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Abstract. The connection of these maps to homoclinic loops acts like an amplifier of the
map behavior, and makes it interesting also in the case where all map orbits approach
zero (but in many possible ways). We introduce so-called ‘flat’ intervals containing
exactly one maximum or minimum, and so-called ‘steep’ intervals containing exactly
one zero point of fµ,ω and no zero of f ′µ,ω. For specific parameters µ and ω, we construct
an open set of points with orbits staying entirely in the ‘flat’ intervals in section three.
In section four, we describe orbits staying in the ‘steep’ intervals (for open parameter
sets), and in section five (for specific parameters) orbits regularly changing between
‘steep’ and ‘flat’ intervals. Both orbit types are described by symbol sequences, and it
is shown that their Lebesgue measure is zero.
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1 Introduction

Our aim in this paper is to analyze the dynamics of certain parametrized families fµ,ω of
one-dimensional maps. These arise in the dynamics of flows in three dimensions of saddle-
focus homoclinic connections which were studied by Šil’nikov [6] and Holmes [2]. Holmes
considered maps f similar to

fµ,ω : x → xµ sin(ω ln(x))

for µ > 1, ω > 0 (and odd continuation). The property µ > 1 implies that all points x ∈ (−1, 1)
approach 0 under f n as n→ ∞ . The connection of the map f to a doubly homoclinic loop (as
explained below) implies that the small difference between f n (x) being positive or negative
corresponds to the ’macroscopic’ difference that the n + 1st return will take place along the
upper or lower branch of the homoclinic loop, and is therefore of interest. Holmes claimed
that the set Z of points x for which there exists an nx ∈ N such that f nx (x) = 0 can be a
dense subset of [0, 1], but it seems that this proof is not conclusive. (We briefly write f for
fµ,ω now.) In section four, we are interested in the orbit x, f (x) , f ( f (x)) , . . . We first assign
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to x a symbolic trajectory s0, s1, s2, . . . where sn = sign( f n (x)). Then we construct sets Ωc
n

(depending on a parameter c and n ∈N) of points with the first n iterates contained in certain
‘steep’ intervals and following arbitrary symbol sequences. We show that Ωc

n is contained in
the closure of the set Z, but Ωc

∞ =
⋂

n∈N Ωc
n has measure zero. The remark on the bottom of

the page 395 of [2] conjectures that open sets of points with orbit only in the ‘flat’ intervals can
exist for certain parameters. (These ‘flat’ intervals are disjoint to Z.) We prove this in Section 3.

In the last section, we focus on constructing another type of orbit whose points travel
regularly from a ‘flat’ interval to a ‘steep’ interval, then again from the ‘steep’ interval to a
‘flat’ interval. These points form a Cantor type set and are described by sequences of the type
(L, R, R, L, . . . ), indicating whether iterates of the initial points are to the left or to the right of
corresponding maxima of f . Taking counter images f−1 (J) of intervals J with f−1 (J) close to
a quadratic maximum of f involves inversion of the second order Taylor expansion and thus
taking square roots. We also show that, despite the expanding effect of the square root, the
measure of the points with such orbits (and thus the measure of the Cantor set) is also zero.

1.1 Motivation of the map

We consider the differential equation

ẋ = sx− νy + F1 (x, y, z)

ẏ = νx + sy + F2 (x, y, z) or Ẋ = F (X) , (1.1)

ż = λz + F3 (x, y, z)

where X = (x, y, z), with smooth functions F1, F2, F3 which vanish at the origin together with
their derivatives and assume that there exists a doubly homoclinic connection associated to
a saddle-focus singularity at the origin (0, 0, 0) with eigenvalues s± iν, s < 0, ν 6= 0, λ > 0.
We also assume that the saddle value satisfies s + λ < 0 and F possesses symmetry under the
change of sign, F (X) = −F (−X). Here, note that while the stable manifold Ws (0) is two-
dimensional, the unstable manifold Wu (0) is one-dimensional. The global unstable manifold
Wu (0) consists of the homoclinic loops and is contained in Ws (0) (see Figure 1.1). Note also
that in case s + λ < 0 stable periodic orbits bifurcate from the homoclinic loop as described
by L. P. Šil’nikov in reference [5], even in case of only one homoclinic loop.

