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1 Introduction

Let Ω ⊆ RN be a bounded domain with a Lipschitz boundary ∂Ω. In this paper we study the
following double phase Dirichlet problem with gradient dependent reaction (convection){

−∆a
pu(z)− ∆qu(z) = f (z, u(z)) + E(z)|Du(z)|q−1 in Ω,

u|∂Ω = 0, u > 0, 1 < q < p.
(1.1)

Here ∆a
p denotes the weighted p-Laplace differential operator defined by

∆a
pu = div(a(z)|Du|p−2Du).

Problem (1.1) has two interesting features. The first is that in the weighted operator, the
weight a ∈ L∞(Ω) is not bounded away from zero. This means that the integrand

θ(z, x) = a(z)xp + xq ∀z ∈ Ω, ∀x ≥ 0,

which is associated with the energy functional of the differential operator exhibits unbalanced
growth, that is,

xq ≤ θ(z, x) ≤ c1[xp + xq] for all z ∈ Ω, all x ≥ 0, some c1 > 0.
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Such functionals were first examined by Marcellini [11] and Zhikov [19] in the context of
problems of the calculus of variations and of nonlinear elasticity theory. More recently Mar-
cellini and co-workers and Mingione and co-workers, produced important local regularity
results for such problems. We refer to the papers of Marcellini [12] and Baroni–Colombo–
Mingione [1] and the references therein. We also mention the recent informative survey paper
of Mingione–Rădulescu [13]. A global regularity theory (that is, regularity up to the bound-
ary), remains so far elusive and this makes double phase problems more difficult to deal with.
The second distinguishing feature of problem (1.1), is that the reaction (right hand side) of (1.1)
is gradient dependent. This makes the problem nonvariational and this eliminates the use of
minimax theorems from the critical point theory. For this reason, our approach is based on the
theory of nonlinear operators of monotone type. Variational double phase problems have been
studied recently using a variety of methods. We mention the works of Colasuonno–Squassina
[2], Gasiński–Winkert [5], Ge–Lv–Lu [7], Liu–Dai [9], Liu–Papageorgiou [10], Papageorgiou–
Rădulescu-Repovš [15], Papageorgiou–Vetro–Vetro [16]. On the other hand the study of dou-
ble phase problems with convection, is lagging behind. There are only the works of Gasiński–
Winkert [6] and Zeng-Bai-Gasiński–Winkert [18].

Finally we should mention the very recent work of Repovš–Vetro [17], who studied para-
metric, variational (that is, no convection term is presented) Dirichlet problems, driven by a
weighted (p, q)-Laplacian. However the weights in [17] are bounded away from zero and so
the differential operator in [17] exhibits balanced growth. This facilitates the analysis since for
such problems there is a global regularity theory available.

2 Mathematical background-hypotheses

The unbalanced growth of the integrand corresponding to the differential operator, leads
to a functional framework based on Musielak–Orlicz spaces. We introduce the following
conditions on the weight a(·), the coefficient E(·) and the exponents p, q, r. In what follows by
C0,1(Ω) we denote the space of locally Lipschitz functions from Ω into R.

H0: a ∈ C0,1(Ω), a 6= 0, a(z) ≥ 0 for all z ∈ Ω, E ∈ L∞(Ω), E(z) 6= 0, E(z) ≥ 0 for a.a. z ∈ Ω,
1 < q < p < N, p

q < 1 + 1
N .

Remark 2.1. The relation p
q < 1 + 1

N is standard in Dirichlet double phase problems and im-

plies p < q∗ = Nq
N−q . So the relation p ≤ r < q∗ makes sense and we have useful embeddings

of the relevant Musielak–Orlicz–Sobolev spaces.

