ|t|r−2t this is equivalent to the existence of solutions for λ > 0 small enough.
In this paper, our first goal is to show the existence and nonexistence of solutions for (Pλ)

without restriction on the parameter λ and exponent p ≥ 3 (see Remark 1.4). We would like
to emphasize that for 0 < p < 3 the arguments carried out in [1, 2] can be adapted to prove
that problem (Pλ) has at least one solution for all λ ∈ R (see Remark 4.1).
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It is worth pointing out that to prove our main results, we use the method of changing
variables developed in Colin–Jeanjean [13]. Thus, we reformulate problem (Pλ) into a new
one, denoted with (Qλ) (cfr. Section 2), which finds its natural setting in the Sobolev space
H1

0(Ω).
Our first result is the following.

Theorem 1.1. Under the assumptions (H) and p ≥ 3 there exists 0 < λ∗ < ∞ such that problem (Pλ)
has at least one solution vλ for 0 < λ < λ∗ and no solution for λ > λ∗. Moreover, λ∗ is characterized
variationally by (3.1) and vλ ∈ C1

0(Ω).

The proof of Theorem 1.1 is based on the method of sub-supersolutions. However, by
virtue of the arbitrary growth of the singular and superlinear terms that appear in problem
(Qλ) we cannot use directly the method of sub-supersolutions here. An additional difficulty
comes from the fact that these singular and superlinear terms are nonhomogeneous. To over-
come this difficulty we develop new arguments and a regularity result that allows us to obtain
a subsolution to problem (Qλ) for all λ > 0. In particular, we establish some preliminary re-
sults and we prove a sub-supersolution theorem (see Theorem 2.8).

To prove the multiplicity of solutions for (Pλ), with λ ∈ (0, λ∗), we need a refinement of
hypotheses (H). We introduce the following assumption:

(H)∞ There exists ϕ ∈ C1
0(Ω) such that ϕ > 0 on Ω and aϕ−1−γ ∈ L∞(Ω).

If the function ϕ satisfies (H)∞ then it satisfies (H), too (see Section 4).
We denote by 2∗ = 2N/(N − 2) the critical Sobolev exponent. Now we state our second

result.

Theorem 1.2. Under the assumptions (H)∞ and 3 < p < 22∗ − 1, problem (Pλ) has at least two
solutions for 0 < λ < λ∗ and no solution for λ > λ∗.

Example 1.3. When Ω is the unit ball, the functions a(x) = (1− |x|2)σ, σ ≥ γ + 1 and ϕ(x) =
1− |x|2 satisfy assumption (H)∞.

Remark 1.4. The results obtained in Theorems 1.1 and 1.2 are almost global, that is, they do
not show the existence and multiplicity of solutions only for λ = λ∗, with parameter λ∗ having
the property that problem (Pλ) has at least one solution for λ ∈ (0, λ∗) and no solutions for
λ > λ∗. Thus, in our main results we do not assume the restriction that λ is small enough
to guarantee the existence of solutions, because we prove the existence of a solution for all
λ ∈ (0, λ∗). Furthermore, when 0 < γ < 1 (weak singularity), combining Theorems 1.1, 1.2
and Proposition 4.8 we have a global result:

a) Problem (Pλ) has a solution if and only if λ ∈ (0, λ∗]. Namely, L = (0, λ∗] (see Section 3
for definition of L).

b) Problem (Pλ) has at least two solutions for λ ∈ (0, λ∗) and at least one solution for
λ = λ∗ and no solution for λ > λ∗.

Let us highlight that the hypotheses (H)∞ plays a crucial role in the proof of Theorem
1.2. Indeed, it allows us to show that vλ is a local minimum of the functional Jλ in the
topology of C1

0(Ω) and that the modified functional Jλ belongs to C1(H1
0(Ω), R) and satisfies

the assumptions of Theorem 1 in Brezis–Nirenberg [10] (see (4.2) and (4.7) in Section 4 for
definition of Jλ and Jλ, respectively ). In particular, we get that v = 0 is a local minimum of



4 R. L. Alves

the functional Jλ in the H1
0(Ω) topology. Then, after fine arguments we apply the Mountain

Pass Theorem to obtain a second solution of (Pλ). It is worth pointing out that under the
assumption (H) we are not able to show Lemma 4.2 and that Jλ satisfies the assumptions of
Theorem 1 in [10].

We emphasize that Theorem 1.1 improve the works [23, 29] in the sense that we show the
existence and nonexistence of solutions for (Pλ) without restriction on the parameter λ (that
is, our results are almost global and we do not assume that λ is small enough to obtain a
solution, see Remark 1.4 ). They also did not prove a result of nonexistence of solutions. As
far as we know, Theorem 1.2 is the first result of multiplicity of H1

0(Ω)-solutions for singular
problems with strong singularity γ > 1 and without restriction on the parameter λ, that is,
we do not assume λ small enough. Notice that no restriction on the γ > 0 is assumed.

Let us compare our parameter λ∗ and results with the parameters and results obtained in
[6, 29].

• Let ε0 and ε1 be the parameters obtained in Theorem 1.2 and 1.3, respectively, in [29]
when h(x, t) = λ|t|r−2t. Then, we will prove in Remark 3.3 that ε1 ≤ ε0 < λ∗.

• When 0 < γ < 1 and 3 < p < 22∗ − 1 problem (Pλ) was also studied in [6]. As
mentioned by the authors of that work, using the Nehari manifold method they proved
the existence of two solutions for λ sufficiently small. More precisely, they proved that
there is a parameter ν > 0 such that problem (Pλ) has two solutions for 0 < λ < ν and
N 0

λ = ∅ for 0 < λ < ν (here we use ν to avoid confusion with our Λ of Theorem 3.2 and
see page 4 of [6] for the definition of N 0

λ ). In our work we are assuming arbitrary γ > 0,
unlike [6] which assumes 0 < γ < 1. Furthermore the technique used in [6] cannot be
used when γ ≥ 1, because they need the continuity of the energy functional associated
with the problem and use that 0 < 1− γ < 1 to get estimates (at this point they need
Sobolev embeddings and therefore it is very important that 0 < 1− γ < 1). For γ ≥ 1
these facts are not true and therefore for γ ≥ 1 the results obtained in [6] cannot be
compared with our results obtained here (in particular with Theorem 1.1 where we
assume that p can be supercritical, that is, 22∗ − 1 < p).

• When 0 < γ < 1 and p < 22∗ − 1, combining Theorem 1.1 and Proposition 4.8 of our
work we have that problem (Pλ) has a solution if and only if λ ∈ (0, λ∗] . Thus, our result
is global in this case. As a consequence ν ≤ λ∗ (see previous paragraph for the definition
of ν). In [6] they did not prove the existence of a solution for λ = ν, that is, they obtained
a local result. Therefore, even in this case our work improves the result of [6] in the sense
that we prove that problem (Pλ) has a solution if and only if λ ∈ (0, λ∗] (in particular
for λ = λ∗), and therefore we do not have the restriction that λ is small enough as in
[6]. Finally, we emphasize that a similar problem, but without the term ∆(u2)u, was
studied in [3] using the Nehari manifold method and in that work the authors obtained
solutions for parameters λ > 0 such that N 0

λ 6= ∅. This result suggests that parameter ν

obtained in [6] is small enough and satisfies ν < λ∗.

There is a wide literature dealing with existence and multiplicity results for problems
involving both the p-Laplacian operator and singular nonlinearities. The reader who wishes to
broaden his/her knowledge on these topics is referred to [3,15–18,26,27], and to the references
therein.

The paper is structured as follows: In Section 2, we reformulate problem (Pλ) into a new
one which finds its natural setting in the Sobolev space H1

0(Ω) and we present some results
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that will be important for our work. In particular, we prove a nonexistence result and a sub-
supersolution theorem. In Section 3, we prove Theorem 1.1 and Section 4 is devoted to prove
Theorem 1.2.

Notation. Throughout this paper, we make use of the following notations:

• Lq(Ω), for 1 ≤ q ≤ ∞, denotes the Lebesgue space with usual norm denoted by ‖u‖q.

• H1
0(Ω) denotes the Sobolev space endowed with inner product

(u, v) =
∫

Ω
∇u∇v, ∀u, v ∈ H1

0(Ω).

The norm associated with this inner product will be denoted by ‖ ‖.

• W2,q
0 (Ω) denotes the Sobolev space with norm

‖u‖ =
(

∑
|α|≤2
‖Dαu‖q

q

)1/q

.

• Let us consider the space C1
0(Ω) =

{
u ∈ C1(Ω) : u = 0 on ∂Ω

}
equipped with the norm

‖u‖C1 = maxx∈Ω |u(x)|+maxx∈Ω |∇u(x)|. If on C1
0(Ω) we consider the pointwise partial

ordering (i.e., u ≤ v if and only if u(x) ≤ v(x) for all x ∈ Ω), which is induced by the
positive cone

C1
0(Ω)+ =

{
u ∈ C1

0(Ω) : u ≥ 0 for all x ∈ Ω
}

,

then this cone has a nonempty interior given by

int(C1
0(Ω)+) =

{
u ∈ C1

0(Ω) : u > 0 for all x ∈ Ω and
∂u
∂ν

(x) < 0 for all x ∈ ∂Ω
}

,

where ν is the outward unit normal vector to ∂Ω at the point x ∈ ∂Ω.

