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1 Introduction

Let O ¢ RN (N > 2) be a smooth bounded connected domain in real N-dimensional Eu-
clidean space. We are concerned with the existence of weak solutions of the following Neu-
mann problem of semilinear elliptic systems

Au+ f(v) =hi(x), inQ,

Av+g(u) =hy(x), inQ, (1.1)
ou dv

3% =5, = 0, on dQ),

where f,¢ : R — R are continuous functions, a% denotes the outward normal derivative on
0Q), the boundary of Q, and hy, hy € L}(Q).

The motivation for this work is the paper F. O. de Paiva, W. Rosa [12], in which the authors
showed the following resonant Neumann problems

—Au=(v")P +h(x), inQ,
—Av=(u")T+hy(x), inQ, (1.2)
ou dv
_— = — = Q
oV ov 0 on d
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has at least one solution (#,v) in H'(Q) x H!(Q) under the assumptions hy,hy € L'(Q),
r>81<pq<5 and

/ hi(x)dx <0,  i=1,2. (1.3)
@)

We first define the bilinear form associated with the Laplacian operator. For u,v €
WL(Q), 0, € WV (Q), we define B; (1, ¢) and By (v, 1) b
a2l ¢ y

Z / ou Bgo
9x; axZ
Z / v 81/)
= ox; Bxl
where the derivatives are taken in the distributional sense. By a weak solution of (1.1), we mean
a pair (u,v) € W (Q) x W(Q), such that f(v(-)) € L1(Q), g(u(-)) € L1(Q) and

Bi(u, @) +/ f(v godx:/ hi(x)pdx, Vg € Wh(Q),

(v,9) —|—/ lpdx—/ ha(x)pdx, Y € Whe(Q).

Denote
f~® =limsup f(s), g = =limsupg(s),
§——00 §——00
freo =lminff(s),  g+eo = liminfg(s).

We will make the following assumptions.
(CO) hy, hy € LY(Q).
(Cl) There are the nonnegative constants C1,C, € (0,00) such that
f(t) > —Cy, () > —Cy, teR
and for all + < 0 we have also |f(#)| < Cy,|g(t)] < Ca.

(C2) There are the constants 4,b € R and p with 1 < p < N/(N —2) for N > 3 and
1 < p < cofor N = 2 such that for all t > 0 the inequality

If(1)],1g(t)] <atP +b ae. on Q.

(C3) We assume f, g tends to be nondecreasing in that there is a y € R and a number M > 0
such that the inequalities

f(t) < f(t)+7,  glt) <g(t) +7

hold a.e. on (2 whenever t, — t; > M.

/Qf_w</0h1(x)dx</0f+w, /Qg_°°</0hz(x)dx</0g+oo.

(C4)
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Our main result is the following

Theorem 1.1. Under assumptions (C0)—(C4) the Neumann problem (1.1) has a weak solution (u,v) €
WLL(Q) x WE(Q). Moreover the solution (u,v) € WY (Q) x WH(Q) forall1 < g < N/(N —1).

Remark 1.2. Obviously, (1.3) in FE. O. de Paiva, W. Rosa [12] are the special case of (C0) and
(C4).

Remark 1.3. Our proof is based upon ideas found in Ward Jr [16]. He used the well-known
Mawhin’s continuation theorem to get a weak solution of the scale elliptic equation

Au+ f(x,u) =k(x), inQ,
ou (1.4)

a—U:O, on 0Q)

under the conditions k € L!(Q)),
Fuh] < el +B(), e,

where p € [1, &5),a € L®(Q), B € L(Q), and Landesman-Lazer condition

/O o< /O k(x)dx < /Q Freo

Remark 1.4. Similar problems, under Dirichlet and Neumann boundary condition, can be
found in D. Arcoya and S. Villegas [2], M. Cuesta and C. De Coster [3], F. M. Ferreira, F. O. de
Paiva [4], R. Kannan and R. Ortega [6,7], S. Kyritsi and N. S. Papageorgiou [8], D. Motreanu,
V. Motreanu, N. S. Papageorgiou [10], K. Perera [14], N. S. Papageorgiou and V. D. Radulescu
[13], E O. de Paiva and A. E. Presoto [11], L. Recova and A. Rumbos [15], ]J. R. Ward [16].