Furthermore, to obtain expressions for a Poincaré first return map defined by the trajecto-
ries close to the homoclinic loop Λ, we assume that the vector field is linear (i.e. F1 = F2 =

F3 = 0) in a neighborhood of (0, 0, 0). First, in a neighborhood of (0, 0, 0) we introduce a
cross section Σ0 that is transversal to Λ and has a nonzero projection to the unstable direction.
The second property is an automatic consequence of the first in three dimensions. The stable
manifold Ws

loc splits Σ0 into the upper and lower components Σ+
0 and Σ−0 respectively, and the

homoclinic loop intersects Σ0 at some point p = (ξ, 0, 0) ∈ Λ ∩ Σ0 on Ws
loc. We next introduce

two cross-sections Σ∓1 transversal to Wu
loc. Using the trajectories which travel from Σ+

0 to Σ+
1

we aim at computing local maps G+
0 : Σ+

0 → Σ+
1 and G−0 : Σ−0 → Σ−1 . These local maps

associate to each point p ∈ Σ0 the first intersection with Σ1 of the trajectory which starts at p.
Thus, a local map G0 is defined by the flow on subsets Σ∓0 of Σ0. Note that since the upper
and lower homoclinic orbit of the system have analogous behavior, we shall continue with
one (the upper homoclinic loop) of them. For simplification we assume that there exist ξ > 0,
ζ > 0 such that Σ+

0 ⊂
{
(ξ, y, z) : (y, z) ∈ R2} and Σ+

1 ⊂
{
(x, y, ζ) : (x, y) ∈ R2}.

The solution (x (t) , y (t) , z (t)) of (1.1), which starts from a point (x0 = ξ, y0, z0) ∈ Σ+
0 close

to the origin at the time t = 0 and ends up at the point (x1, y1, z1 = ζ) ∈ Σ+
1 at the time t = τ,
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is written (taking into account only the linear terms in (1.1)) as follows:

x (t) + iy (t) = e(s+iν)t (x0 + iy0) = e(s+iν)t (ξ + iy0) (1.2)

z (t) = z0eλt.

The flight time τ that the trajectory takes from Σ+
0 to Σ+

1 is given by τ = 1
λ ln

( ζ
z0

)
. Sub-

stituting τ and ξ into formula (1.2), we get the following expression for the local map G+
0 , in

complex notation:

x1 + iy1 = e(s+iν)τ(z0) (x0 + iy0) = e(s+iν)τ(z0) (ξ + iy0) . (1.3)

On the other hand, due to the existence of the homoclinic connection and its transversal
intersection with Σ0 and Σ+

1 , we also have a Poincaré type map

G+
1 : Σ+

1 → Σ0

Figure 1.1: Cross sections Σ0, Σ1 and homoclinic orbit Λ.

Hence, for (x1, y1, z1 = ζ) ∈ Σ+
1 we have G+

1 (x1, y1, z1 = ζ) = (ξ, y2, z2) ∈ Σ0. With
DG+

1 (0, 0, ζ) represented by the matrix(
α β

γ δ

)
=

(
∂y2
∂x1

∂y2
∂y1

∂z2
∂x1

∂z2
∂y1

)
(0, 0) ,

we have for the composite map(
G+

1 ◦ G+
0
)

: (ξ, y0, z0)→ (ξ, y2, z2) ,
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(
y2

z2

)
=

(
αx1 + βy1

γx1 + δy1

)
+ h.o.t. (higher order terms),

and finally we get
z2 = γx1 + δy1. (1.4)

Substituting the value of τ (z0) , x1 and y1 in (1.4), in particular for y0 = 0, one obtains

z2 = ξesτ(z0) [γ cos+δ sin] (ντ (z0)) .

Hence, with c := ξ
√

γ2 + δ2 and choosing ϕ with eiϕ
√

γ2 + δ2 = δ+ iγ, the z-component after
one return is approximately given by

z0 → z2 = c
(

ζ

z0

) s
λ
[

sin
(

ν

λ

(
ln

ζ

z0

)
+ ϕ

)]
.

Note that s
λ < −1 so µ := − s

λ > 1, with x := z0
ζ , and ω = ν

λ we can rewrite the last equation
as

z2 = cxµ [sin (−ω (ln x) + ϕ)] .

This motivates the study of the one-dimensional map fω,µ : [−1, 1] → [−1, 1] given by the
following simpler expression

fµ,ω(x) =


xµ sin(ω ln(x)), x > 0,

0, x = 0,

− fµ,ω (−x) , x < 0,

where we use x instead of z from now on. Here, note that odd continuation in the definition
of fµ,ω is motivated by the corresponding symmetry of vector field. The above process shows
how to arrive at this map starting from homoclinic orbits; similar considerations are given in
Šil’nikov, L. P. [6], P. J. Holmes [2], or J. Guckenheimer/P. Holmes [1, pp. 320–321]. Analogous
infinite-dimensional examples with attracting homoclinic behavior (not necessarily with a
double loop) were studied by Walther in [7] and by Ignatenko in [3]. The maps of this kind
(see Figure 1.2) were also studied by M. J. Pacifico, A. Rovella and M. Viana [4], but for µ < 1,
which has expansion properties of fµ,ω as a consequence. Briefly, they proved that a family
of one dimensional maps with infinitely many critical points exhibit global chaotic behavior
in a persistent way: For a positive Lebesgue measure set of values µ, the map f has positive
Lyapunov exponent at every critical value and at Lebesgue almost all points in its domain;
moreover, f is topologically transitive, i.e. has dense orbits [4].

