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Abstract. In this paper, we are concerned with some new first order differential equa-
tion defined on the whole real axis R. The principal part of the equation involves an
operator with variable exponent p depending on the variable x ∈ R through the un-
known solution while the nonlinear part involves the classical variable exponent p(x).
Such kind of situation is very related to the presence of the variable exponent and has
not been treated before. Our existence result of nontrivial solution cannot be reached
using standard variational or topological methods of nonlinear analysis and some so-
phisticated arguments have to be employed.
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1 Introduction and Statement of Main results

Nonlinear partial differential equations involving variable exponents have many applications
in physics. In fact, such equations are used as models to describe many phenomena aris-
ing in applied sciences. For instance, we can mention the study of materials with strong
inhomogeneities such as electrorheological fluids or thermo-rheological, image restoration,
phenomenon of elasticity or the continuum mechanics. See [5, 10, 15, 16, 22].

Actually, the observation of the image restoration process through some numerical tech-
niques has proved that considering the case of variable exponents depending on the solution
u (or its derivatives) reduces the noise of the restored image u. See [8,9,17]. The same situation
is observed when treating the problem of thermistor which describes the electric current in a
conductor that may change its properties in dependence of temperature (see [4]).

When we try to deal with a problem involving an exponent depending on the solution,
we are quickly faced with many obstacles which are essentially related to the theoretical well-
posedness of the problem itself. Indeed, such a problem is not standard because its weak
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formulation cannot be written as an equation in terms of duality in a fixed Banach space.
This is why, in the mathematical literature, one can find only few works devoted to the study
of elliptic and parabolic equations involving an exponent of the type p(u) with local and
nonlocal dependence of p on u. The first one is due to B. Andreianov, M. Bendahmane and S.
Ouaro who have considered in [1] the problemu− div

(
|∇u|p(u)−2∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is some bounded domain of RN , N ≥ 2, f ∈ L1(Ω) and p : R → R is Lipschitz
continuous such that p− = infs∈R p(s) > N. Under the key restriction p− > N, the authors
proved that the problem (1.1) is well-posed in L1(Ω). By this way, using some approximation
method, they can establish the existence of so-called narrow and broad weak solution (defini-
tions related to the fact that the source f is integrable). The version of the problem (1.1) with
homogeneous Neumann boundary conditions has been treated in [14].

Recently, M. Chipot and H. B. de Oliveira proposed in [11] a new simple approach to deal
with a problem very similar to (1.1). More precisely, M. Chipot and H. B. de Oliveira studied
the problem −div

(
|∇u|p(u)−2∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω is a bounded domain of RN , N ≥ 2 with smooth boundary, p : R→ R is a Lipschitz
continuous function such that p− > N, and f ∈ W−1,(p−)′(Ω). The approach in [11] is mainly
based on a perturbation of the problem (1.2) and the use of Schauder’s fixed point theorem to
solve the approximated problem. Finally, a process of passage to the limit in the spirit of [23]
is carried out to prove the existence of a weak solution u of the problem (1.2) in the sense that
u ∈W1,p(u)

0 (Ω) and satisfies∫
Ω
|∇u|p(u)−2∇u∇vdx = 〈 f , v〉 , ∀ v ∈W1,p(u)

0 (Ω).

The nonlocal version of (1.2) has been also considered in [11]. More precisely, the authors
studied the problem −div

(
|∇u|p(b(u))−2∇u

)
= f , in Ω,

u = 0, on ∂Ω,
(1.3)

where p is merely bounded continuous and satisfies that 1 < p− < p(s), ∀ s ∈ R, and
b : W1,p−

0 (Ω)→ R sends bounded sets of W1,p−
0 (Ω) into bounded sets of R. Using the Brower’s

fixed point theorem applied to some compact interval of R, M. Chipot and H. B. de Oliveira
proved that (1.3) has at least one weak solution u in the sense that u ∈ W1,p(b(u))

0 (Ω) and
satisfies ∫

Ω
|∇u|p(b(u))−2∇u∇vdx = 〈 f , v〉 , ∀ v ∈W1,p(b(u))

0 (Ω).

This work has been completed in [20] where the authors treated the case when f ∈ L1(Ω) for
which they prove the existence of an entropy solution. The work of M. Chipot and H. B. de
Oliveira has given a new impulse to the study of problems involving exponents depending
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on the unknown solution. In [2], S. Antontsev and S. Shmarev studied the homogeneous
Dirichlet problem for the parabolic equation

ut − div
(
|∇u|p[u]−2∇u

)
= f , in QT = Ω×]0, T[,

where Ω ⊂ RN , N ≥ 2, is a smooth domain, p [u] = p(l(u)), p is a given differentiable func-
tion such that 2N

N+2 < p− ≤ p+ < 2, and sups∈R |p′(s)| < +∞; l(u) =
∫

Ω |u(x, t)|α dx, α ∈ [1, 2],
and f ∈ L(p−)′(QT). A result of existence and uniqueness of a solution u ∈ C0 ([0, T]; L2(Ω)

)
,

|∇u|p[u] ∈ L∞ (0, T; L1(Ω)
)

, ut ∈ L2(QT) has been proved. This result has been extended in
[3] to the case when the source f is replaced by the nonlinear term f ((x, t), u, l(u)), and in
[4] where the authors (together with I. Kuznetsov) treated the case when the exponent p is
depending on the gradient of u, i.e. when p[u] is replaced by p[∇u] = p(l(|∇u|)). The case of
unbounded domain has been considered in [7] where S. Aouaoui and A. E. Bahrouni studied
the equation

−div(w1(x) |∇u|p(u)−2∇u) + w0(x) |u|p(u)−2 u = f (x, u), x ∈ RN , N ≥ 2,

where p : R→ R is a Lipschitz continuous function such that N < p− < p+ < +∞; w0, w1 ∈
L1(RN) and f is a Carathéodory function having a polynomial growth with exponent lower
than p− − 1. A result of the existence of a nontrivial solution has been established.