Let θ : Ω × R+ → R+ (R+ = [0,+∞)) be the integrand θ(z, x) = a(z)xp + xq. Ev-
idently θ(·, ·) is continuous and uniformly convex in x ∈ R+. Let M(Ω) = {u : Ω →
R measurable function}. As usual we identify two such functions which differ only on a
Lebesgue-null set. The Musielak–Orlicz space Lθ(Ω) is defined by

Lθ(Ω) = {u ∈ M(Ω) : ρθ(u) < ∞},

with ρθ(·) being the modular function defined by

ρθ(u) =
∫

Ω
[a(z)|u|p + |u|q]dz.
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We equip Lθ(Ω) with the so called “Luxemburg norm” defined by

‖u‖θ = inf
[
λ > 0 : ρθ

(u
λ

)
≤ 1

]
.

Then Lθ(Ω) becomes a Banach space which is also separable and reflexive (in fact uni-
formly convex). Using Lθ(Ω) we can define the corresponding Musielak–Orlicz–Sobolev space
W1,θ(Ω) by

W1,θ(Ω) = {u ∈ Lθ(Ω) : |Du| ∈ Lθ(Ω)}.

Here Du denotes the weak gradient of u(·). We equip W1,θ(Ω) with the following norm

‖u‖1,θ = ‖u‖θ + ‖Du‖θ for all u ∈W1,θ(Ω).

Here ‖Du‖θ = ‖|Du|‖θ . Also, we define

W1,θ
0 (Ω) = C∞

0 (Ω)
‖·‖1,θ .

For this space the Poincaré inequality holds and so on W1,θ
0 (Ω) we consider the equivalent

norm
‖u‖ = ‖Du‖θ for all u ∈W1,θ

0 (Ω).

Both spaces are separable and reflexive (in fact uniformly convex).
Given u ∈W1,θ

0 (Ω), we define

u+ = max{u, 0}, u− = max{−u, 0}.

We know that u+ ∈W1,θ
0 (Ω), u = u+ − u−, |u| = u+ + u−.

We have the following useful embeddings.

Proposition 2.2. If hypotheses H0 hold, then

(a) Lθ(Ω) ↪→ Lr(Ω) and W1,θ
0 (Ω) ↪→W1,r

0 (Ω) continuously and densely for all 1 ≤ r ≤ q;

(b) W1,θ
0 (Ω) ↪→ Lr(Ω) continuously (resp. compactly) and densely for all 1 ≤ r ≤ q∗ (resp.

1 ≤ r < q∗);

(c) Lp(Ω) ↪→ Lθ(Ω) continuously and densely.

Also there is a close relation between the norm ‖ · ‖θ and the modular function ρθ(·).

Proposition 2.3. If hypotheses H0 hold, then

(a) ‖u‖θ = λ⇔ ρθ(
u
λ ) = 1;

(b) ‖u‖θ < 1 (resp. = 1,> 1)⇔ ρθ(u) < 1 (resp. = 1,> 1);

(c) ‖u‖θ < 1⇒ ‖u‖p
θ ≤ ρθ(u) ≤ ‖u‖

q
θ ;

(d) ‖u‖θ > 1⇒ ‖u‖q
θ ≤ ρθ(u) ≤ ‖u‖

p
θ ;

(e) ‖u‖θ → 0 (resp. → +∞)⇔ ρθ(u)→ 0 (resp. → +∞).
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We consider the nonlinear operators Aa
p, Aq : W1,θ

0 (Ω)→W1,θ
0 (Ω)∗ defined by

〈Aa
p(u), h〉 =

∫
Ω

a(z)|Du|p−2(Du, Dh)RN dz,

〈Aq(u), h〉 =
∫

Ω
|Du|q−2(Du, Dh)RN dz for all u, h ∈W1,θ

0 (Ω).

We set V = Aa
p + Aq : W1,θ

0 (Ω)→W1,θ
0 (Ω)∗. This operator has the following properties.

Proposition 2.4. If hypotheses H0 hold, then V(·) is bounded (that is, maps bounded sets to bounded
sets), continuous, strictly monotone (hence maximal monotone too) and of type (S)+ that is, “un

w−→ u
in W1,θ

0 (Ω) and lim supn→∞〈V(un), un − u〉 ≤ 0 imply that un → u in W1,θ
0 (Ω).′′

For details on Musielak–Orlicz spaces, we refer to the book of Harjulehto–Hästo [8].