After giving some preparatory calculations for the following chapters, we are going to
study the orbit f n

ω,µ (x) = f n(x); n = 1, 2, 3, . . . of a typical point x ∈ (0, 1). If f n(x) = 0 for
some n < ∞, then it is clear that all

(
f j(x)

)
j≥n will equal to 0. To orbits of f we can associate

symbol sequences
(
sj
)
=
(
sign f j (x)

)
j≥0 = (+1,+1,−1, . . . ). f n (x) = 0 implies that sn = 0,

then sk = 0 for all k ≥ n. Here +1,−1 and 0 correspond to the upper, to the lower homoclinic
branch or to the stable manifold Ws (0) in terms of the original motivation. Consequently, the
following questions arise:

(i) Are all symbol sequences possible or not?

(ii) Does the symbol sequence change in every interval? (Is there chaotic motion?)
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(iii) Is it possible to construct open intervals where the symbol sequence does not change?

In the fifth chapter, we shall also consider symbol sequences different from (sign f j (x)),
describing whether f n(x) is to the left or to the right hand side of maximum points of f .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−1

0

1

x

f(
x)

f (x) = x2 · sin(10 · ln(x))

Figure 1.2: Graph of f for µ = 2, ω = 10.

2 Formulas for the derivatives of fµ,ω

Lemma 2.1. Define for µ, ω > 0 the map

fµ,ω(x) =


xµ sin(ω ln(x)), x > 0,

0, x = 0,

− fµ,ω(−x), x < 0.

Assume now µ ∈ (2, ∞), ω > 0. Set ϕj := arctan
(

ω
µ+1−j

)
∈
(
0, π

2

)
and

gω,µ+1−j :=
√
(µ + 1− j)2 + ω2

for j ∈ {1, 2, 3}. It is convenient to also define the more general class of functions

fµ,ω,ϕ(x) := xµ sin (ω ln (x) + ϕ) .

Then, the following formulas hold for x ∈ R, if µ > 3:

(i)
f ′µ,ω(x) = gω,µ · fµ−1,ω,ϕ1(x), (2.1)

cos (ϕ1) =
µ√

µ2 + ω2
=

µ

gω,µ
, (2.2)

sin (ϕ1) =
ω√

µ2 + ω2
=

ω

gω,µ
. (2.3)
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(ii)
f ′′µ,ω(x) = gω,µ · gω,µ−1 · fµ−2,ω,ϕ1+ϕ2(x). (2.4)

(iii)
f ′′′µ,ω(x) = gω,µ · gω,µ−1 · gω,µ−2 · fµ−3,ω,ϕ1+ϕ2+ϕ3(x). (2.5)

Proof. (i) From the definition of ϕj, we have ϕ1 = arctan
(

ω
µ

)
, and also from the definition of

gω,µ+1−j, we have gω,µ =
√

µ2 + ω2. It follows that

cos (ϕ1) =
µ

gω,µ
and sin (ϕ1) =

ω

gω,µ
.

This proves (2.2) and (2.3). For x > 0, we have

f ′µ,ω,ϕ(x) = xµ cos (ω ln (x) + ϕ)

(
1
x

ω

)
+ xµ−1µ sin (ω ln (x) + ϕ)

= xµ−1 (µ sin (ω ln (x) + ϕ) + ω cos (ω ln (x) + ϕ)) .

By multiplying and dividing the last equation with gω,µ, we have

f ′µ,ω,ϕ(x) = gω,µ · xµ−1
(

µ

gω,µ
sin (ω ln (x) + ϕ) +

ω

gω,µ
cos (ω ln (x) + ϕ)

)
. (2.6)

Putting (2.2) and (2.3) in (2.6), we finally obtain

f ′µ,ω,ϕ(x) = gω,µ · xµ−1 (cos (ϕ1) · sin (ω ln (x) + ϕ) + sin (ϕ1) · cos (ω ln (x) + ϕ))

= gω,µ · xµ−1 sin(ω ln (x) + ϕ + ϕ1)

= gω,µ · fµ−1,ω,ϕ+ϕ1(x). (2.7)

(ii) Further, using (2.7) with ϕ + ϕ1 instead of ϕ, and µ− 1 instead of µ, we see that

f ′′µ,ω(x) = f ′′µ,ω,0(x) =
(

gω,µ · fµ−1,ω,ϕ1

)′
(x)

= gω,µ · gω,µ−1 · fµ−2,ω,ϕ1+ϕ2(x),

which proves (2.4).
(iii) Using (2.7) we obtain (2.5) analogously.