• Br(v) denotes the ball centered at v ∈ C1
0(Ω) with radius r > 0 (with respect to the

topology of C1
0(Ω)).

• The function d(x) = d(x, ∂Ω) denotes the distance from a point x ∈ Ω to the boundary
∂Ω, where Ω = Ω ∪ ∂Ω is the closure of Ω ⊂ RN .

• We denote by φ1 the L∞(Ω)-normalized (that is, ‖φ1‖∞ = 1) positive eigenfunction for
the smallest eigenvalue λ1 > 0 of

(
−∆, H1

0(Ω)
)
.

• If u is a measurable function, we denote the positive and negative parts by u+ =

max {u, 0} and u− = max {−u, 0}, respectively.

• If A is a measurable set in RN , we denote by |A| the Lebesgue measure of A.

• k, c, c1, c2, . . . and C denote (possibly different from line to line) positive constants.

• The arrow ⇀ (respectively,→) denotes weak (respectively strong) convergence.
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2 Preliminaries

In this section, we will establish some preliminaries which will be important for our work.
We reduce the study of the existence of positive solutions for (Pλ) to the existence of positive
solutions of a singular elliptic problem. In particular, we will prove a nonexistence result and
a sub-supersolution theorem.

We denote by φ1 the L∞(Ω)-normalized positive eigenfunction for the smallest eigenvalue
λ1 > 0 of

(
−∆, H1

0(Ω)
)
. We start by proving that φ1 satisfies the assumption (H). We consider

the following assumption.

(H′) There is q > N such that aφ
−γ
1 ∈ Lq(Ω).

Lemma 2.1. Assumptions (H) and (H′) are equivalent.

Proof. Suppose that (H) holds. One has φ1 ∈ int(C1
0(Ω)+) and ϕ ∈ C1

0(Ω)+. Then, from
Proposition 1 in [24] there exists k > 0 such that φ1 ≥ kϕ in Ω and hence aφ

−γ
1 ≤ k−γaϕ−γ ∈

Lq(Ω), proving (H
′
).

If (H
′
) holds, then the function ϕ = φ1 and q satisfy (H). This concludes the proof.

Remark 2.2.

a) The arguments in the proof of Lemma 2.1 can be used to prove that if (H) holds, then
any function u ∈ int(C1

0(Ω)+) satisfies the assumption (H), too.

b) If ϕ satisfies the assumption (H) then aϕ1−γ, a ∈ Lq(Ω). Indeed, a = aϕ−γ ϕγ ≤
‖ϕ‖γ

∞aϕ−γ ∈ Lq(Ω) and aϕ1−γ ≤ ‖ϕ‖∞aϕ−γ ∈ Lq(Ω).

c) It is well known that φ1 ∈ C1(Ω) and satisfies cd(x) ≤ φ1(x) ≤ Cd(x), x ∈ Ω, for some
constants c, C > 0 (see [31]).

Now, we observe that the natural energy functional corresponding to the problem (Pλ) is
the following:

Q(u) =
1
2

∫
Ω
(1 + 2u2)|∇u|2 + 1

γ− 1

∫
Ω

a(x)F(|u|)− λ

p + 1

∫
Ω
|u|p+1, u ∈ A(Q),

where

A(Q) =

{
u ∈ H1

0(Ω) :
∫

Ω
a(x)F(|u|) < ∞ and

∫
Ω
|u|p+1 < ∞

}
and the function F : [0, ∞) → [0, ∞] satisfies F′(s) = s−γ for s > 0 (see [1] for a complete
definition of F).

However, this functional is not well defined, because
∫

Ω u2|∇u|2dx is not finite for all
u ∈ H1

0(Ω), hence it is difficult to apply variational methods directly. In order to overcome this
difficulty, we use the following change of variables introduced by [13], namely, v := g−1(u),
where g is defined by g′(t) = 1

(1+2|g(t)|2)
1
2

in [0, ∞),

g(t) = −g(−t) in (−∞, 0].
(2.1)

We list some properties of g, whose proofs can be found in [2, 13, 22, 30].

Lemma 2.3. The function g satisfies the following properties:
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(1) g is uniquely defined, C∞ and invertible;

(2) g(0) = 0;

(3) 0 < g′(t) ≤ 1 for all t ∈ R;

(4) 1
2 g(t) ≤ tg′(t) ≤ g(t) for all t > 0;

(5) |g(t)| ≤ |t| for all t ∈ R;

(6) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(7) (g(t))2 − g(t)g′(t)t ≥ 0 for all t ∈ R;

(8) There exists a positive constant C such that |g(t)| ≥ C|t| for |t| ≤ 1 and |g(t)| ≥ C|t|1/2 for
|t| ≥ 1;

(9) g′′(t) < 0 when t > 0 and g′′(t) > 0 when t < 0;

(10) the function (g(t))1−γ for γ > 1 is decreasing for all t > 0;

(11) the function (g(t))−γ is decreasing for all t > 0;

(12) |g(t)g′(t)| < 1/
√

2 for all t ∈ R;

(13) g2(ts) ≥ tg2(s) for all t ≥ 1 and s ≥ 0.

Corollary 2.4. For each s > 0 there exists a constant K > 0 such that |tγ ln(g(t))| ≤ K for all
0 < t ≤ s.

Proof. Since h(t) = tγ ln(g(t)), t > 0, is a continuous function it is sufficient to show that
limt→0 tγ ln(g(t)) = 0. From Lemma 2.3 (8) one has

|tγ ln(g(t))| ≤ |C−γgγ(t) ln(g(t))|,

for all 0 < t ≤ 1, which implies that limt→0 tγ ln(g(t)) = 0, because limt→0 tγ ln(t) = 0 and
limt→0 g(t) = 0.

After a change of variable v = g−1(u), we define an associated problem
−∆v = [a(x)(g(v))−γ + λ(g(v))p] g′(v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(Qλ)

We say that a function v ∈ H1
0(Ω) ∩ L∞(Ω) is a weak solution (solution, for short) of (Qλ)

if v > 0 a.e. in Ω, and, for every ψ ∈ H1
0(Ω),

a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω)

and ∫
Ω
∇v∇ψ =

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ.

It is easy to see that problem (Qλ) is equivalent to our problem (Pλ), which takes u =

g(v) as its solutions. Thus, our goal is reduced to proving the existence, nonexistence and
multiplicity of solutions for the family of problems (Qλ).

In order to study problem (Qλ), one introduces the assumption:
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(H)d There are ϕ ∈ C1
0(Ω) and q > N such that ϕ > 0 on Ω and ag−γ(ϕ)g′(ϕ) ∈ Lq(Ω) .

The following lemma show the relation between the assumptions (H) and (H)d.

Lemma 2.5. Suppose that the function ϕ satisfies (H). Then ϕ satisfies (H)d. Moreover, ag1−γ(ϕ) ∈
Lq(Ω) if γ 6= 1 and a(x) ln(g(ϕ)) ∈ Lq(Ω) if γ = 1.

Proof. Let 0 < ε < 1 such that ε‖ϕ‖∞ < 1 holds. By using (3), (8), (9) and (11) of Lemma 2.3
and Corollary 2.4 (if γ = 1) we find

ag−γ(ϕ)g′(ϕ) ≤ ag−γ(εϕ)g′(εϕ) ≤ C−γε−γaϕ−γ ∈ Lq(Ω),

ag1−γ(ϕ) ≤ g(‖ϕ‖∞)ag−γ(εϕ) ≤ g(‖ϕ‖∞)ε
−γC−γaϕ−γ ∈ Lq(Ω)

and
|a(x) ln(g(ϕ))| = |a(x)ϕ−γ ϕγ ln(g(ϕ))| ≤ Ka(x)ϕ−γ ∈ Lq(Ω),

namely, ag−γ(ϕ)g′(ϕ) ∈ Lq(Ω) and ag1−γ(ϕ) ∈ Lq(Ω) and a(x) ln(g(ϕ)) ∈ Lq(Ω) if γ = 1.

To prove the nonexistence of solutions for (Qλ) we define the function m(x)=min{a(x), 1}∈
L∞(Ω) and we will denote by λ1[m] the principal eigenvalue of{

−∆u = λm(x)u in Ω,

u(x) = 0 on ∂Ω.
(A)

It is known that λ1[m] is simples, λ1[m] > 0, and the associated eigenfunction φ̃1 can be
chosen such that φ̃1 > 0 in Ω (see [14, Theorem 6.2.9]).

Next, we prove the nonexistence of positive solutions for (Qλ).

Lemma 2.6. There exists a constant λ∗ > 0 such that problem (Qλ) has no solution for all λ ∈
(λ∗, ∞).

Proof. Let us start by defining the function jλ(t) = (g−γ(t)g′(t) + λgp(t)g′(t))/t for t > 0.
Using (4) of Lemma 2.3 we have that

jλ(t) ≥
g1−γ(t)

2t2 + λ
gp+1(t)

2t2 , t > 0.