The present work is a contribution in the same direction. Indeed, in this paper, we are
concerned with the following nonlinear differential equation:

−
(

w1(x)
∣∣u′∣∣p(u)−2 u′

)′
+ w0(x) |u|p(u)−2 u = g(x) |u|p(x)−2 u, x ∈ R, (1.4)

where p : R→ R is a Lipschitz continuous function such that

1 < p− = inf
s∈R

p(s) < p+ = sup
s∈R

p(s) < +∞.

The equation (1.4) is taken under the following assumptions:

(H1) We assume that there exists 0 < α < 1 such that p(α) = p+. Moreover, we assume that
the function x 7−→ xp(x)−1 is increasing on the interval [0, α].

(H2) w0, w1 ∈ L1(R) are such that

0 < sup
|x|≤R

w0(x) < +∞, 0 < inf
|x|≤R

w1(x) < +∞, ∀ R > 0.

We also assume that there exists a positive constant C0 > 0 such that

w1(x) ≤ C0w0(x), ∀ x ∈ R.

(H3) g ∈ L1(R), g(x) > 0, ∀ x ∈ R. We assume that

g(x) ≤ w0(x) ≤ g(x)αp(x)−p+ , ∀ x ∈ R,

where α is defined in (H1).
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A similar differential equation to (1.4) has been treated in [6] where the author dealt with the
nonlinear equation

− (
∣∣u′∣∣p(x)−2 u′) + |u|p(x)−2 u = λϕ(x) |u|p(u)−2 u, x ∈ R, (1.5)

where p ∈ C1(R) is such that 2 < p− < p+ < +∞, λ is a positive parameter and ϕ ∈
C(R) ∩ L∞(R), ϕ(x) > 0, ∀ x ∈ R. Under some suitable additional conditions on p and
ϕ, the author used a variational method to prove the existence of a nontrivial solution to
(1.5). Comparing to (1.4), the problem (1.5) is easier because the exponent appearing in the
principal part depends directly on the variable x ∈ R and by consequence the solution has
been searched in the fixed classical variable exponent Sobolev space W1,p(x)(R).

Definition 1.1. A function u : R → R is said to be a weak solution to the equation (1.4) if it
satisfies that u ∈ L1

loc(R),∫
R

w0(x) |u|p(u) dx < +∞,
∫

R
w1(x)

∣∣u′∣∣p(u) dx < +∞,

and∫
R

w1(x)
∣∣u′∣∣p(u)−2 u′v′dx +

∫
R

w0(x) |u|p(u)−2 uvdx =
∫

R
g(x) |u|p(x)−2 uvdx, ∀ v ∈ Eu,

where

Eu =

{
v ∈ L1

loc(R),
∫

R
w0(x) |v|p(u) dx < +∞,

∫
R

w1(x)
∣∣v′∣∣p(u) dx < +∞

}
.

The main result in this work is given by the following theorem.

Theorem 1.2. Assume that (H1), (H2) and (H3) hold. Then, there exists at least one weak nontrivial
and positive solution to the equation (1.4) in the sense of Definition 1.1.

Example 1.3. As an example of functions p, w0, w1 and g satisfying the hypotheses of Theo-
rem 1.2, one can choose

p(x) = k + e−(x− 1
2 )

2
, k ≥ 2, w0(x) = w1(x) = g(x) = e−x2

, x ∈ R.

2 Preliminaries

In this section, we study the functional space Eu. For u : R→ R a fixed measurable function,
set q = p(u). In view of this notation, one can easily see that Eu is the weighted Sobolev space
with variable exponent

Eu =

{
v ∈ L1

loc(R),
∫

R
w0(x) |v|q(x) dx < +∞,

∫
R

w1(x)
∣∣v′∣∣q(x) dx < +∞

}
.

This space is equipped with the well known Luxemburg norm

‖u‖Eu
= inf

{
λ > 0,

∫
R

(
w1(x) |u′|q(x) + w0(x) |u|q(x)

λq(x)

)
dx ≤ 1

}
.
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Since w0, w1 ∈ L1
loc(R) and w

− 1
q(x)−1

0 , w
− 1

q(x)−1
1 ∈ L1

loc(R), then (Eu, ‖ · ‖Eu
) is a Banach, reflexive

and separable space (see [21]).

If v ∈ Eu, (vn)n ⊂ Eu, then the following relations hold true.

‖v‖Eu
< 1⇒ ‖v‖q+

Eu
≤
∫

R

(
w1(x)

∣∣v′∣∣q(x)
+ w0(x) |v|q(x)

)
dx ≤ ‖v‖q−

Eu
,

‖v‖Eu
> 1⇒ ‖v‖q−

Eu
≤
∫

R

(
w1(x)

∣∣v′∣∣q(x)
+ w0(x) |v|q(x)

)
dx ≤ ‖v‖q+

Eu
,

‖vn − v‖Eu
→ 0⇔

∫
R

(
w1(x)

∣∣v′n − v′
∣∣q(x)

+ w0(x) |vn − v|q(x)
)

dx → 0, n→ +∞.

One of the most important properties of the space Eu is the density of the space of smooth
functions C∞

0 (R) in it with respect to the norm ‖ · ‖Eu
.

Proposition 2.1. Assume that u ∈ L1
loc(R), and satisfies∫

R
w0(x) |u|p

−
dx < +∞, and

∫
R

w1(x)
∣∣u′∣∣p− dx < +∞.