Lemma 2.2. Let µ > 3 and ω > 0 be given. Define q := e−
π
ω and ϕj as in Lemma 2.1. Then, the

following properties are satisfied in (0, 1]:

(i) fµ,ω has the zero points
qk = e−

kπ
ω , (2.8)

(k ∈N) and
f ′µ,ω(q

k) = (−1)k ωqk(µ−1). (2.9)

(ii) fµ,ω has the extremal points

mk = qke
−ϕ1

ω (2.10)

and
fµ,ω (mk) = (−1)k+1 · exp

(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1). (2.11)
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(iii) If µ is an even integer, and β ∈N is odd and l (k) := kµ + β, then fµ,ω has a maximum at

ml(k) = ql(k)e
−ϕ1

ω . (2.12)

Proof. (i) We first find the zeros of fµ,ω. For x ∈ (0, 1) one has

sin(ω ln(x)) = 0 ⇔ ∃k ∈N : ω ln(x) = −kπ ⇔ ∃k ∈N ln(x) =
−kπ

ω
,

and hence x = e
−kπ

ω . With q = e−
π
ω , the zeros of fµ,ω in (0, q] are given by x = e

−kπ
ω = qk.

Therefore, by inserting qk in (2.1), we have

f ′µ,ω(q
k) = qk(µ−1) · gω,µ · sin(ω

(
ln qk

)
+ ϕ1)

= qk(µ−1) · gω,µ · sin(ω
(

ln e
−kπ

ω

)
+ ϕ1)

= (−1)k qk(µ−1) · gω,µ · sin(ϕ1).

Using (2.3) we obtain

f ′µ,ω(q
k) = (−1)k qk(µ−1) · gω,µ ·

ω

gω,µ

= (−1)k ωqk(µ−1).

Hence, assertion (i) is proved.
(ii) Let k ∈ N. We find the extremum points of fµ,ω in the interval Ik =

[
qk+1, qk] by

solving f ′µ,ω(x) = 0 for x ∈ Ik. Since x > 0, xµ−1 6= 0. So, we have

sin(ω (ln x) + ϕ1) = 0,

and hence x = e
−kπ−ϕ1

ω . The last expression equals to qke
−ϕ1

ω = mk, which proves (2.10).
Furthermore, for the extremum point mk of fµ,ω in the interval

(
qk+1, qk) we have

fµ,ω (mk) = mµ
k sin(ω ln(mk))

=

(
qke−

ϕ1
ω

)µ

sin(ω ln
(

qke−
ϕ1
ω

)
)

=

(
e−

kπ
ω e−

ϕ1
ω

)µ

sin(ω ln
(

e−
kπ
ω e−

ϕ1
ω

)
)

= exp
(
− kπµ + ϕ1µ

ω

)
sin(ω

−kπ − ϕ1

ω
)

= (−1)k+1 exp
(
− kπµ + ϕ1µ

ω

)
sin(ϕ1).

(iii) Substituting l (k) instead of k in (2.11), we have

fµ,ω

(
ml(k)

)
= (−1)l(k)+1 exp

(
− l (k)πµ + ϕ1µ

ω

)
sin(ϕ1)

= exp
(
− l (k)πµ + ϕ1µ

ω

)
(−1)kµ+β+1 sin(ϕ1)

Therefore, it is clear that fµ,ω
(
ml(k)

)
> 0 (and hence fµ,ω has a maximum at ml(k)), if µ is even

and β is odd.
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We shall frequently use the simple lemma below.

Lemma 2.3. Assume f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b). If | f ′| ≥ c, or
| f ′| ≤ d (c and d are constant), then we have

c |b− a| ≤ | f (b)− f (a)| ≤ d |b− a| . (2.13)

Proof. (Follows from the mean value theorem.)