We now distinguish two cases:

Case γ > 1. From (5) and (8) of Lemma 2.3 we get

jλ(t) ≥


t−1−γ

2
+ λ

Cp+1tp−1

2
if 0 < t ≤ 1,

t−1−γ

2
+ λ

Cp+1t(p−3)/2

2
if t ≥ 1.

(2.2)

In order to find a lower bound for the function jλ we observe that the function

f̃ (t) =
t−1−γ

2
+ λ

Cp+1tp−1

2
, t > 0,

has a global minimizer

tλ =

[
(1 + γ)

λ(p− 1)Cp+1

] 1
p + γ ,
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such that tλ < 1 for λ large enough and

min
t>0

f̃ (t) = f̃ (tλ) =
1
2

[
λ(p− 1)Cp+1

1 + γ

] 1 + γ

p + γ
(

p + γ

p− 1

)
. (2.3)

Hereafter, we fix λ such that tλ < 1. Then, by using (2.2) and (2.3), we infer that

min
t>0

jλ(t) ≥ min


1
2

[
λ(p− 1)Cp+1

1 + γ

] 1 + γ

p + γ
(

p + γ

p− 1

)
, λ

Cp+1

2


and as a consequence there exists λ∗ such that

jλ∗(tλ∗) := min
t>0

jλ∗(t) ≥ λ1[m]. (2.4)

Case γ ≤ 1. From (8) of Lemma 2.3 we get

jλ(t) ≥


C1−γt−1−γ

2
+ λ

Cp+1tp−1

2
if 0 < t ≤ 1,

C1−γt(−3−γ)/2

2
+ λ

Cp+1t(p−3)/2

2
if t ≥ 1.

(2.5)

In order to find a lower bound for the function jλ we observe that the function

h̃(t) =
C1−γt−1−γ

2
+ λ

Cp+1tp−1

2
, t > 0,

has a global minimizer

tλ =

[
(1 + γ)

λ(p− 1)Cp+γ

] 1
p + γ ,

such that tλ < 1 for λ large enough and

min
t>0

h̃(t) = h̃(tλ) =
C2

2

[
λ(p− 1)

1 + γ

] 1 + γ

p + γ
[

p + γ

p− 1

]
. (2.6)

Hereafter, we fix λ such that tλ < 1. Then, by using (2.5) and (2.6), we infer that

min
t>0

jλ(t) ≥ min

C2

2

[
λ(p− 1)

1 + γ

] 1 + γ

p + γ
(

p + γ

p− 1

)
, λ

Cp+1

2


and as a consequence there exists λ∗ such that

jλ∗(tλ∗) := min
t>0

jλ∗(t) ≥ λ1[m]. (2.7)

Now, arguing by contradiction, we suppose that for some λ > λ∗ problem (Qλ) has a
solution vλ, where λ∗ is defined in (2.4) (if γ > 1) and (2.7) (if γ ≤ 1). By taking φ̃1 as a test
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function in the equation satisfied by vλ and vλ in the equation satisfied by φ̃1 we obtain∫
(a(x)g−γ(vλ) + λ∗gp(vλ))g′(vλ)φ̃1 ≥

∫
m(x)(g−γ(vλ) + λ∗gp(vλ))g′(vλ)φ̃1

≥
∫

m(x)jλ∗(tλ∗)vλφ̃1

≥
∫

λ1[m]m(x)vλφ̃1

=
∫
∇φ̃1∇vλ

=
∫
(a(x)g−γ(vλ) + λgp(vλ))g′(vλ)φ̃1

and hence λ∗ ≥ λ, which is impossible by the choice of λ. By virtue of the relation between
(Pλ) and (Qλ) we deduce that problem (Pλ) has no solution for λ > λ∗.

Now, we define the notions of subsolution and supersolution and prove a sub-supersolution
theorem.

Definition 2.7. We say that v is a subsolution of problem (Qλ) if v ∈ H1
0(Ω) ∩ L∞(Ω), v > 0

in Ω, a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω) and∫
Ω
∇v∇ψ ≤

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω. Similarly, v ∈ H1

0(Ω) ∩ L∞(Ω), v > 0 in Ω, is a supersolution
of (Qλ) if a(x)(g(v))−γg′(v)ψ, (g(v))pg′(v)ψ ∈ L1(Ω) and∫

Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω.

Theorem 2.8. Let v and v be a subsolution respectively a supersolution of problem (Qλ) such that
v ≤ v in Ω. Then there exists a solution v ∈ H1

0(Ω) ∩ L∞(Ω) of (Qλ) such that v ≤ v ≤ v in Ω.

Proof. We define a truncated function g̃ : Ω×R→ R by letting,

g̃(x, t) =


gp(v(x))g′(v(x)) if t ≤ v(x),

gp(t)g′(t) if v(x) ≤ t ≤ v(x),

gp(v(x))g′(v(x)) if v(x) ≤ t.

Clearly, g̃ is a Carathéodory function. Moreover, (3) and (5) of Lemma 2.3 imply that

|g̃(x, t)| ≤ |v(x)|p ≤ ‖v‖p
∞ =: c, (2.8)

for all (x, t) ∈ Ω × R. We denote by G̃(x, t) =
∫ t

0 g̃(x, s)ds the primitive of g̃ such that
G̃(x, 0) = 0.

Now, we consider the auxiliary singular elliptic problem
−∆v = a(x)(g(v))−γg′(v) + λg̃(x, v) in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(Aλ)
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We will show that problem (Aλ) has a solution v such that v ≤ v ≤ v in Ω. Thus, from
definition of g̃ we obtain that v is a solution of (Qλ). Define the function G as it follows:
if 0 < γ < 1, G(t) = g1−γ(|t|)

1−γ and t ∈ R,
if γ = 1,

G(t) =

{
ln g(t), if t > 0,

+∞, if t = 0,

if γ > 1,

G(t) =

{
g1−γ(t)

1−γ , if t > 0,

+∞, if t = 0.

We can associate to problem (Aλ) the following energy functional

Iλ(v) =
1
2
‖v‖2 −

∫
Ω

a(x)G(|v|)− λ
∫

Ω
G̃(x, v), (2.9)

for every v ∈ D, where

D =

{
v ∈ H1

0(Ω) :
∫

Ω
a(x)G(|v|) ∈ R

}
(2.10)

is the effective domain of Iλ. As we known, the functional Iλ fails to be Gâteaux differentiable
because of the singular term, then we can not apply the critical point theory for functionals of
class C1.

The assumption (H) and Lemmas 2.1 and 2.5 imply that aG(φ1) ∈ Lq(Ω). In particular, one
has φ1 ∈ D and hence D 6= ∅. Then, using (2.8) and arguing as in the proof of Theorems 1.1
and 1.2 of [1] we can show that there exists a solution v of (Aλ) and it satisfies

Iλ(v) = inf
z∈D

Iλ(z).

It remains to check that v ≤ v ≤ v in Ω. We set (v− v)− = max {−(v− v), 0}. Using that
v is a subsolution and v is a solution, we have∫

Ω
∇v∇(v− v)− ≤

∫
Ω

a(x)(g(v))−γg′(v)(v− v)− + λ
∫

Ω
(g(v))pg′(v)(v− v)−,

∫
Ω
∇v∇(v− v)− =

∫
Ω

a(x)(g(v))−γg′(v)(v− v)− + λ
∫

Ω
g̃(x, v)(v− v)−,

and applying (9), (10) and (11) of Lemma 2.3, we find

−
∫

Ω
|∇(v− v)−|2 ≥

∫
{v<v}

a(x)((g(v))−γg′(v)− (g(v))−γg′(v))(v− v)−

+ λ
∫
{v<v}

(g̃(x, v)− (g(v))pg′(v))(v− v)−

≥ λ
∫
{v<v}

(g̃(x, v)− (g(v))pg′(v))(v− v)−

= λ
∫
{v<v}

((g(v))pg′(v)− (g(v))pg′(v))(v− v)−

= 0,

namely ‖(v− v)−‖ = 0, which means that v ≤ v in Ω.
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Similarly, setting (v− v)+ = max {v− v, 0} and using that v is a supersolution and v is a
solution, jointly with (9), (10) and (11) of Lemma 2.3, we get∫

Ω
|∇(v− v)+|2 ≤

∫
{v<v}

a(x)((g(v))−γg′(v)− (g(v))−γg′(v))(v− v)+

+ λ
∫
{v<v}

(g̃(x, v)− (g(v))pg′(v))(v− v)+

≤ λ
∫
{v<v}

(g̃(x, v)− (g(v))pg′(v))(v− v)+

= λ
∫
{v<v}

((g(v))pg′(v)− (g(v))pg′(v))(v− v)+

= 0,

namely ‖(v − v)+‖ = 0, which means that v ≤ v in Ω. This completes the proof of the
theorem.