Then, C∞
0 (R) is dense in Eu.

Proof. The proof relies essentially on a truncation procedure. Let v ∈ Eu, ψ ∈ C∞
0 (R) with

0 ≤ ψ ≤ 1, ψ(x) = 1, if |x| ≤ 1, ψ(x) = 0, if |x| ≥ 2, and, for n ≥ 1 an integer, set
ψn(x) = ψ( x

n ) and vn = vψn. We claim that vn → v strongly in Eu. We have,∫
R

w0(x) |vn − v|q(x) dx =
∫

R
w0(x) |1− ψn(x)|q(x) |v|q(x) dx.

Since |1− ψn(x)| → 0, ∀ x ∈ R and |1− ψn(x)| ≤ 2, ∀ x ∈ R, ∀ n ≥ 1, then one can use the
Lebesgue’s dominated convergence theorem to deduce that

lim
n→+∞

∫
R

w0(x) |vn − v|q(x) dx = 0. (2.1)

On the other hand,∫
R

w1(x)
∣∣v′n − v′

∣∣q(x) dx

=
∫

R
w1(x)

∣∣(1− ψn)v′ − vψ′n
∣∣q(x) dx

≤ c0

∫
R

w1(x) |1− ψn|q(x) ∣∣v′∣∣q(x) dx + c0

∫
R

w1(x) |v|q(x)
(

1
n

)q(x) ∣∣∣ψ′ ( x
n

)∣∣∣q(x)
dx

≤ c0

∫
R

w1(x) |1− ψn|q(x) ∣∣v′∣∣q(x) dx + c0C0

∫
R

w0(x) |v|q(x)
(

1
n

)q(x) ∣∣∣ψ′ ( x
n

)∣∣∣q(x)
dx,

(2.2)

where we used the fact that w1(x) ≤ C0w0(x), ∀ x ∈ R. Plainly,

∫
R

w0(x) |v|q(x)
(

1
n

)q(x) ∣∣∣ψ′ ( x
n

)∣∣∣q(x)
dx → 0, n→ +∞. (2.3)

Again by the virtue of the Lebesgue’s dominated convergence theorem, we get

lim
n→+∞

∫
R

w1(x) |1− ψn|q(x) ∣∣v′∣∣q(x) dx = 0. (2.4)
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By (2.4) and (2.3), we infer

lim
n→+∞

∫
R

w1(x)
∣∣v′n − v′

∣∣q(x) dx = 0. (2.5)

Combining (2.5) and (2.1), it follows that vn → v strongly in Eu. Hence, for every ε > 0, there
exists n0 = n0(ε) ≥ 1 such that ‖vn0 − v‖Eu

≤ ε
2 . Now, taking into account that

0 < inf
|x|<2n0

w0(x) ≤ sup
|x|<2n0

w0(x) < +∞, and 0 < inf
|x|<2n0

w1(x) ≤ sup
|x|<2n0

w1(x) < +∞,

one can easily see that{
w ∈ L1(]− 2n0, 2n0[),

∫ 2n0

−2n0

w0(x) |w|q(x) dx < +∞,
∫ 2n0

−2n0

w1(x)
∣∣w′∣∣q(x) dx < +∞

}
= W1,q(x)(]− 2n0, 2n0[).

We also see that u ∈W1,p−(]− 2n0, 2n0[). Hence, u ∈ C([−2n0, 2n0]) and there exists a constant
C depending on p and ε such that

|u(x)− u(y)| ≤ C ‖u‖W1,p− (]−2n0,2n0[)
|x− y|1−

1
p− , ∀ x, y ∈]− 2n0, 2n0[.

By hypothesis, there is a constant L > 0 such that

|p(u(x))− p(u(y))| ≤ L |u(x)− u(y)| , ∀ x, y ∈ R,

which implies that

|q(x)− q(y)| ≤ LC ‖u‖W1,p− (]−2n0,2n0[)
|x− y|1−

1
p− , ∀ x, y ∈]− 2n0, 2n0[.

Therefore, q is log-Hölder continuous, that is, there is a constant C′ > 0 such that

|q(x)− q(y)| ≤ −C′

log |x− y| , ∀ x, y ∈]− 2n0, 2n0[, |x− y| < 1
2

.

That result guarantees that C∞
0 (]−2n0, 2n0[) is dense in W1,q(x)(]−2n0, 2n0[)∩W1,1

0 (]−2n0, 2n0[)

(see [13, 21]). Having in mind that vn0 ∈ W1,q(x)(] − 2n0, 2n0[) ∩W1,1
0 (] − 2n0, 2n0[), we can

conclude the proof of Proposition 2.1.

3 Proof of Theorem 1.2

For (x, s) ∈ R2, set

f (x, s) =


g(x), if s ≥ 1,

g(x)sp(x)−1, if α ≤ s ≤ 1,

g(x)αp(x)−1, if s ≤ α.

Consider the weighted Sobolev space

W1,p+
w0,w1(R) =

{
u ∈ L1

loc(R),
∫

R
w0(x) |u|p

+

dx < +∞,
∫

R
w1(x)

∣∣u′∣∣p+ dx < +∞
}

.

This space is naturally equipped with the norm

‖u‖
W1,p+

w0,w1 (R)
=

(∫
R

(
w1(x)

∣∣u′∣∣p+ + w0(x) |u|p
+
)

dx
) 1

p+

.
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Lemma 3.1. For each ε > 0, there exists a function uε ∈W1,p+
w0,w1(R) such that∫

R
w1(x)

∣∣u′ε∣∣p(uε)−2 u′εv′dx +
∫

R
w0(x) |uε|p(uε)−2 uεvdx

+ ε

(∫
R

w1(x)
∣∣u′ε∣∣p+−2 u′εv′dx +

∫
R

w0(x) |uε|p
+−2 uεvdx

)
=
∫

R
f (x, uε)vdx, ∀ v ∈W1,p+

w0,w1(R).