By λ̂1(q) we denote the principal eigenvalue of (−∆q, W1,q
0 (Ω)). We know that λ̂1(q) > 0,

is simple, isolated and has the following variational characterization

λ̂1(q) = inf

[
‖Du‖q

q

‖u‖q
q

: u ∈W1,q
0 (Ω), u 6= 0

]
. (2.1)

The infimum in (2.1) is realized on the corresponding one-dimensional eigenspace. So, we
see that the elements of this eigenspace have fixed sign. By û1(q) we denote the Lq-normalized
(that is, ‖û(q)‖q = 1), positive eigenfunction corresponding to λ̂1(q). We know that û1(q) ∈
C1(Ω) and û1(q)(z) > 0 for all z ∈ Ω. For details we refer to Gasiński–Papageorgiou [4].

The hypotheses on the perturbation f (z, x) are the following:

(H1): f : Ω × R → R is a Carathéodory function (that is, for all x ∈ R, z → f (z, x) is
measurable and for a.a. z ∈ Ω, x → f (z, x) is continuous) such that f (z, 0) = 0 for
a.a. z ∈ Ω and

(i) | f (z, x)| ≤ â(z)[1 + xr−1] for a.a. z ∈ Ω, all x ≥ 0, with â ∈ L∞(Ω), p ≤ r < q∗;

(ii) there exists M > 1 such that f (z, x) ≤ 0 for a.a. z ∈ Ω, all x ≥ M;

(iii) there exists a function η ∈ L∞(Ω) such that

λ̂1(q) ≤ η(z) for a.a. z ∈ Ω, η 6≡ λ̂1(q),

η(z) ≤ lim inf
x→0+

f (z, x)
xq−1 uniformly for a.a. z ∈ Ω.

Remark 2.5. Since we look for positive solutions and the above hypotheses concern the posi-
tive semiaxis R+ = [0,+∞), without any loss of generality, we may assume that

f (z, x) = 0 for a.a. z ∈ Ω, all x ≥ 0.

On account of hypotheses H1(i), (iii), given ε > 0, we can find cε > 0 such that

f (z, x) ≥ [η(z)− ε]xq−1 − cεxr−1 for a.a. z ∈ Ω all x ≥ 0. (2.2)
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3 An auxiliary problem

The unilateral growth restriction (2.2) on f (z, ·), leads to the following auxiliary double phase
problem: {

−∆a
pu(z)− ∆qu(z) = [η(z)− ε]u(z)q−1 − cεu(z)r−1 in Ω,

u|∂Ω = 0, u > 0.
(3.1)

Proposition 3.1. If hypotheses H0 hold, then for all ε > 0 small problem (2.2) has a unique solution
u ∈W1,θ

0 (Ω) ∩ L∞(Ω), u(z) > 0 for a.a. z ∈ Ω.

Proof. Consider the C1-functional ϕε : W1,θ
0 (Ω)→ R defined by

ϕε(u) =
1
p

ρa(Du) +
1
q
‖Du‖q

q +
cε

r
‖u+‖r

r −
1
q

∫
Ω
[η(z)− ε](u+)qdz.

Here ρa(Du) =
∫

Ω a(z)|Du|pdz. Since q < p ≤ r, we see that ϕε(·) is coercive. Also since
ρa(·) is continuous, convex, exploiting the compact embedding of W1,θ

0 (Ω) into Lr(Ω) (see
Proposition 2.2), we infer that ϕε(·) is sequentially weakly lower semi-continuous. So, by the
Weierstrass–Tonelli theorem, we can find u ∈W1,θ

0 (Ω) such that

ϕε(u) = inf[ϕε(u) : u ∈W1,θ
0 (Ω)]. (3.2)

Let λ̂1 = λ̂1(q), û1 = û1(q), and t ∈ (0, 1). We have

ϕε(tû1) =
tp

p
ρa(Dû1) +

tq

q

[∫
Ω
(λ̂1 − η(z))ûq

1dz + ε

]
+

trcε

r
‖û1‖r

r.