Remark 2.9.

a) Arguing as in the proof of Lemmas 2.1 and 2.5 we can show that int(C1
0(Ω)+) ⊂ D (see

(2.10)). Hence it makes sense to consider the local minimum obtained in Lemma 4.2,
because vλ ∈ int(C1

0(Ω)+) ⊂ D.

b) If 0 < γ < 1 holds, then Iλ(v) < 0. Indeed, applying Lemma 2.6 (8) we obtain

Iλ(v) ≤ Iλ(tφ1) ≤
t2

2
‖φ1‖2 − C1−γt1−γ

1− γ

∫
Ω

a(x)φ1−γ
1 < 0,

provided 0 < t < 1 is small enough.

The following lemma shows the existence of a subsolution of (Qλ) for all λ > 0.

Lemma 2.10. If v0 ∈ H1
0(Ω) is the unique weak solution of (Q0), then v0 ∈ C1

0(Ω) and v0(x) ≥
Cd(x) in Ω for some constant C > 0. Moreover, a(x)(g(v0))−γg′(v0) ∈ Lq(Ω) and v0 is a subsolu-
tion of (Qλ) for all λ > 0.

Proof. From Lemma 2.1 and Remark 2.2 b) one has a(x)φ1−γ
1 ∈ Lq(Ω), q > 1, and hence, the

existence of a unique weak solution v0 ∈ H1
0(Ω) of (Q0) follows from Theorem 1.3 in [2].

Now we want to show that v0 ∈ C1
0(Ω). Using Theorem 3 of Brezis–Nirenberg [10] there

exist constants c1, c2 > 0 such that v0(x) ≥ c2d(x) ≥ c1φ1(x) in Ω and c1φ1(x) < 1 in Ω. By
Lemma 2.3 (3), (8), (11) and Lemma 2.1,

a(x)(g(v0))
−γg′(v0) ≤ C−γc−γ

1 a(x)φ−γ
1 ∈ Lq(Ω),

that is, a(x)(g(v0))−γg′(v0) ∈ Lq(Ω) with q > N. Thus, by elliptic regularity, v0 ∈ W2,q
0 (Ω),

and then by the Sobolev embedding theorem we have v0 ∈ C1
0(Ω). Finally, from the fact that

v0 is a solution of (Q0) and v0 ∈ C1
0(Ω) one deduces that v0 is a subsolution of (Qλ) for all

λ > 0. This completes the proof.

We end this section with the following lemma.



Positive solutions for singular quasilinear problems 13

Lemma 2.11. Let v ∈ H1
0(Ω), v > 0 in Ω, and suppose that∫

Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ C1
0(Ω), ψ ≥ 0, holds. Then∫

Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, holds. In particular, v ≥ v0 in Ω, where v0 is the unique solution

of (Q0).

Proof. Let ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, then from the proof of Theorem 4.4 of [12] there exists

ψn ∈ C∞
0 (Ω), ψn ≥ 0 such that ψn → ψ in H1

0(Ω) and ψn → ψ a.e. in Ω. Hence,∫
Ω
∇v∇ψn ≥

∫
Ω

a(x)(g(v))−γg′(v)ψn + λ
∫

Ω
(g(v))pg′(v)ψn,

and using the Fatou lemma we deduce that∫
Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

proving the first statement of the lemma.
It remains to show that v ≥ v0 in Ω. For this, we take (v− v0)− as a test function in the

equation satisfied by v0 and in the inequality satisfied by v, and arguing as in Theorem 2.8
one finds v ≥ v0 in Ω. The proof is complete.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In the rest of this paper we will use the
same notation introduced in the previous section.

Let us define

L = {λ > 0 : problem (Qλ) has at least one solution}
= {λ > 0 : problem (Pλ) has at least one solution}

and set
Λ = supL.

We start by proving the following lemma.

Lemma 3.1. The set L is nonempty and Λ is finite.

Proof. Let v = v0 and consider the problem
−∆v = a(x)(g(v))−γg′(v) + 1 in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω.

(T)

By using Lemma 2.10 we infer that a(x)(g(v))−γg′(v) + 1 ∈ Lq(Ω). Therefore problem (T) has
a solution v ∈W2,q(Ω) and by the Sobolev embedding theorem, v ∈ C1

0(Ω). Moreover,

−∆v ≥ a(x)(g(v))−γg′(v) = −∆v in Ω,
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which implies that v ≥ v in Ω. From this and Lemmas 2.3 (9), (11) and 2.10 we get that∫
Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), ψ ≥ 0 in Ω, and for λ > 0 satisfying λ‖(g(v))pg′(v)‖∞ ≤ 1. For such

values of λ, we can apply Theorem 2.8 to deduce the existence of a solution v of (Qλ) such
that v ≤ v ≤ v in Ω (and consequently v ∈ L∞(Ω)). Therefore L 6= ∅.

By Lemma 2.6 we obtain that Λ is finite. The proof is complete.

Following [19] we introduce

λ∗ = sup
v∈S

inf
ψ∈Φ
{L(v, ψ)} (3.1)

where

L(v, ψ) :=

∫
Ω∇v∇ψ−

∫
Ω a(x)(g(v))−γg′(v)ψ∫

Ω(g(v))pg′(v)ψ

is the extended functional and

Φ =
{

ψ ∈ C1
0(Ω)\{0} : ψ ≥ 0 in Ω

}
,

S =
{

v ∈ H1
0(Ω) ∩ L∞(Ω) : v ≥ C(v)d(x) in Ω

}
,

where 0 < C(v) < ∞ is a positive constant which can depend on v. If v ∈ S then v ≥ kφ1 in Ω
for some k > 0 (see Remark 2.2 c)), and from Lemmas 2.1, 2.3 and 2.5 it follows that L is well
defined.

Some properties of λ∗ are stated in the following theorem.

Theorem 3.2. The following properties hold true:

a) 0 < λ∗ < ∞.

b) λ∗ = Λ.

Proof. a) From Lemma 3.1 there exist λ > 0 and v ∈ H1
0(Ω) ∩ L∞(Ω), v > 0 in Ω, such that∫

Ω
∇v∇ψ =

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ H1
0(Ω), which together with Theorem 3 of Brezis–Nirenberg [10] implies that v ∈ S

and 0 < λ = L(v, ψ) for all ψ ∈ Φ. As a consequence we get

0 < λ = inf
ψ∈Φ
{L(v, ψ)} ≤ λ∗.

To prove that λ∗ < ∞, we argue by contradiction. Assume that λ∗ = ∞. Then, by the
definition of λ∗ there exists v ∈ S such that Λ < λ := infψ∈Φ {L(v, ψ)}, that is,∫

Ω
∇v∇ψ ≥

∫
Ω

a(x)(g(v))−γg′(v)ψ + λ
∫

Ω
(g(v))pg′(v)ψ,

for all ψ ∈ Φ. By using Lemma 2.11 we deduce that v is a supersolution of (Qλ) and v ≥ v0 in
Ω. Moreover, from Lemma 2.10 one has that v0 is a subsolution of (Qλ). As a consequence we
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can apply Theorem 2.8, with v = v0 and v = v, to deduce the existence of a solution of (Qλ),
which implies λ ≤ Λ, contradicting the fact that λ > Λ. Therefore λ∗ < ∞.

b) Let v ∈ S such that 0 < λ = infψ∈Φ {L(v, ψ)}. Arguing as in a) we can prove
that problem (Qλ) has a solution, namely, λ ∈ L and since λ is arbitrary, we have λ∗ =

supv∈S infψ∈Φ {L(v, ψ)} ≤ Λ. We claim that λ∗ = Λ. Otherwise, λ∗ < Λ and by the definition
of Λ there exists λ > λ∗ such that problem (Qλ) has a solution v. Again, arguing as in a) we
find that v ∈ S and λ = infψ∈Φ {L(v, ψ)} ≤ λ∗, contradicting the fact that λ > λ∗. Therefore
λ∗ = Λ. This finishes the proof.

Remark 3.3. We will compare parameter λ∗ with parameters ε0 and ε1 obtained in Theorems
1.2 and 1.3 of [29]. First, note that when h(x, t) = λ|t|r−1t the hypothesis (h2) in [29] is
satisfied with b(x) := λ, C = 1 and in our notation r − 1 = p. Hence b(x) := λ is the
parameter and problem (Qλ) (or equivalently problem (Pλ)) has a solution for all 0 < λ ≤ ε0.
As a consequence, by the definition of Λ = λ∗ (see Theorem 3.2), one has ε0 ≤ λ∗. Let us
remark that ε1 ≤ ε0, because one of the solutions obtained in Theorem 1.3 is the same as in
Theorem 1.2 (both theorems mentioned here are from [29]).