Proof. Let ε > 0 fixed. For w : R → R a measurable function, define the operator Aw :
W1,p+

w0,w1(R)→ (W1,p+
w0,w1(R))∗ by

〈Awu, v〉 =
∫

R
w1
∣∣u′∣∣p(w)−2 u′v′dx +

∫
R

w0 |u|p(w)−2 uvdx

+ ε

(∫
R

w1
∣∣u′∣∣p+−2 u′v′dx +

∫
R

w0 |u|p
+−2 uvdx

)
, u, v ∈W1,p+

w0,w1(R).

Observe that Aw is well defined. In fact, for u, v ∈W1,p+
w0,w1(R), we have∣∣∣∣∫

R
w1
∣∣u′∣∣p(w)−2 u′v′dx +

∫
R

w0 |u|p(w)−2 uvdx
∣∣∣∣

≤
∫

R
w1
∣∣u′∣∣p(w)−1 ∣∣v′∣∣ dx +

∫
R

w0 |u|p(w)−1 |v| dx

≤
∫

R
w1
∣∣v′∣∣ dx +

∫
R

w1
∣∣u′∣∣p+−1 ∣∣v′∣∣ dx +

∫
R

w0 |v| dx +
∫

R
w0 |u|p

+−1 |v| dx

≤ |w1|
p+−1

p+

L1(R)

(∫
R

w1
∣∣v′∣∣p+ dx

) 1
p+

+

(∫
R

w1
∣∣u′∣∣p+ dx

) p+−1
p+
(∫

R
w1
∣∣v′∣∣p+ dx

) 1
p+

+ |w0|
p+−1

p+

L1(R)

(∫
R

w0 |v|p
+

dx
) 1

p+

+

(∫
R

w0 |u|p
+

dx
) p+−1

p+
(∫

R
w0 |v|p

+

dx
) 1

p+

.

Hence, for u fixed in W1,p+
w0,w1(R), the linear mapping v 7−→ 〈Awu, v〉 lies in the dual

(W1,p+
w0,w1(R))∗. Clearly, Aw is coercive and continuous. Moreover, Aw is strictly monotone,

i.e.
〈Awu1 − Awu2, u1 − u2〉 > 0, ∀ u1, u2 ∈W1,p+

w0,w1(R), u1 6= u2.

On the other hand, for w : R→ R measurable and v ∈W1,p+
w0,w1(R), we have∣∣∣∣∫

R
f (x, w)vdx

∣∣∣∣ ≤ ∫w≥1
g(x) |v| dx +

∫
w≤α

g(x)αp(x)−1 |v| dx +
∫

α≤w≤1
g(x) |w|p(x)−1 |v| dx

≤
∫

R
g(x) |v| dx

=
∫

R

g(x)

w
1

p+

0

w
1

p+

0 |v| dx

≤

∫
R

(g(x))
p+

p+−1

w
1

p+−1
0

dx


p+−1

p+ (∫
R

w0 |v|p
+

dx
) 1

p+

.



8 S. Aouaoui

Thus, ( f (·, w)) ∈ (W1,p+
w0,w1(R))∗. By the virtue of the Minty–Browder theorem (see [19, Theo-

rem 26.A]), we deduce that there exists a unique element uw ∈W1,p+
w0,w1(R) such that

Aw(uw) = f (·, w) in (W1,p+
w0,w1(R))∗.

That is
〈Awuw, v〉 =

∫
R

f (x, w)vdx, ∀ v ∈W1,p+
w0,w1(R). (3.1)

Taking v = uw in (3.1), we infer∫
R

w1(x)
∣∣u′w∣∣p(w) dx +

∫
R

w0(x) |uw|p(w) dx + ε

(∫
R

w1(x)
∣∣u′w∣∣p+ dx +

∫
R

w0(x) |uw|p
+

dx
)

=
∫

R
f (x, w)uwdx ≤

∫
R

g(x) |uw| dx.

Thus,

ε ‖uw‖p+

W1,p+
w0,w1 (R)

≤

∫
R

g(x)
p+

p+−1

w
1

p+−1
0

dx


p+−1

p+

‖uw‖W1,p+
w0,w1 (R)

.

Consequently, there exists a constant Cε depending on ε but independent of w such that

‖uw‖W1,p+
w0,w1 (R)

≤ Cε. (3.2)

Now, we claim that W1,p+
w0,w1(R) is compactly embedded in the weighted Lebesgue space

Lp−
w0 (R) =

{
u : R→ R measurable,

∫
R

w0(x) |u|p
−

dx < +∞
}

equipped with the norm u 7−→ |u|
Lp−

w0 (R)
=
( ∫

R
w0(x) |u|p

−
dx
) 1

p− . For that aim, take a se-
quence (un)n ⊂ W1,p+

w0,w1(R) such that un ⇀ 0 weakly in W1,p+
w0,w1(R). We claim that, up to a

subsequence un → 0 strongly in Lp−
w0 (R). We have,∫

R
w0(x) |un|p

−
dx =

∫
R
(w0(x))1− p−

p+ (w0(x))
p−
p+ |un|p

−
dx. (3.3)

Observing that the sequence (w
p−
p+

0 |un|p
−
)n is bounded in L

p+

p− (R) and, up to a subsequence,

is weakly convergent to 0 in L
p+

p− (R), and that w
1− p−

p+

0 ∈ L
p+

p+−p− (R), we can immediately see
from (3.3) that ∫

R
w0(x) |un|p

−
dx → 0, n→ +∞.