2 The preliminaries

Before proving Theorem 1.1 we will need a lemma. In the following we will write L7 for
LP(Q) and WP for W'P(Q)). We denote the norm in L? by |- |,, that of W' by |- |;,. For
h € L. Let Qh be the projection

Oh = ynyl/ hdx.
(@)

Lemma 2.1 ([16]). For each h € L'(Q) with Qh = 0. There is a unique w € W(Q) with Quw = 0
such that

B(w,9) = | h(x)gdx,

for all ¢ € WY, where B(w, ) = — YN, O %%dx' Moreover w € W for each q satisfying
1<q < N/(N —1) and there is a constant C(q) such that

|w]1,4 < C(9)|h]1-
By the Rellich-Kondrachov theorem W7 is compactly imbedded in L? for 1 < p < NN—ja
sinceq < N/(N—1) < Nforall N > 2. (e.g. see [1, p. 144]). Assume that the number p in
condition (C2) is fixed hereafter, satisfying 1 < p < N/(N—2)if N >3and 1 < p < oo if
N =2
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Choose g so that
Nq

p<N7—EI and 1<q<

N —
We have that W' is compactly imbedded in L?.

Let X; denote the closed subspace of L! defined by & € X; if and only if
Qh = 0.

Let T denotes the operator mapping X; into W N X; given by h — w where w is the unique
weak solution to
Aw=h inQ), Qu =0,
ow
3, =
Note that W = (WY N X;) ® R. T maps X; into W and we see that ¥ o T maps X;
compactly into L? if ¥ is the imbedding of W' into LF. Let

0 on dQ).

K=YoT,

and define an operator L : LY — L. Because L! is not the dual space to L, we do not use the
usual method of defining L. Instead, we let

D(L) = RangeK® R

and
L(ZU1 + ft) =h,

where h € X; and Kh = wy, for w; € RangeK and & € R. It is easy to see that L is a Fredholm
operator: it has closed range X; and since ker(L) = R and the dimension of L! \ X is clearly
1, the index of L is 0,

index(L) = dim ker L — dim coker L.

We now define the substitution operators Ny, N, : LV — L! by
Nyo(x) = f(v(x)) — hi(x), ve Ll and x € Q.

Nou(x) = g(u(x)) — ha(x), uelland x € Q.

It is well known that the conditions on f and g imply that N; maps L? into L! continuously
and N; obviously takes sets bounded in L? into sets bounded in L! for j = 1,2.

A function (u,v) € W4 x W' is a weak solution of (1.1) if and only if (z,v) € D(L) x
D(L) and
Lu+ Njo =0,

2.1
Lv+ Nou = 0.

Recalling that for u € L' we have defined Qu to be the mean value of u, we have from
our remarks above that K(I — Q)N; : L? — L is compact and continuous, clearly QN; is
also compact and continuous for j = 1,2. Thus N; is L-compact (see [5]) on G for any open
bounded set G in L? for j = 1,2. We will use a well known continuation theorem of Mawhin
(see [5] and [9]).
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3 Proof of the main result
We are in the position to prove our main result.

Proof of Theorem 1.1. By one of Mawhin’s continuation theorems (see [5, p. 40] or [9, The-
orem 7.2]) and our remarks above, if we can show the existence of a bounded open set
G := G x G in L?P x L? such that conditions (i) and (ii) below hold, then (2.1) has a solu-
tion. The conditions are:

(i) For each A € (0,1) and each (u,v) € (D(L) x D(L)) N 9G,

Lu+ ANjv # 0,
Lo+ ANyu # 0.

(ii) QNjw # 0 for each j = 1,2, w € ker LN dG and
d(T,GN (kerL x kerL),0) # 0,

where ' := (JON1,JON,), ] : ImQ — kerL is an isomorphism, and d is the Brouwer
topological degree.

We first verify (i). We consider
Lu+ ANyv =0,
Lo+ ANju =0

for 0 < A < 1. If ((u,v),A) is a solution of (3.2) then
Bl(u,(p)-l—/\/of(v)qoz)\/ﬂhlqn Ve W,

Ba(v, ) +/\/Qg(u)1/] _ )L/thlp, Ve W,

In particular by taking ¢ = ¢ = 1, then

| s = [ m,
/Qg(u) :/th-

It follows from (Cl) that for each t € R
FOI<fB) 20, g(t)] < g(t) +2Ca.
Thus
Nioh = [ If(0) = (x)ldx
S/Q(f(v)+zc1+\h1(x>\)dx

g/thdx+21c1|-|Q|+/Q|h1(x)|dx _. d,
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Nauh = [ [g() = o) ax
<
<[ (g(u) 422+ [hax))dx
g/thdx+2|c2|-\Q|+/Q\hz(x)ydx .
Writing u = u; +«, v = v1 +  with uy,v; € RangeK and &, 8 € R by Lemma 2.1 we have
u1l1,9 < C(q)dr =: my,

0114 < C(g)da =: my,

where m; and m; are independently of A € (0,1). By the Sobolev imbedding theorem
lui|p < ms, [01]p < my

for some constants m3 and my.

We now show that for solutions ((#,v),A) = ((u1 +,01 + ,B),A) that « and B are also
bounded independently of A € (0,1).