We claim that ε0 < λ∗. To show this, we will use some notations and results obtained in
Lemma 2.3 of [29]. Let v, v ∈ C1

0(Ω) be the sub and supersolution, respectively, obtained in
Lemma 2.3 of [29]. Then, 0 < v ≤ v in Ω and v satisfies

−∆v = a(x)(g(v))−γg′(v) + 2C in Ω,

v > 0 in Ω,

v(x) = 0 on ∂Ω,

(F)

which together with Theorem 3 of Brezis–Nirenberg [10] implies that v ∈ S.
Moreover, ε0 satisfies (see end of proof Lemma 2.3 of [29])

1− ε0(g(v))p ≥ 0

and since 0 < g′(t) ≤ 1 for all t > 0, this implies

ε0‖(g(v))pg′(v)‖∞ ≤ 1. (3.2)

Let us evaluate L(v, ψ), ψ ∈ Φ. From (F), v ≤ v in Ω and Lemma 2.3 (9), (11) we get

L(v, ψ) =

∫
Ω∇v∇ψ−

∫
Ω a(x)(g(v))−γg′(v)ψ∫

Ω(g(v))pg′(v)ψ

=

∫
Ω a(x)(g(v))−γg′(v)ψ−

∫
Ω a(x)(g(v))−γg′(v)ψ + 2C

∫
Ω ψ∫

Ω(g(v))pg′(v)ψ

≥
2C
∫

Ω ψ

‖(g(v))pg′(v)‖∞
∫

Ω ψ
,

whence
L(v, ψ) ≥ 2C

‖(g(v))pg′(v)‖∞
.

Since C = 1 and v ∈ S, this implies

λ∗ = sup
v∈S

inf
ψ∈Φ
{L(v, ψ)} ≥ inf

ψ∈Φ
{L(v, ψ)} ≥ 2

‖(g(v))pg′(v)‖∞
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and therefore
λ∗‖(g(v))pg′(v)‖∞ > 1. (3.3)

From λ∗ ≥ ε0, (3.2) and (3.3) one deduces that ε1 ≤ ε0 < λ∗.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let us show that problem (Qλ) has a solution for λ ∈ (0, λ∗) and no
solution for λ ∈ (λ∗, ∞), where λ∗ is defined in (3.1). Let λ ∈ (0, λ∗). Then, by the definition
of λ∗, there exists z ∈ S such that λ ≤ L(z, ψ) for all ψ ∈ Φ. We deduce from this inequality
and Lemma 2.11 that z is a supersolution of (Qλ) with z ≥ v0 in Ω. Applying Theorem 2.8
with v = v0 and v = z we obtain that problem (Qλ) has a solution vλ with v ≤ vλ ≤ v in Ω.
To show that vλ ∈ C1

0(Ω) we follow [2]. By Lemma 2.3 (3), (5), (9), (11) and Lemma 2.10 we
infer

a(x)g−γ(vλ)g′(v) ≤ a(x)g−γ(v)g′(v) ∈ Lq(Ω)

and
gp(vλ)g′(v) ≤ |v|p ≤ ‖v‖p

∞ ∈ L∞(Ω)

and as a consequence there exist z1, z2 ∈ C1,α
0 (Ω), for some α ∈ (0, 1), satisfying∫

Ω
∇z1∇ψ =

∫
Ω

a(x)(g(vλ))
−γg′(vλ)ψ and

∫
Ω
∇z2∇ψ = λ

∫
Ω
(g(vλ))

pg′(vλ)ψ,

for all ψ ∈ H1
0(Ω). From this we get∫

Ω
∇vλ∇ψ =

∫
Ω
∇z1∇ψ +

∫
Ω
∇z2∇ψ,

for all ψ ∈ H1
0(Ω), which implies vλ = z1 + z2, and hence vλ ∈ C1,α

0 (Ω). Furthermore, by the
strong maximum principle and the Hopf lemma we find that vλ ∈ int(C1

0(Ω)+).
Finally, from Theorem 3.2 we have λ∗ = Λ and by the definition of Λ problem (Qλ) has no

solution for λ > λ∗ = Λ. This completes the proof of the theorem.

4 Proof of Theorem 1.2

In this section we are going to prove Theorem 1.2. In order to do this, we adapt the arguments
carried out in [4]. From now on, we will assume (H)∞ and 3 < p < 22∗ − 1 hold. Proceeding
as in Section 1 we can prove that:

• aφ
−1−γ
1 , aφ

−γ
1 ∈ L∞(Ω).

• ag−1−γ(ϕ)g′(ϕ), ag−1−γ(φ1)g′(φ1) ∈ L∞(Ω) and ag1−γ(ϕ) ∈ L∞(Ω) if γ 6= 1, and
a(x) ln(g(ϕ)) ∈ L∞(Ω) if γ = 1.

• if vλ is the solution obtained in Theorem 1.1, then

a(x)g−γ(vλ)g′(vλ) ∈ L∞(Ω). (4.1)

We start by defining the functional

Jλ(v) =
1
2
‖v‖2 −

∫
Ω

a(x)G(|v|)− λ

p + 1

∫
Ω

gp+1(v), v ∈ D. (4.2)

It is worth recalling that int(C1
0(Ω)+) ⊂ D (see (2.10) and Remark 2.9 ). The functional Jλ fails

to be Fréchet differentiable in H1
0(Ω) because of the singular term, then critical point theory

could not be applied to obtain the existence of solutions directly.
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Remark 4.1. Let (H) and 0 < p < 3 hold. Denote by D+ = {u ∈ D : u ≥ 0 a.e. in Ω}. Then,
by Lemma 2.5 one has D+ 6= ∅. The arguments carried out in [1, 2] can be adapted to prove
that problem (Pλ) has at least one solution for all λ ∈ R.

a) Assume that λ ≥ 0. By Lemma 2.3 (6)

Jλ(v) ≥
1
2
‖v‖2 −

∫
Ω

a(x)G(|v|)− λ2
p + 1

4
p + 1

∫
Ω
|v|

p + 1
2

≥ 1
2
‖v‖2 −

∫
Ω

a(x)G(|v|)− C‖v‖
p + 1

2 ,

for all v ∈ D+ and for some constant C > 0. Hence, since 1/2 < (p + 1)/2 < 2, we
argue in a similar way to the proof of Lemma 2.1 of [1] to show that Jλ is coercive on D+

and there exists vλ ∈ D+ such that

Jλ(vλ) = inf
v∈D+

Jλ(v).

Finally, considering the cases γ ≥ 1 and 0 < γ < 1 respectively, we argue in a similar
way to the first part of the proof of Theorems 1.1 and 1.2 of [1] to show that vλ is a
solution of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

For λ ≤ 0 we get

Jλ(v) ≥
1
2
‖v‖2 −

∫
Ω

a(x)G(|v|)

for all v ∈ D+. We argue in the same way as in the case λ ≥ 0 to show that there exists
a solution vλ of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

b) We define the following constraint sets

N1 =

{
v ∈ D+ : ‖v‖2 −

∫
Ω
(g(v))pg′(v)v ≥

∫
Ω

a(x)(g(v))−γg′(v)v
}

and

N2 =

{
v ∈ D+ : ‖v‖2 −

∫
Ω
(g(v))pg′(v)v =

∫
Ω

a(x)(g(v))−γg′(v)v
}

.

Since 1 < p + 1 < 4, by Lemma 2.3 (6) we have limt→∞ Jλ(tv) = ∞ for all v ∈ D+.
Moreover, limt→0+ Jλ(tv) = ∞ if γ ≥ 1 and limt→0+ Jλ(tv) = 0 if 0 < γ < 1. Therefore,
for all v ∈ D+ there exists a t(v) > 0 such that Jλ(t(v)v) = inft>0 Jλ(tv) and t(v)v ∈ N2.
Using this fact, Lemma 2.3 (6) and that 1 < p + 1 < 4 we show that Jλ is coercive on
N1 and there exists vλ ∈ N1 such that Jλ(vλ) = infv∈N1 Jλ(v) = infv∈N2 Jλ(v). Finally, we
argue in a similar way to the first part of the proof of Theorem 1.1 of [2] to show that vλ

is a solution of (Qλ) (and consequently uλ = g(vλ) is a solution of (Pλ)).

In this section, we denote by Iλ the functional defined in (2.9) of Theorem 2.8.
An important property of the solution obtained in Theorem 1.1 is the following.

Lemma 4.2. Let 0 < λ < λ∗. If vλ is the solution of (Qλ) obtained in Theorem 1.1, then vλ is a local
minimum of Jλ in the C1

0(Ω) topology.
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Proof. Without loss of generality, we can assume that v is a solution of (Qµ) for some µ ∈
(λ, λ∗). Hence, arguing as in Theorem 1.1 one has v ∈ C1

0(Ω) and by the strong maximum
principle and the Hopf lemma we infer that v ∈ int(C1

0(Ω)+). Now, the proof is based on the
following claims.
Claim 1. v− vλ ∈ int(C1

0(Ω)+). We have

−∆(v− vλ) ≥ a(x)((g(v))−γg′(v)− (g(vλ))
−γg′(vλ)) + λ(g(v))pg′(v)− (g(vλ))

pg′(vλ))

and by the mean value theorem there exist measurable functions θ1(x) and θ2(x) such that
vλ(x) ≤ θ1(x), θ2(x) ≤ v(x) for all x ∈ Ω and

−∆(v− vλ) ≥ a(x)((g(θ1(x)))−γg′(θ1(x)))′(v(x)− vλ(x)) (4.3)

+ λ((g(θ2(x))))pg′(θ2(x))))′(v(x)− vλ(x)).