Let C1 > 0 be a positive constant such that

|u|
Lp−

w0 (R)
≤ C1 ‖u‖W1,p+

w0,w1 (R)
, ∀ u ∈W1,p+

w0,w1(R). (3.4)

Set C̃ε = C1Cε, and K =
{

w ∈ Lp−
w0 (R), |w|

Lp−
w0 (R)

≤ C̃ε

}
the closed ball of Lp−

w0 (R) centered

at the origin and of radius C̃ε. Define the mapping T : K → K by Tw = uw given by (3.1).
In view of (3.2) and (3.4), it yields that T(K) ⊂ K. Moreover, since W1,p−

w0,w1(R) is compactly
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embedded in Lp−
w0 (R), we can easily show that T(K) is relatively compact. Observing that T

is continuous, then one can use the Schauder’s fixed point Theorem (see [18, Theorem 2.A])
to deduce the existence of w̃ ∈ K such that uw̃ = w̃. Consequently,∫

R
w1(x)

∣∣u′w̃∣∣p(uw̃)−2 u′w̃v′dx +
∫

R
w0(x) |uw̃|p(uw̃)−2 uw̃vdx

+ ε

(∫
R

w1(x)
∣∣u′w̃∣∣p+−2 u′w̃v′dx +

∫
R

w0(x) |uw̃|p
+−2 uw̃vdx

)
=
∫

R
f (x, uw̃)vdx, ∀ v ∈W1,p+

w0,w1(R).

This concludes the proof of Lemma 3.1.

The completion of the proof of Theorem 1.2

Choosing ε = 1
n , n ≥ 1, in Lemma 3.1, we deduce that there exists un ∈W1,p+

w0,w1(R) such that∫
R

w1(x)
∣∣u′n∣∣p(un)−2 u′nv′dx +

∫
R

w0(x) |un|p(un)−2 unvdx

+
1
n

(∫
R

w1(x)
∣∣u′n∣∣p+−2 u′nv′dx +

∫
R

w0(x) |un|p
+−2 unvdx

)
=
∫

R
f (x, un)vdx, ∀ v ∈W1,p+

w0,w1(R).

(3.5)

Taking v = un as test function in (3.5), we get∫
R

w1(x)
∣∣u′n∣∣p(un) dx +

∫
R

w0(x) |un|p(un) dx +
1
n
‖un‖p+

W1,p+
w0,w1 (R)

=
∫

R
f (x, un)undx, ∀ n ≥ 1.

(3.6)

We have∣∣∣∣∫
R

f (x, un)undx
∣∣∣∣ ≤ ∫

RN
g(x) |un| dx

≤

∫
R

 g(x)

(w0(x))
1

p−


p−

p−−1

dx


p−−1

p− (∫
R

w0(x) |un|p
−

dx
) 1

p−

≤ c2

(∫
|un|≤1

w0(x) |un|p
−

dx +
∫
|un|≥1

w0(x) |un|p
−

dx
) 1

p−

≤ c2

(∫
R

w0(x) |un|p(un) dx + |w0|L1(R)

) 1
p−

.

By (3.6), we infer∫
R

w1(x)
∣∣u′n∣∣p(un) dx +

∫
R

w0(x) |un|p(un) dx +
1
n
‖un‖p+

W1,p+
w0,w1 (R)

≤ c3, ∀ n ≥ 1. (3.7)

In particular, there exists a positive constant c4 > 0 (independent of n ) such that∫
R

w1(x)
∣∣u′n∣∣p− dx +

∫
R

w0(x) |un|p
−

dx ≤ c4, ∀ n ≥ 1. (3.8)
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Indeed, ∫
R

w1(x)
∣∣u′n∣∣p− dx =

∫
|u′n|≥1

w1(x)
∣∣u′n∣∣p− dx +

∫
|u′n|<1

w1(x)
∣∣u′n∣∣p− dx

≤
∫
|u′n|≥1

w1(x)
∣∣u′n∣∣p(un) dx + |w1|L1(R)

≤
∫

R
w1(x)

∣∣u′n∣∣p(un) dx + |w1|L1(R) , ∀ n ≥ 1.

Similarly, ∫
R

w0(x) |un|p
−

dx ≤
∫

R
w0(x) |un|p(un) dx + |w0|L1(R) , ∀ n ≥ 1.

Hence, (3.8) immediately follows from (3.7). By the reflexivity of the weighted Sobolev space
W1,p−

w0,w1(R), there exists u ∈ W1,p−
w0,w1(R) such that, up to a subsequence, un ⇀ u weakly in

W1,p−
w0,w1(R) and un(x)→ u(x) a.e. x ∈ R. Now, we claim that∫

R
w1(x)

∣∣u′∣∣p(u) dx +
∫

R
w0(x) |u|p(u) dx < +∞. (3.9)

For that aim, for x ∈ R and n ≥ 1, set qn(x) = p(un(x)) and q(x) = p(u(x)). For k > 0, set

vk =

{
qu |u|q−2 , if |u| ≤ k,

qkq−1 u
|u| , if |u| > k.

By Young’s inequality, it yields

unvk ≤ |un|qn +
qn − 1

qq′n
n
|vk|q

′
n , ∀ k > 0, ∀ n ≥ 1,

where q′n = qn
qn−1 . Thus,

∫
R

w0(x)unvkdx ≤
∫

R
w0(x) |un|qn dx +

∫
R

w0(x)
qn − 1

qq′n
n
|vk|q

′
n dx, ∀ k > 0, ∀ n ≥ 1.