Since û1(z) > 0 for all z ∈ Ω, hypotheses H1(iii) implies that

µ0 =
∫

Ω
[η(z)− λ̂1]û

q
1dz > 0.

So, choosing ε ∈ (0, µ0) and since p ≤ r and t ∈ (0, 1), we have

ϕε(tû1) ≤ c1tp − c2tq for some c1, c2 > 0.

Recall that q < p. So, choosing t ∈ (0, 1) even smaller if necessary, we see that

ϕε(tû1) < 0,

⇒ ϕε(u) < 0 = ϕε(0) (see(3.2)),

⇒ u 6= 0.

From (3.2) we have ϕ′ε(u) = 0,

⇒ 〈V(u), h〉 =
∫

Ω
[(η(z)− ε)uq−1 − cεur−1]hdz for all h ∈W1,θ

0 (Ω). (3.3)

Choosing h = −u− ∈W1,θ
0 (Ω) in (3.3), we obtain

ρθ(Du−) = 0 ⇒ u ≥ 0, u 6= 0.

Therefore u is a weak solution of (3.1). From Theorem 3.1 of Gasiński–Winkert [5], we have
that

u ∈W1,θ
0 (Ω) ∩ L∞(Ω).
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Moreover, Proposition 2.4 of Papageorgiou–Vetro–Vetro [16] implies that

u(z) > 0 for a.a. z ∈ Ω.

Next we show that this positive solution of (3.1) is unique. So, suppose that v ∈ W1,θ
0 (Ω)

is another positive solution of (3.1). Again we show that

v ∈W1,θ
0 (Ω) ∩ L∞(Ω), v(z) > 0 for a.a. z ∈ Ω.

Let uδ = u + δ, vδ = v + δ, δ > 0. If L∞(Ω)+ = {u ∈ L∞(Ω) : u(z) ≥ 0 for a.a. z ∈ Ω}
(the positive (order) cone of the ordered Banach space L∞(Ω)), then uδ, vδ ∈ int L∞(Ω)+.
Hence using Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–Repovš [14], we have

uδ

vδ

∈ L∞(Ω),
vδ

uδ

∈ L∞(Ω). (3.4)

We consider the integral functional j : L1(Ω)→ R = R∪ {+∞} defined by

j(u) =

{
1
p ρa(Du

1
q ) + 1

q‖Du
1
q ‖q

q if u ≥ 0, u
1
q ∈W1,θ(Ω),

+∞ otherwise.

The convexity of ρa(·) implies that j(·) is convex (see Diaz–Saá [3]). On account of (3.4), if
h = uq

δ − vq
δ ∈W1,θ(Ω) and |t| < 1 is small, we have

uq
δ + th ∈ dom j, vq

δ + th ∈ dom j,

where dom j = {u ∈ L1(Ω) : j(u) < ∞} (the effective domain of j(·)). Then using the
convexity of j(·), we see that j(·) is Gateaux differentiable at uq

δ and at vq
δ in the direction h.

Moreover, using the chain rule and the nonlinear Green’s identity (see [14, p. 34]), we have

j′(uq
δ)(h) =

1
q

∫
Ω

−∆a
puδ − ∆quδ

uq−1
δ

hdz

=
1
q

∫
Ω

[η(z)− ε]uq−1
δ − cεur−1

δ

uq−1
δ

hdz, (see (3.1)).

and

j′(vq
δ)(h) =

1
q

∫
Ω

−∆a
pvδ − ∆qvδ

vq−1
δ

hdz

=
1
q

∫
Ω

[η(z)− ε]vq−1
δ − cεvr−1

δ

vq−1
δ

hdz, (see (3.1)).