From the definition of g′ and Lemma 2.3 (3), it follows that

(g−γ(t)g′(t))′ ≥ −g−1−γ(t)(γ + 2g2(t)), t > 0, (4.4)

|(gp(t)g′(t))′| ≤ pgp−1(t) + 2gp+1(t), t > 0,

hold. Then, again by Lemma 2.3 (3), (11) one has

(g−γ(θ1(x))g′(θ1(x)))′ ≥ −g−1−γ(vλ(x))(γ + 2g2(‖v‖∞)),

|(gp(θ2(x))g′(θ2(x)))′| ≤ pgp−1(‖v‖∞) + 2gp+1(‖v‖∞),

for all x ∈ Ω. We set

c1 = ‖ag−1−γ(vλ)‖∞(γ + 2g2(‖v‖∞)), c2 = pλgp−1(‖v‖∞) + 2λgp+1(‖v‖∞)

and c = c1 + c2. With these estimates and definitions, in view of (4.3), we get

−∆(v− vλ) ≥ (−c1 − c2)(v− vλ) = −c(v− vλ)

that is
−∆(v− vλ) + c(v− vλ) ≥ 0 in Ω,

and since v − vλ 6= 0, we can apply Theorem 3 of [10] to deduce the existence of constants
c3, c4 > 0 such that

v− vλ ≥ c3d(x) ≥ c4φ1(x) in Ω.

As a consequence we obtain

∂(v− vλ)

∂ν
≤ c4

∂φ1

∂ν
< 0 on ∂Ω,

which jointly with v− vλ > 0 in Ω means that v− vλ ∈ int(C1
0(Ω)+), and this proves Claim 1.

Claim 2. vλ − v ∈ int(C1
0(Ω)+). The proof is essentially equal to the one of Claim 1. Indeed,

we set
c1 = ‖ag−1−γ(v)‖∞(γ + 2g2(‖v‖∞)),

and from (4.4) and mean value theorem one has

−∆(vλ − v) ≥ a(x)((g(θ1(x)))−γg′(θ1(x)))′(vλ − v) + λ(g(vλ))
pg′(vλ)

≥ −c1(vλ − v)
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in Ω, because v(x) ≤ θ1(x) ≤ vλ(x), and since vλ − v 6= 0, we can apply Theorem 3 of [10] to
deduce the existence of constants c3, c4 > 0 such that

vλ − v ≥ c3d(x) ≥ c4φ1(x) in Ω.

As a consequence we obtain

∂(vλ − v)
∂ν

≤ c4
∂φ1

∂ν
< 0 on ∂Ω,

which jointly with vλ − v > 0 in Ω means that vλ − v ∈ int(C1
0(Ω)+), and this proves Claim 2.

Claim 3. There exists a ball B = Bε(vλ) in the C1
0(Ω) topology satisfying

B ⊂ [v, v] :=
{

v ∈ C1
0(Ω) : v ≤ v ≤ v in Ω

}
.

From Claims 1 and 2 there exists ε > 0 such that the balls B1 = Bε(v− vλ), B2 = Bε(vλ − v) ⊂
int(C1

0(Ω)+). We define B = Bε(vλ). Let v ∈ B. Notice that

v− B1 = Bε(vλ) and v + B2 = Bε(vλ),

and as a consequence there exist z ∈ B1, w ∈ B2 with

v + w = v = v− z,

which implies v < v < v in Ω, that is, v ∈ [v, v]. Hence B ⊂ [v, v].
We can finally complete the proof of the lemma. Let B as in Claim 3 and consider v ∈ B.

Then,

Jλ(v)− Iλ(v) = −
λ

p + 1

∫
Ω

gp+1(v) + λ
∫

Ω
G̃(x, v)

= − λ

p + 1

∫
Ω

gp+1(v) + λ
∫

Ω

∫ v(x)

0
g̃(x, t)dtdx + λ

∫
Ω

∫ v(x)

v(x)
g̃(x, t)dtdx

= − λ

p + 1

∫
Ω

gp+1(v) + λ
∫

Ω

∫ v(x)

0
gp(v(x))g′(v(x))dtdx

+ λ
∫

Ω

∫ v(x)

v(x)
gp(t)g′(t)dtdx

= λ
∫

Ω
gp(v(x))g′(v(x))v(x)dx− λ

p + 1

∫
Ω

gp+1(v(x))dx =: c

where c is a constant.
By virtue of the above equality, we obtain that vλ is a C1

0(Ω)-local minimizer of Jλ. This
finishes the proof.

Remark 4.3. Since v, v ∈ int(C1
0(Ω)+), it follows that [v, v] ⊂ int(C1

0(Ω)+) and then, by Re-
mark 2.9, Jλ(v), Iλ(v) ∈ R for all v ∈ [v, v]. Furthermore, arguing as in Lemma 2.5 we infer{

v ∈ H1
0(Ω) : v ≤ v ≤ v in Ω

}
⊂ D.

Corollary 4.4. Let B = Bε(0) + vλ be as in the proof of Lemma 4.2. Then for all v ∈ Bε(0) we have

Jλ(vλ + v+)− Jλ(vλ) ≥ 0,

holds.
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Proof. As we have seen in the proof of Lemma 4.2,

v < vλ + v < v in Ω, (4.5)

for all v ∈ Bε(0). We claim that

v < vλ + v+ < v in Ω,

for all v ∈ Bε(0). Indeed, by using (4.5) one has

v < vλ + v = vλ + v+ − v− ≤ vλ + v+ in Ω.

Now, let us show that vλ + v+ < v in Ω. Arguing by contradiction, suppose that there
exists x ∈ Ω such that vλ(x) + v+(x) ≥ v(x). Then, from vλ(x) < v(x) we infer that v(x) > 0,
and therefore v−(x) = 0. Thus, the inequality (4.5) implies

v(x) ≤ vλ(x) + v+(x) = vλ(x) + v+(x)− v−(x) = vλ(x) + v(x) < v(x),

a contradiction.
Finally, we can argue as in the proof of Lemma 4.2 to get

Jλ(vλ + v+)− Iλ(vλ + v+) = c,

where c is a constant, and since vλ + v+ ∈ H1
0(Ω), by Theorem 2.8, we deduce that

Jλ(vλ + v+)− Jλ(vλ) = Iλ(vλ + v+)− Iλ(vλ) ≥ 0,

proving the corollary.

For fixed λ ∈ (0, λ∗), we look for a second solution in the form z = w + v, where v 	 0
and w = vλ is the solution found in the preceding lemma. A straight calculation shows that v
satisfies

−∆v = a(x)((g(w + v))−γg′(w + v)− (g(w))−γg′(w)) (4.6)

+ λ((g(w + v))pg′(w + v)− (g(w))pg′(w)).

Denote by gλ(x, t) the right hand side of the preceding equation (with gλ(x, t) = 0 for t ≤ 0)
and set

Jλ(v) =
1
2
‖v‖2 −

∫
Ω

Gλ(x, v), (4.7)

where

Gλ(x, t) =
∫ t

0
gλ(x, s)ds =

{
0 if t ≤ 0,

H1(x, t) + H2(x, t) + H3(x, t) if t ≥ 0,

and

H1(x, t) = a(x)(G(w + t)− G(w)),

H2(x, t) =
λ

p + 1
(gp+1(w + t)− gp+1(w)),

H3(x, t) = −a(x)g−γ(w)g′(w)t− λ(g(w))pg′(w)t,
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for t ≥ 0.
We observe that by (H)∞, Lemma 2.3 (3), (6), (11), (12) and (4.1) one has

|gλ(x, t)| ≤ c1 + 2(p−3)/4λc2|t|(p−1)/2, (4.8)

where c1, c2 > 0 are constants which depends of ‖ag−γ(w)g′(w)‖∞, ‖w‖∞ and p. From this it
follows that Jλ ∈ C1(H1

0(Ω), R).
We shall use the Mountain Pass Theorem to prove the existence of a nontrivial solution to

(4.6). In order to do this, we need some preliminary lemmas.

Lemma 4.5. v = 0 is a local minimum of Jλ in H1
0(Ω).

Proof. We write v = v+ − v−. Using the fact that w is a solution of (Qλ) and G(x, t) = 0 for
t ≤ 0 we get

Jλ(v) =
1
2
‖v+‖2 +

1
2
‖v−‖2 −

∫
Ω

Gλ(x, v+) +
1
2
‖w + v+‖2 − 1

2
‖w + v+‖2

=
1
2
‖v−‖2 −

∫
Ω
∇w∇v+ +

∫
Ω

a(x)(g(w))−γg′(w)v+ + λ
∫

Ω
(g(w))pg′(w)v+

+
1
2
‖w + v+‖2 −

∫
Ω

a(x)G(w + v+)− λ

p + 1

∫
Ω

gp+1(w + v+)

− 1
2
‖w‖2 +

∫
Ω

a(x)G(w) +
λ

p + 1

∫
Ω

gp+1(w)

=
1
2
‖v−‖2 + Jλ(w + v+)− Jλ(w).