Tending n to +∞ and having (3.7) in mind, we get∫
R

w0(x)uvkdx ≤ c3 +
∫

R
w0(x)

q− 1
qq′ |vk|q

′
dx.

Consequently, ∫
|u|≤k

w0(x)q |u|q dx +
∫
|u|>k

w0(x)qkq−1 |u| dx

≤ c3 +
∫
|u|≤k

w0(x)(q− 1) |u|q dx +
∫
|u|>k

w0(x)(q− 1)kqdx.

Thus, ∫
|u|≤k

w0(x) |u|q dx +
∫
|u|>k

w0(x)kqdx ≤ c3.

Passing to the limit as k tends to +∞ in that last inequality, we obtain∫
R

w0(x) |u|q dx ≤ c3.
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Similarly, for k > 0, one can choose the function

ṽk =

qu′ |u′|q−2 , if |u′| ≤ k,

qkq−1 u′
|u′| , if |u′| > k,

Using Young’s inequality and proceeding exactly as previously, we can easily show that

∫
|u′|≤k

w1(x)
∣∣u′∣∣q dx ≤ c3, ∀ k > 0,

and after passing to the limit as k tends to +∞, we finally obtain

∫
R

w1(x)
∣∣u′∣∣q dx ≤ c3.

Hence, the claim (3.9) holds. Let v ∈W1,p+
w0,w1(R). We have

∫
R

w1(x)
(∣∣u′n∣∣p(un)−2 u′n −

∣∣v′∣∣p(un)−2 v′
)
(u′n − v′)dx

+
∫

R
w0(x)

(
|un|p(un)−2 un − |v|p(un)−2 v

)
(un − v)dx

+
1
n

∫
R

w1(x)
(∣∣u′n∣∣p+−2 u′n −

∣∣v′∣∣p+−2 v′
)
(u′n − v′)dx

+
1
n

∫
R

w0(x)
(
|un|p

+−2 un − |v|p
+−2 v

)
(un − v)dx

≥ 0, ∀ n ≥ 1.

Thus, ∫
R

w1(x)
(∣∣u′n∣∣p(un)−2 u′n +

1
n
∣∣u′n∣∣p+−2 u′n

)
(u′n − v′)dx

+
∫

R
w0(x)

(
|un|p(un)−2 un +

1
n
|un|p

+−2 un

)
(un − v)dx

≥
∫

R
w1(x)

(∣∣v′∣∣p(un)−2 v′ +
1
n
∣∣v′∣∣p+−2 v′

)
(u′n − v′)dx

+
∫

R
w0(x)

(
|v|p(un)−2 v +

1
n
|v|p

+−2 v
)
(un − v)dx.

By (3.5), it follows

∫
R

f (x, un)(un − v)dx ≥
∫

R
w1(x)

(∣∣v′∣∣p(un)−2 v′ +
1
n
∣∣v′∣∣p+−2 v′

)
(u′n − v′)dx

+
∫

R
w0(x)

(
|v|p(un)−2 v +

1
n
|v|p

+−2 v
)
(un − v)dx.

(3.10)
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We have∣∣∣∣ 1n
∫

R
w1(x)

∣∣v′∣∣p+−2 v′(u′n − v′)dx
∣∣∣∣

≤ 1
n

∫
R

w1(x)
∣∣v′∣∣p+−1 ∣∣(u′n − v′)

∣∣ dx

≤ 1
n

(∫
R

w1(x)
∣∣v′∣∣p+ dx

) p+−1
p+
(∫

R
w1(x)

∣∣(u′n − v′)
∣∣p+ dx

) 1
p+

=

(
1
n

) p+−1
p+
(

1
n

) 1
p+
(∫

R
w1(x)

∣∣v′∣∣p+ dx
) p+−1

p+
(∫

R
w1(x)

∣∣(u′n − v′)
∣∣p+ dx

) 1
p+

≤
(

1
n

) p+−1
p+
(

1
n
‖un − v‖p+

W1,p+
w0,w1 (R)

) 1
p+

‖v‖p+−1

W1,p+
w0,w1 (R)

.

(3.11)

By (3.7), we know that

sup
n≥1

(
1
n
‖un‖p+

W1,p+
w0,w1 (R)

)
< +∞.

Then, from (3.11), we deduce that

1
n

∫
R

w1(x)
∣∣v′∣∣p+−2 v′(u′n − v′)dx → 0, n→ +∞. (3.12)

Similarly,
1
n

∫
R

w0(x) |v|p
+−2 v(un − v)dx → 0, n→ +∞. (3.13)

We claim that ∫
R

f (x, un)(un − v)dx →
∫

R
f (x, u)(u− v)dx, n→ +∞. (3.14)

First, note that f (x, un(x))(un(x)− v(x)) → f (x, u(x))(u(x)− v(x)), a.e. x ∈ R. Second, by
(H2), it yields

| f (x, un)(un − v)| ≤ g(x) |un − v| = g(x)

(w0(x))
1

p−
(w0(x))

1
p− |un − v| , ∀ n ≥ 1.