The convexity of j(·) implies the monotonicity of j′(·), Hence

0 ≤
∫

Ω
[η(z)− ε]

[
uq−1

uq−1
δ

− vq−1

vq−1
δ

]
(uq

δ − vq
δ)dz +

∫
Ω

cε

[
vr−1

vq−1
δ

− ur−1

uq−1
δ

]
(uq

δ − vq
δ)dz. (3.5)

Note that for δ ∈ (0, 1], we have∣∣∣∣∣uq−1

uq−1
δ

− vq−1

vq−1
δ

∣∣∣∣∣ |uq
δ − vq

δ| ≤ 2q [‖u‖q
∞ + ‖v‖q

∞ + 2
]

,
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[
uq−1

uq−1
δ

− vq−1

vq−1
δ

]
(uq

δ − vq
δ)→ 0 for a.a. z ∈ Ω, as δ→ 0+.

So, invoking the dominated convergence theorem, we obtain∫
Ω
[η(z)− ε]

[
uq−1

uq−1
δ

− vq−1

vq−1
δ

]
(uq

δ − vq
δ)dz→ 0 as δ→ 0+. (3.6)

Also, for δ ∈ (0, 1] we have∣∣∣∣∣ vr−1

vq−1
δ

− ur−1

uq−1
δ

∣∣∣∣∣ |uq
δ − vq−1

δ | ≤ 2q−1[‖v‖r−q
∞ + ‖u‖r−q

∞ ][‖u‖q
∞ + ‖v‖q

∞ + 2],∣∣∣∣∣ vr−1

vq−1
δ

− ur−1

uq−1
δ

∣∣∣∣∣ (uq
δ − vq

δ)→ (vr−q + ur−q)(uq − vq) for a.a. z ∈ Ω, as δ→ 0+.

Then once again the dominated convergence theorem gives

∫
Ω

cε

[
vr−1

vq−1
δ

− ur−1

uq−1
δ

]
(uq

δ − vq
δ)dz→

∫
Ω

cε

[
vr−q − ur−q] (uq − vq)dz as δ→ 0+. (3.7)

We return to (3.5), pass to the limit as δ→ 0+ and use (3.6) and (3.7). We obtain

0 ≤
∫

Ω
cε

[
vr−q − ur−q] (uq − vq)dz ≤ 0,

⇒ u = v.

This proves the uniqueness of the positive solution of (3.1).

In the next section, we will use this solution u ∈ W1,θ
0 (Ω)

⋂
L∞(Ω) of (3.1), to produce a

nontrivial positive solution for problem (1.1).

4 Positive solution

Let M > 1 be as in hypothesis H1(ii). Choose ū ≥ M > 1 big so that ‖u‖∞ < ū. We have
u < ū. Then on account of hypothesis H1(iii), we have

f (z, ū) ≤ 0 a.a. z ∈ Ω.

We introduce the truncation map τ : Lq(Ω)→ Lq(Ω) defined by

τ(u)(z) =


u(z) if u(z) < u(z);

u(z) if u(z) ≤ u(z) ≤ ū;

ū if ū < u(z).

(4.1)

Evidently τ(·) is continuous and τ(u) ∈W1,θ
0 (Ω) if u ∈W1,θ

0 (Ω).
Let N f (τ(u))(·) = f (·, τ(u)(·)) (the Nemitsky map corresponding to f ). We define

Nτ(u)(·) = N f (τ(u))(·) + E(·)|Dτ(u)|q−1 for all u ∈W1,θ
0 (Ω).

We consider the map K : W1,θ
0 (Ω)→W1,θ

0 (Ω)∗ defined by

K(u) = V(u)− Nτ(u) for all u ∈W1,θ
0 (Ω).
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Proposition 4.1. If hypotheses H0, H1 hold, then K(·) is pseudomonotone.

Proof. Consider a sequence {un}n∈N ⊆W1,θ
0 (Ω) such that{

un
w−→ u in W1,θ

0 (Ω), K(un)
w−→ u∗ in W1,θ

0 (Ω)∗,
lim supn→∞〈K(un), un − u〉 ≤ 0.