This and Corollary 4.4 imply that Jλ(v) ≥ 0 for all v ∈ Bε(0), where Bε(0) is as in Corollary
4.4. This proves that v = 0 is a local minimum in the C1

0(Ω) topology. Therefore, in view of
(4.8), Theorem 1 in [10] applies and v = 0 is a local minimum of Jλ in the H1

0(Ω) topology.
This finishes the proof.

Lemma 4.6. If v, w ∈ L∞(Ω) ∩ D are positive functions, then

lim
t→∞

∫
Ω

a(x)G(v + tw)

t(p+1)/2
= 0

and ∫
Ω

gp+1(v + tw) ≥ t(p+1)/2
∫

Ω
gp+1(

v
t
+ w),

for all t > 1.

Proof. First we prove the limit. We divide the proof into three cases.

Case 1. γ < 1. In this case, by Lemma 2.3 (5) one has

0 <
a(x)G(v + tw)

t(p+1)/2
=

a(x)g1−γ(v + tw)

(1− γ)t(p+1)/2
≤

a(x)(
v
t
+ w)1−γ

(1− γ)t((p+1)/2)+γ−1
≤ a(x)(v + w)1−γ

1− γ
,

for all t ≥ 1. Then taking the limit as t→ ∞ we get

a(x)G(v + tw)

t(p+1)/2
→ 0,
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and from the Lebesgue dominated convergence theorem we find

lim
t→∞

∫
Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

This proves the case 1.

Case 2. γ = 1. By Lemma 2.3 (3), (5)

a(x) ln(g(v))
t(p+1)/2

≤ a(x)G(v + tw)

t(p+1)/2
=

a(x) ln(g(v + tw))

t(p+1)/2
≤

a(x)
(v

t
+ w

)
t((p+1)/2)−1

≤ a(x)(v + w)

for all t ≥ 1, and thus∣∣∣∣ a(x)G(v + tw)

t(p+1)/2

∣∣∣∣ ≤ max {|a(x) ln(g(v))|, a(x)(v + w)} .

Again, by the Lebesgue dominated convergence theorem we have

lim
t→∞

∫
Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

Case 3. γ > 1. By Lemma 2.3 (3), (10) one has

0 <

∣∣∣∣ a(x)G(v + tw)

t(p+1)/2

∣∣∣∣ = a(x)g1−γ(v + tw)

|1− γ|t(p+1)/2
≤ a(x)g1−γ(v)
|1− γ|t(p+1)/2

≤ a(x)g1−γ(v)
|1− γ| ,

for all t ≥ 1. By the Lebesgue dominated convergence theorem one finds

lim
t→∞

∫
Ω

a(x)G(v + tw)

t(p+1)/2
= 0.

We now fix t > 1. Then, from Lemma 2.3 (13) we have

gp+1(v + tw) =
[

g2
(

t
(v

t
+ w

))](p+1)/2
≥
[
tg2
(v

t
+ w

)](p+1)/2
= t(p+1)/2gp+1

(v
t
+ w

)
,

and this implies that ∫
Ω

gp+1(v + tw) ≥ t(p+1)/2
∫

Ω
gp+1

(v
t
+ w

)
,

for all t > 1. The lemma is proved.

Lemma 4.7. Let 2 < θ < p + 1. Then, for all t ≥ 0,

a) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c− a(x)

1−γ t1−γ for some constant c ∈ R, if 0 < γ < 1;

b) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c− a(x)t + a(x) ln(g(w)) for some constant c ∈ R, if γ = 1;

c) −Gλ(x, t) + θ
p+1 gλ(x, t)t ≥ c + a(x)

1−γ g1−γ(w) for some constant c ∈ R, if γ > 1.
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Proof. For convenience of notation we write

h1(x, t) = a(x)(g(w + t))−γg′(w + t),

h2(x, t) = λ(g(w + t))pg′(w + t),

h3(x, t) = −a(x)(g(w))−γg′(w)− λ(g(w))pg′(w),

for t ≥ 0. Thus,

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t = − H1(x, t) +

θ

p + 1
h1(x, t)t

− H2(x, t) +
θ

p + 1
h2(x, t)t

− H3(x, t) +
θ

p + 1
h3(x, t)t

for t ≥ 0.
a) In this case, from Lemma 2.3 (5) we have

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) ≥ − a(x)

1− γ
g1−γ(w + t)

≥ − a(x)
1− γ

(w + t)1−γ

≥ − a(x)
1− γ

(w1−γ + t1−γ)

≥ −‖aw1−γ‖∞

1− γ
− a(x)

1− γ
t1−γ

and since p + 1 > θ,

− H3(x, t) +
θ

p + 1
h3(x, t)t =

(
1− θ

p + 1

)
(a(x)(g(w))−γg′(w) + λ(g(w))pg′(w))t ≥ 0. (4.9)

Let us observe that this inequality is valid for all γ > 0.
Now, let us estimate −H2(x, t) + θ

p+1 h2(x, t)t. From Lemma 2.3 (4) one has

−H2(x, t) +
θ

p + 1
h2(x, t)t =

λ

p + 1
(−gp+1(w + t) + gp+1(w))

+
θλ

p + 1
(g(w + t))pg′(w + t)t

≥ λ

p + 1

[
−gp+1(w + t) +

θ

2
gp+1(w + t)t

w + t
+ gp+1(w)

]
≥ λ

p + 1

[
gp+1(w + t)

(
−1 +

θ

2
t

‖w‖∞ + t

)
+ gp+1(w)

]
,

and therefore

−H2(x, t) +
θ

p + 1
h2(x, t)t > 0,

for all t > t := (2‖w‖∞)/(θ − 2).
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Moreover, for 0 ≤ t ≤ t, by using Lemma 2.3 (5) we get

−H2(x, t) +
θ

p + 1
h2(x, t)t ≥ − λ

p + 1
gp+1(w + t)

≥ − λ

p + 1
(w + t)p+1 ≥ − λ

p + 1
(‖w‖∞ + t)p+1.

By setting c1 = − λ
p+1 (‖w‖∞ + t)p+1, we have proved that

− H2(x, t) +
θ

p + 1
h2(x, t)t ≥ c1, for all t ≥ 0. (4.10)

Let us observe that this inequality is valid independent of γ > 0.
In view of the above inequalities we deduce that

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c− a(x)

1− γ
t1−γ for all t ≥ 0,

where c = − ‖aw1−γ‖∞
1−γ + c1.

b) When γ = 1, by Lemma 2.3 (5), one has the inequality

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) = −a(x) ln(g(w + t)) + a(x) ln(g(w))

≥ −a(x)(w + t) + a(x) ln(g(w))

≥ −‖aw‖∞ − a(x)t + a(x) ln(g(w)),

which combined with (4.9) and (4.10) yield

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c− a(x)t + a(x) ln(g(w))

for some constant c ∈ R.

c) Indeed, the inequality

−H1(x, t) +
θ

p + 1
h1(x, t)t ≥ −H1(x, t) = − a(x)

1− γ
g1−γ(w + t) +

a(x)
1− γ

g1−γ(w)

≥ a(x)
1− γ

g1−γ(w),

combined with (4.9) and (4.10) yield

−Gλ(x, t) +
θ

p + 1
gλ(x, t)t ≥ c +

a(x)
1− γ

g1−γ(w)

for some constant c ∈ R. This concludes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.5 u0 = 0 is a local minimizer of Jλ with respect to the
topology of H1

0(Ω). In the case where u0 is not a strict local minimizer of Jλ, we deduce the
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existence of further critical points of Jλ, and then we are done. In this way, we may assume
that

u0 = 0 is a strict local minimizer of Jλ. (4.11)

For all t > 1 we have
Jλ(tφ1) = Jλ(w + tφ1)− Jλ(w)

and by Lemma 4.6 it follows that

Jλ(tφ1) ≤
1
2
‖w + tφ1‖2 −

∫
Ω

a(x)G(w + tφ1)−
t(p+1)/2λ

p + 1

∫
Ω

gp+1
(w

t
+ φ1

)
− Jλ(w)

and using again Lemma 4.6 and the Lebesgue dominated convergence theorem we yield
limt→∞ J (tφ1) = −∞. From this and (4.11), we conclude that Jλ has the mountain pass geom-
etry (see [5, Theorem 2.1]). It remains to prove the Palais–Smale condition. Let 4 < 2θ < p+ 1.
Let vn ∈ H1

0(Ω) be such that Jλ(vn) → c (c ∈ R) and J ′λ(vn) → 0. From the former, respec-
tively the latter multiplied by θvn/(p + 1), we get

1
2
‖vn‖2 −

∫
Ω

Gλ(x, vn) = c + o(1),

o(1)‖vn‖ ≥ |
θ

p + 1
‖vn‖2 − θ

p + 1

∫
Ω

gλ(x, vn)vn| ≥
−θ

p + 1
‖vn‖2 +

θ

p + 1

∫
Ω

gλ(x, vn)vn,

and therefore (remember that Gλ(x, t) = gλ(x, t)t = 0 for t ≤ 0),

c + o(1) + o(1)‖vn‖ ≥
(

1
2
− θ

p + 1

)
‖vn‖2 +

∫
Ω
(−Gλ(x, v+n ) +

θ

p + 1
gλ(x, v+n )v

+
n ).