Having in mind that (w0(x))
1

p− |un − v|⇀ (w0(x))
1

p− |u− v|weakly in Lp−(R) and that g/w
1

p−
0

belongs to the dual of Lp−(R), it follows that∫
R

g(x) |un − v| dx →
∫

R
g(x) |u− v| dx, n→ +∞,

which implies that g(x) |un − v| → g(x) |u− v| strongly in L1(R) and by consequence, there
exists g1 ∈ L1(R) such that, up to a subsequence,

g(x) |un − v| ≤ g1(x), a.e. x ∈ R, ∀ n ≥ 1. (3.15)

Using (3.15), we can easily apply the Lebesgue’s dominated convergence theorem to deduce
(3.14). In view of (3.12), (3.13), and (3.14), from (3.10) we get that∫

R
f (x, u)(u− v)dx ≥ lim

n→+∞

∫
R

w1(x)
∣∣v′∣∣p(un)−2 v′(u′n − v′)dx

+ lim
n→+∞

∫
R

w0(x) |v|p(un)−2 v(un − v)dx.
(3.16)
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Now, observe that

∫
R

w1(x)
∣∣v′∣∣p(un)−2 v′(u′n − v′)dx =

∫
R

w1(x)
∣∣v′∣∣p(u)−2 v′(u′n − v′)dx (3.17)

+
∫

R
w1(x)

(∣∣v′∣∣p(un)−2 v′ −
∣∣v′∣∣p(u)−2 v′

)
(u′n − v′)dx,

and∫
R

w0(x) |v|p(un)−2 v(un − v)dx =
∫

R
w0(x) |v|p(u)−2 v(un − v)dx

+
∫

R
w0(x)

(
|v|p(un)−2 v− |v|p(u)−2 v

)
(un − v)dx.

(3.18)

Next, we introduce the functional subspace Z of W1,p+
w0,w1(R) defined by

Z =

{
v ∈W1,p+

w0,w1(R),
∫

R
w1(x)

∣∣v′∣∣ p−(p+−1)
p−−1 dx < +∞,

∫
R

w0(x) |v|
p−(p+−1)

p−−1 dx < +∞
}

.

For v ∈ Z and w ∈W1,p−
w0,w1(R), we have∣∣∣∣∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′w′dx
∣∣∣∣

≤
∫

R
w1(x)

∣∣v′∣∣p(u)−1 ∣∣w′∣∣ dx

≤
(∫

R
w1(x)

∣∣v′∣∣ p−(p(u)−1)
p−−1 dx

) p−−1
p−
(∫

R
w1(x)

∣∣w′∣∣p− dx
) 1

p−

≤
(
|w1|L1(R) +

∫
|v′|≥1

w1(x)
∣∣v′∣∣ p−(p+−1)

p−−1 dx
) p−−1

p−
(∫

R
w1(x)

∣∣w′∣∣p− dx
) 1

p−

≤
(
|w1|L1(R) +

∫
R

w1(x)
∣∣v′∣∣ p−(p+−1)

p−−1 dx
) p−−1

p−

‖w‖
W1,p−

w0,w1 (R)
,

where

W1,p−
w0,w1(R) =

{
u ∈ L1

loc(R),
∫

R
w0(x) |u|p

−
dx < +∞,

∫
R

w1(x)
∣∣u′∣∣p− dx < +∞

}
,

equipped with the norm

‖u‖
W1,p−

w0,w1 (R)
=

(∫
R

(
w1(x)

∣∣u′∣∣p− + w0(x) |u|p
−)

dx
) 1

p−
.

Thus, the functional

w 7−→
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′w′dx

belongs to the dual of W1,p−
w0,w1(R). The same result holds for the functional

w 7−→
∫

R
w0(x) |v|p(u)−2 vwdx.
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Since (un − v) ⇀ (u− v) weakly in W1,p−
w0,w1(R), then∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u′n − v′)dx +
∫

R
w0(x) |v|p(u)−2 v(un − v)dx

→
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u′ − v′)dx +
∫

R
w0(x) |v|p(u)−2 v(u− v)dx.

(3.19)

Furthermore, we have∣∣∣∣∫
R

w1(x)
(∣∣v′∣∣p(un)−2 v′ −

∣∣v′∣∣p(u)−2 v′
)
(u′n − v′)dx

∣∣∣∣
≤
(∫

R
w1(x)

∣∣∣ ∣∣v′∣∣p(un)−2 v′ −
∣∣v′∣∣p(u)−2 v′

∣∣∣ p−
p−−1 dx

) p−−1
p−

×
(∫

R
w1(x)

∣∣(u′n − v′)
∣∣p− dx

) 1
p−

≤ c5

(∫
R

w1(x)
∣∣∣ ∣∣v′∣∣p(un)−2 v′ −

∣∣v′∣∣p(u)−2 v′
∣∣∣ p−

p−−1 dx

) p−−1
p−

.

(3.20)

Observe that

w1(x)
∣∣∣ ∣∣v′∣∣p(un)−2 v′ −

∣∣v′∣∣p(u)−2 v′
∣∣∣ p−

p−−1

≤ w1(x)2
p−

p−−1
∣∣v′∣∣ p−(p+−1)

p−−1 1{|v′|≥1} + w1(x)2
p−

p−−11{|v′|≤1}

≤ w1(x)2
p−

p−−1

(
1 +

∣∣v′∣∣ p−(p+−1)
p−−1

)
.

Taking into account that, for a.e. x ∈ R, p(un(x)) → p(u(x)) as n → +∞, then we can apply
the Lebesgue’s dominated convergence theorem to get∫

R
w1(x)

∣∣∣ ∣∣v′∣∣p(un)−2 v′ −
∣∣v′∣∣p(u)−2 v′

∣∣∣ p−
p−−1 dx → 0, n→ +∞.

By (3.20), it follows∫
R

w1(x)
(∣∣v′∣∣p(un)−2 v′ −

∣∣v′∣∣p(u)−2 v′
)
(u′n − v′)dx → 0, n→ +∞. (3.21)

In a similar way, we have∫
R

w0(x)
(
|v|p(un)−2 v− |v|p(u)−2 v

)
(un − v)dx → 0, n→ +∞. (3.22)

Combining (3.21), (3.22), (3.17) and (3.18), we deduce that∫
R

w1(x)
∣∣v′∣∣p(un)−2 v′(u′n − v′)dx +

∫
R

w0(x) |v|p(un)−2 v(un − v)dx

→
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u′ − v′)dx +
∫

R
w0(x) |v|p(u)−2 v(u− v)dx.