}
(4.2)

From (4.2) and since W1,θ
0 (Ω) ↪→ Lq(Ω) compactly (see Proposition 2.2), we have un → u

in Lq(Ω). This implies that τ(un) → τ(u) in Lq(Ω). Then by Krasnoselskii’s theorem (see
Gasiński–Papageorgiou [4], p. 407), we have

N f (τ(un))→ N f (τ(u)) in Lq′(Ω)

(
1
q
+

1
q′

= 1
)

. (4.3)

Moreover, we have

{Dτ(un)}n∈N ⊆ Lθ(Ω, RN) ↪→ Lq(Ω, RN) is bounded (see Proposition 2.2).

Therefore
〈E(·)|Dτ(un)|q−1, un − u〉 =

∫
Ω

E(z)|Dτ(un)|q−1(un − u)dz→ 0. (4.4)

From (4.2), (4.3) and (4.4), it follows that

lim sup
n→∞

〈V(un), un − u〉 ≤ 0 ⇒ un → u in W1,θ
0 (Ω) (see Proposition 2.4).

Then we have
V(un)→ V(u) in W1,θ

0 (Ω)∗,

N f (τ(un))→ N f (τ(u)) in Lq′(Ω) ↪→W1,θ
0 (Ω)∗ (see Gasiński–Papageorgiou [4], p. 141),

E(·)|Dτ(un)|q−1 → E(·)|Dτ(u)|q−1 in Lq′(Ω) ↪→W1,θ
0 (Ω)∗.

So, finally we have
u∗ = V(u)− Nτ(u) = K(u) (see (4.2)),

〈K(un), un〉 → 〈K(u), u〉.

This means that K(·) is generalized pseudomonotone and by Proposition 3.2.49, p. 333, of
Gasiński–Papageorgiou [4], we conclude that K(·) is pseudomonotone.

Proposition 4.2. If hypotheses H0, H1 hold, then the map K(·) is strongly coercive (see [14], p. 130).

Proof. For every u ∈W1,θ
0 (Ω) with ‖u‖ > 1, we have

〈K(u), u〉 = ρθ(Du)−
∫

Ω
f (z, τ(u))udz−

∫
Ω

E(z)|Dτ(u)|q−1udz

≥ c3‖u‖q − c4‖u‖q−1 for some c3, c4 > 0 (see Proposition 2.3 and (4.1))

⇒ K(·) is strongly coercive.

Now we are ready for the existence theorem.

Theorem 4.3. If hypotheses H0 and H1 hold, then problem (1.1) has a positive solution u0 ∈
W1,θ

0 (Ω)
⋂

L∞(Ω) with u0(z) > 0 for a.a. z ∈ Ω.
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Proof. Propositions 4.1 and 4.2 together with Theorem 3.2.52, p. 336, of Gasiński–Papageorgiou
[4], imply that K(·) is surjective. So we can find u0 ∈W1,θ

0 (Ω) such that

K(u0) = 0.

Then we have

〈V(u0), (u− u0)
+〉 ≥

∫
Ω

f (z, u)(u− u0)
+dz (see (4.1) and recall E ≥ 0)

≥
∫

Ω

(
[η(z)− ε]uq−1 − cεur−1

)
(u− u0)

+dz (see (2.2))

= 〈V(u), (u− u0)
+〉 (see Proposition 4)

⇒ u ≤ u0 (see Proposition 3).

On the other hand, we have

〈V(u0), (u0 − ū)+〉 =
∫

Ω
f (z, ū)(u0 − ū)+dz (see (4.1) and note Dū = 0)

≤ 0 = 〈V(ū), (u0 − ū)+〉 (see H1(ii))

⇒ u0 ≤ ū (see Proposition 3).

So we have proved

u0 ∈ [u, ū] = {u ∈W1,θ
0 (Ω) : u(z) ≤ u(z) ≤ ū for a.a. z ∈ Ω},

⇒ u0 ∈W1,θ
0 (Ω) ∩ L∞(Ω) is a positive solution of (1.1).

Moreover, we have
0 < u(z) ≤ u0(z) for a.a. z ∈ Ω.
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