From this and Lemma 4.7 we deduce that

c+ o(1)+ o(1)‖vn‖ ≥



(
1
2
− θ

p + 1

)
‖vn‖2 + c|Ω| −

∫
Ω

a(x)
1− γ

(v+n )
1−γ if γ < 1,(

1
2
− θ

p + 1

)
‖vn‖2 + c|Ω| −

∫
Ω

a(x)v+n +
∫

Ω
a(x) ln(g(w)) if γ = 1,(

1
2
− θ

p + 1

)
‖vn‖2 + c|Ω|+

∫
Ω

a(x)
1− γ

g1−γ(w) if γ > 1.

Thus, in any case, by the Sobolev embedding theorem we have that the sequence {vn} is
bounded in H1

0(Ω) and a standard argument shows that, up to a subsequence, there exists
v ∈ H1

0(Ω) such that vn → v in H1
0(Ω). Therefore, the Palais–Smale condition has been

verified.
Finally, an application of the mountain pass theorem yields a nontrivial critical point v of

Jλ (see [5, heorem 2.1]) and by elliptic regularity v ∈ C1
0(Ω). Moreover, since gλ(x, t) = 0 for

t ≤ 0 one has −‖v−‖2 = 0, which implies that v 	 0 and z = w + v ∈ C1
0(Ω) is a second

solution of (Qλ). This finishes the proof of Theorem 1.2.

We end this section with the following proposition.

Proposition 4.8. Suppose that (H)∞ and 3 < p < 22∗ − 1 hold. If 0 < γ < 1, then λ∗ ∈ L.

Proof. In order to prove the proposition one uses the following properties:
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• if vλ is the solution obtained in Theorem 1.1, then Jλ(vλ) < c for some constant c > 0
independent of λ ∈ (0, λ∗). Indeed, as we have seen in the proof of Lemma 4.2,

Jλ(vλ) = Iλ(vλ) + λ
∫

Ω
gp(v(x))g′(v(x))v(x)dx− λ

p + 1

∫
Ω

gp+1(v(x))dx,

which, jointly with Remark 2.9 b), gives

Jλ(vλ) ≤ λ∗

∫
Ω

gp(v(x))g′(v(x))v(x)dx =: c.

• −gp+1(t)
p+1 + θ

p+1 gp(t)g′(t)t ≥ 0 for all t > 0 and 4 < 2θ < p + 1. Indeed, from Lemma 2.3
(4) we get

−gp+1(t)
p + 1

+
θ

p + 1
gp(t)g′(t)t ≥ gp+1(t)

p + 1

(
−1 +

θ

2

)
> 0, (4.12)

for all t > 0.

Now, let λn ∈ (0, λ∗) be an increasing sequence such that λn → λ∗ as n→ ∞ and let vn := vλn

be a solution of (Qλ) obtained in Theorem 1.1 for λ = λn. Then

Jλn(vn) =
1
2
‖vn‖2 −

∫
Ω

a(x)G(vn)−
λn

p + 1

∫
Ω

gp+1(vn) < c,

for some constant c > 0 independent of λn and

‖vn‖2 −
∫

Ω
a(x)(g(vn))

−γg′(vn)vn − λn

∫
Ω
(g(vn))

pg′(vn)vn = 0.

Thus, by using (4.12), one deduces(
1
2
− θ

p + 1

)
‖vn‖2 − 1

1− γ

∫
Ω

a(x)g1−γ(vn) +
θ

p + 1

∫
Ω

a(x)(g(vn))
−γg′(vn)vn < c,

whence, by Lemma 2.3 (3),(
1
2
− θ

p + 1

)
‖vn‖2 <

1
1− γ

∫
Ω

a(x)g1−γ(vn) + c ≤ ‖a‖∞

1− γ

∫
Ω

v1−γ
n + c.

From the previous relation it is easy to see that {vn} is bounded in H1
0(Ω). Thus, there exists

v∗ ∈ H1
0(Ω) such that, up to a subsequence, we have as n→ ∞

vn ⇀ v∗ in H1
0(Ω),

vn → v∗ a.e. in Ω.

Remember that vn ≥ v = v0 in Ω and thus, by Lemma 2.3 (9), (11),

|a(x)(g(vn))
−γg′(vn)ψ| ≤ |a(x)(g(v0))

−γg′(v0)ψ| in Ω.

Because vn is a solution of (Qλn), we have∫
Ω
∇vn∇ψ =

∫
Ω

a(x)(g(vn))
−γg′(vn)ψ + λn

∫
Ω
(g(vn))

pg′(vn)ψ,

for all ψ ∈ H1
0(Ω). Passing to the limit in the previous equality and using Lebesgue’s theorem,

we deduce that v∗ is a weak solution of (Qλ∗). Finally, we can adapt the arguments in the
proof of Theorem 1 c) in [1] to obtain v∗ ∈ C1

0(Ω). This ends the proof of the proposition.

Proposition 4.8 suggests that λ∗ ∈ L for arbitrary γ > 0. However, for γ > 1 and λ ∈
(0, λ∗) one has Jλ(v) > 0 for any solution v of (Qλ), and thus the proof of Proposition 4.8
cannot be applied to deduce that λ∗ ∈ L.
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[26] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Pairs of positive solutions for res-
onant singular equations with the p-Laplacian, Electron. J. Differential Equations 2017, No.
249, 13 pp. MR3711202

https://doi.org/10.1016/j.na.2003.09.008
https://doi.org/10.1016/j.na.2003.09.008
https://www.ams.org/mathscinet-getitem?mr=2029068
https://www.ams.org/mathscinet-getitem?mr=3524637
https://doi.org/doi 10.1016/j.jmaa.2009.10.012
https://doi.org/doi 10.1016/j.jmaa.2009.10.012
https://www.ams.org/mathscinet-getitem?mr=2564889
https://www.ams.org/mathscinet-getitem?mr=2341518
https://zbmath.org/?q=an:1181.35116
https://doi.org/10.1016/S0022-0396(02)00098-0
https://doi.org/10.1016/S0022-0396(02)00098-0
https://www.ams.org/mathscinet-getitem?mr=1964476
https://www.ams.org/mathscinet-getitem?mr=2099611
https://zbmath.org/?q=an:05054519
https://doi.org/10.1007/s10688-007-0002-2
https://www.ams.org/mathscinet-getitem?mr=2333980
https://doi.org/10.1143/JPSJ.50.3262
https://doi.org/10.1063/1.525675
https://doi.org/10.1063/1.525675
https://www.ams.org/mathscinet-getitem?mr=727767
https://www.ams.org/mathscinet-getitem?mr=3158227
https://doi.org/10.1007/s10440-016-0084-z
https://doi.org/10.1007/s10440-016-0084-z
https://www.ams.org/mathscinet-getitem?mr=3621297 
https://doi.org/10.3934/cpaa.2013.12.815
https://www.ams.org/mathscinet-getitem?mr=2982792
https://doi.org/10.3934/cpaa.2010.9.1011
https://doi.org/10.3934/cpaa.2010.9.1011
https://www.ams.org/mathscinet-getitem?mr=2610258
https://www.ams.org/mathscinet-getitem?mr=3711202


Positive solutions for singular quasilinear problems 29

[27] N. S. Papageorgius, P. Winkert, Singular p-Laplacian equations with superlinear pertur-
bation, J. Differential Equations 266(2019), No. 2–3, 1462–1487. https://doi.org/10.1016/
j.jde.2018.08.002; MR3906221

[28] B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,
Phys. Rev. E 50(1994) 687–689. https://doi.org/10.1103/PhysRevE.50.R687

[29] G. dos Santos, G. M. Figueiredo, U. B. Severo, Multiple solutions for a class of singular
quasilinear problems, J. Math. Anal. Appl. 480(2019), No. 2, 123405, 14 pp. https://doi.
org/10.1016/j.jmaa.2019.123405; MR4000087

[30] U. B. Severo, Existence of weak solutions for quasilinear elliptic equations involving the
p-Laplacian, Electron. J. Differential Equations 2008, No. 56, 1–16. MR2392960

[31] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,
Appl. Math. Optim. 12(1984), No. 3, 191–201. https://doi.org/10.1007/BF01449041;
MR768629

[32] L. L. Wang, Existence and uniqueness of solutions to singular quasilinear Schrödinger
equations, Electron. J. Differential Equations 2018, No. 38, 1–9. MR3762825

https://doi.org/10.1016/j.jde.2018.08.002
https://doi.org/10.1016/j.jde.2018.08.002
https://www.ams.org/mathscinet-getitem?mr=3906221
https://doi.org/10.1103/PhysRevE.50.R687
https://doi.org/10.1016/j.jmaa.2019.123405
https://doi.org/10.1016/j.jmaa.2019.123405
https://www.ams.org/mathscinet-getitem?mr=4000087
https://www.ams.org/mathscinet-getitem?mr=2392960
https://doi.org/10.1007/BF01449041
https://www.ams.org/mathscinet-getitem?mr=768629
https://www.ams.org/mathscinet-getitem?mr=3762825

	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Proof of Theorem 1.2