(3.23)

Inserting (3.23) in (3.16), we infer∫
R

f (x, u)(u− v)dx ≥
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u′ − v′)dx

+
∫

R
w0(x) |v|p(u)−2 v(u− v)dx, ∀ v ∈ Z.

(3.24)
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In particular,∫
R

f (x, u)(u− v)dx ≥
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u− v)′dx

+
∫

R
w0(x) |v|p(u)−2 v(u− v)dx, ∀ v ∈ C∞

0 (R).
(3.25)

Next, observe that the function w 7−→
∫

R
w0(x) |u− w|p

−
is continuous on (Eu, ‖ · ‖Eu

). Tak-
ing into account that

∫
R

g(x) |u− w| dx ≤

∫
R

 g(x)

(w0(x))
1

p−


p−

p−−1

dx


p−−1

p− (∫
R

w0(x) |u− w|p
−

dx
) 1

p−
, ∀ w ∈ Eu,

then by (H2), we can deduce that the function

w 7−→
∫

R
f (x, u)(u− w)dx

is continuous on (Eu, ‖ · ‖Eu
). Using that fact together with Proposition 2.1, we can immedi-

ately see that the inequality (3.25) can be extended to the whole space Eu, i.e.∫
R

f (x, u)(u− v)dx ≥
∫

R
w1(x)

∣∣v′∣∣p(u)−2 v′(u′ − v′)dx

+
∫

R
w0(x) |v|p(u)−2 v(u− v)dx, ∀ v ∈ Eu.

(3.26)

For s > 0 and w ∈ Eu, choosing v = u− sw as test function in (3.26), it yields

s
∫

R
f (x, u)wdx ≥ s

∫
R

w1(x)
∣∣u′ − sw′

∣∣p(u)−2
(u′ − sw′)w′dx

+ s
∫

R
w0(x) |u− sw|p(u)−2 (u− sw)wdx.

Thus,∫
R

f (x, u)wdx−
∫

R
w1(x)

∣∣u′ − sw′
∣∣p(u)−2

(u′ − sw′)w′dx

−
∫

R
w0(x) |u− sw|p(u)−2 (u− sw)wdx ≥ 0.

Tending s to 0+ in that last inequality, we obtain∫
R

f (x, u)wdx ≥
∫

R
w1(x)

∣∣u′∣∣p(u)−2 u′w′dx +
∫

R
w0(x) |u|p(u)−2 uwdx.

Clearly, the same inequality holds for (−w). Therefore,∫
R

w1(x)
∣∣u′∣∣p(u)−2 u′w′dx +

∫
R

w0(x) |u|p(u)−2 uwdx =
∫

R
f (x, u)wdx, ∀ w ∈ Eu. (3.27)

In order to conclude the proof of Theorem 1.2, we need to prove that f (x, u(x)) =

g(x) |u|p(x)−2 u(x) a.e. x ∈ R. For that aim, we start by taking w = (u − 1)+ as test func-
tion in (3.27):∫

R
w1(x)

∣∣u′∣∣p(u)−2 u′((u− 1)+)′dx +
∫

R
w0(x) |u|p(u)−2 u(u− 1)+dx =

∫
R

f (x, u)(u− 1)+dx.
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Since ∫
R

w1(x)
∣∣u′∣∣p(u)−2 u′((u− 1)+)′dx =

∫
u≥1

w1(x)
∣∣u′∣∣p(u) dx ≥ 0,

by (H3) we get∫
R

w0(x) |u|p(u)−2 u(u− 1)+dx ≤
∫

R
f (x, u)(u− 1)+dx

=
∫

u≥1
g(x)(u− 1)+dx ≤

∫
u≥1

w0(x)(u− 1)+dx.

Thus, ∫
u≥1

w0(x)
(
|u|p(u)−2 u− 1

)
(u− 1)+dx ≤ 0.

We immediately deduce that u(x) ≤ 1 a.e. x ∈ R. On the other hand, it is easy to see that
u ≥ 0. In fact, taking w = u− = min(u, 0) as test function in (3.27), we have∫

R
w1(x)

∣∣(u−)′∣∣p(u) dx +
∫

R
w0(x)

∣∣u−∣∣p(u) dx =
∫

R
f (x, u)u−dx ≤ 0,

which immediately implies that u− = 0 and by consequence u(x) ≥ 0 a.e. x ∈ R. Now, taking
w = (α− u)+ as test function in (3.27) and having in mind that∫

R
w1(x)

∣∣u′∣∣p(u)−2 u((α− u)+)′dx = −
∫

α≥u
w1(x)

∣∣u′∣∣p(u) dx ≤ 0,

by (H3) it yields ∫
R

w0(x)up(u)−1(α− u)+dx ≥
∫

R
f (x, u)(α− u)+dx

=
∫

α≥u
g(x)αp(x)−1(α− u)+dx

≥
∫

α≥u
w0(x)αp(α)−1(α− u)+dx.

Hence, ∫
α≥u

w0(x)
(

αp(α)−1 − up(u)−1
)
(α− u)+dx ≤ 0. (3.28)

In view of (H1), we know that αp(α)−1 ≥ up(u)−1 on the set {x ∈ R, α ≥ u(x)} . From (3.28),
we deduce that (α− u)+ = 0 and by consequence u(x) ≥ α a.e. x ∈ R. Finally, we conclude
that u 6= 0 and f (x, u(x)) = g(x)up(x)−1 a.e. x ∈ R. This ends the proof of Theorem 1.2.
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