Suppose this is not the case. Then there is a sequence ((u#,,v,), Ay) of solutions to (3.2)
with
Uy = Uy + &y, Uy = U1 + ,Bn

and
lan| + |[Bn| — o0, asn — oo.

Suppose first that a subsequence of {a,}, relabeled as {a,}, tends to +oco. Then using
[U1n]1,4 < my is easy to show that

lim u,(x) = +c0 a.e. (3.3)

n—oo

For otherwise there is a constant k1 > 0 and sets (1) in Q) for infinitely many n (without
loss of generality we assume for all 1) such that [Q(n)| > 6 > 0 and u,(x) <k for x € Q(n).
We have uy, + a, < ki implies

k|Q| > / kdx > / i + dpdx
Q(n) Q(n)
> w,|0(m)]| = | Jun
> wu,0—C
for C, a constant, which contradicts «;, — co. Thus (3.3) holds and

liminf g(u,(x)) = g+ a.e.

n—00

Since g(uy(x)) > —C; for all n and C, € R we have by Fatou’s lemma

/hz—hmmf g(un(x))dXZ/g+oodx
0

n—oo

which contradicts (C4). Thus the {a,} must be bounded above.
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Suppose a, — —oo. It follows as for (3.3) that

lim u,(x) = —co0 a.e.
n—oo

Because g(t) is not everywhere bounded above by an L! function, we cannot use the simple
Fatou’s lemma argument as in the case of a;, — —oco.

We proceed as follows. Since |u1, ’Lo/ < mj, we may without loss of generality assume the
existence of 7y € LP such that uq, — 7 in L?.

Let 0 < € < |Q)] be given. Then il; € L? implies that there exists an integer n(e) and a
measurable set E C Q) such that if F = Q) — E then |F| < € and

uy(x) <0, x€E, n>n(e),
hence
Q(un(x)) < Cy, x€E, n>nle).

Moreover there exists another integer m such that for n > m we have a, < —M, where M
is a positive constant.
Thus, for n > max{n(e), m},

/th:/Eg(u1n+06n)+/Fg(“1n+“n)
< /Eg(uanrﬂcn)vL/F.g(uln)Jr/F’Y

and
/th < lir;l_)soljp [/Eg(un)Jr/Fg(uln)} +/F7
< /g""’dx—i—/g(ﬂl)dx—i—/'y
E F F

by Fatou’s lemma for the integral over E and by convergence in L! for the integral over F.

(3.4)

Now choose 17 > 0 such that

/Q ¢ Cdx < /Q hydx. (3.5)

We may choose € > 0 so small that, since |F| < €,

‘/ g %dx
F

For such as € we have from (3.4) and (3.5)

< [g=ax— [g= z y< [ g 6
/th_/ﬂg dx /Fg dx+/Fg(u1)dx+/Fv_/Qg dx+17</0h2 (3.6)

Therefore we cannot have a;,, — 400 or &, — —oo and this, combined with |u; |p < m3 shows
that if ((u,v),A) is a solution of (3.2) then |u[, = |u; +a|, < m3 4+ C; for some constant Cs.
Similarly, We can obtain |v|, = |1 + |, < my4 + C4 for some constant Cy.

This verifies condition (i) above for any ball G in L! x L!, centered at the origin and with
radius larger than p; = max{mz + C3,m4 + C4}.

1
<3,

< ﬁ, ’/g(ﬁl)dx
3 F

fa] <1



8 R. Ma, Z. Zhao and M. Ma

The verification of condition (ii) is now straightforward. Both the range of Q and the
kernel of L may be identified with R, so that the isomorphism ] in (ii) we may take to be the
identity on R. Now for a, § € R,

QN =101 [ [£(B—m@]dx, QN =0 [ [g(0) ~hax)]ax.

We may now make two simple applications of Fatou’s lemma using (Cl) to show, using (C4),
that there exists an » > 0 such that

QNi1(B) >0, ON;(—B) <0, fora>r,

QN (a) >0, QONy(—wa) <0, forp >r.
Thus for 7 > rmax{1, |Q|},

d(QN;j, [-7, 7] Nker L,0) # 0, j=12.
By the product formula of Brouwer degree, we obtain
d(T,[—7,7)> N (ker L x ker L),0) # 0.

Now let p := max{pj,r - max{1,|Q|}}. Then we have that both (i) and (ii) are satisfied on
[Bo]?, where B, is the ball in L? with radius p centered at the origin. Thus (2.1) has a solution
(u,v) € D(L) x D(L) with

|u’P SP/ ‘U‘p SP,
and (u,v) € WP x WP and is a weak solution of (1.1). This completes the proof of Theo-
rem 1.1. O
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