3 The behavior of orbits remaining in some ‘flat’ intervals

In this part we find some parameters µ and ω such that fµ,ω maps some extremal points mk
to some other extremal points m`(k) (see Figure 3.1). Then, we construct some open intervals
Uk around mk and orbits of fµ,ω = f which are entirely contained in

⋃
k∈N Uk.

qkqk+1 mk

ql(k)+1 ql(k)

ml(k)

Uk

x f (x)

x

Figure 3.1: f (mk) = m`(k) for special parameters (picture not produced with
realistic parameters, for better visibility).

Theorem 3.1. For k ∈N, ω > 0, and even integer µ > 5, define

η := min

 q
gω,µ · gω,µ−1

,
e−

ϕ1
ω − q
2

,
1− e−

ϕ1
ω

2

 , (3.1)

and set ` (k) := kµ + 1 (which corresponds to β = 1 in assertion (iii) of Lemma 2.2), δk := ηqk ,
δ`(k) := ηq`(k). Then, for every large enough even integer µ there exists a corresponding ω such that
the following properties are satisfied:

(i) With the intervals Uk = (mk − δk, mk + δk) one has f (Uk) ⊂ U`(k) and

∀k ∈N : f−1({0}) ∩Uk = ∅.

(ii) If k is odd, then for x ∈ Uk, the orbits
(

f j (x)
)

j∈N
all have the symbol sequence(

sj
)
=
(

sign f j (x)
)

j∈N
= (+1,+1,+1, . . . ) .
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(iii) The set
Z = {x | ∃n ∈N : f n (x) = 0} (3.2)

is disjoint to
⋃

k Uk and, in particular, is not dense in [−1, 1].

The proof is divided into several lemmas.

Lemma 3.2. Let k ∈N and define ϕ1 as in Lemma 2.1. Define η and δk as in Theorem 3.1, and

η := min

 e−
ϕ1
ω − q
2

,
1− e−

ϕ1
ω

2

 .

Then we have

(mk − δk, mk + δk) ⊂ [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk

]
⊂
(

qk+1, qk
)

.

Proof. From (3.1) we have η ≤ η. Multiplying both sides with qk, and using (2.10) we have

δk ≤ ηqk = min

qke−
ϕ1
ω − qk+1

2
,

qk − qke−
ϕ1
ω

2

 = min
{

mk − qk+1

2
,

qk −mk

2

}
,

it follows that (mk − δk, mk + δk) ⊂ [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk] ⊂ (qk+1, qk).

Lemma 3.3. Define ϕ1 as in Lemma 2.1, and define ` (k) as in Theorem 3.1. Then the following
statements are true.

(i) For every even integer µ ≥ 32, there exists ω ∈ (0, 1) such that for all k ∈N f has the property

f (mk) = m`(k).

(ii) For any choice of ω as in assertion (i), one has ω → 0 as µ→ ∞.

Proof. (i) From (2.11) we have for all k ∈N

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
sin(ϕ1). (3.3)

On the other hand, from the third assertion of Lemma 2.2 we know that for even µ, f has a
maximum at the point

m`(k) = exp
(
−π` (k) + ϕ1

ω

)
. (3.4)

Using (2.3), (3.3) and (3.4), we obtain the following equivalences:

m`(k) = f (mk) ⇔ exp
(
−π` (k) + ϕ1

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1)

⇔ exp
(
−π` (k) + ϕ1

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
· 1√

1 + µ2

ω2

⇔ exp
(
−π

ω
[kµ− ` (k)] +

ϕ1 (1− µ)

ω

)
=

√
1 +

µ2

ω2 . (3.5)
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Substituting ` (k) = kµ + 1 in (3.5), we have

exp
(

π + ϕ1 (1− µ)

ω

)
=

√
1 +

µ2

ω2

or, using the definition of ϕ1,

exp

π − (µ− 1) arctan
(

ω
µ

)
ω

 =

√
1 +

µ2

ω2 . (3.6)

In view of (3.6), we define

F (ω, µ) = exp

π − (µ− 1) arctan
(

ω
µ

)
ω

−√1 +
µ2

ω2 (3.7)

for all ω > 0 and µ > 1. We try to find (ω, µ) with F (ω, µ) = 0 (see Figure 3.2). Noting
that for fixed µ, limω→0 F (ω, µ) = +∞, it is enough to find at least one pair (ω, µ) with
F (ω, µ) < 0. For ω = 1, we have

F (1, µ) = exp
(

π − (µ− 1) arctan
(

1
µ

))
−
√

1 + µ2

= exp
(

π − µ arctan
(

1
µ

)
+ arctan

(
1
µ

))
−
√

1 + µ2. (3.8)

Since arctan′ (x) = 1
1+x2 , we have arctan′ (x) ≥ 1

2 for |x| ≤ 1. Hence, (2.13) shows arctan(x) ≥
1
2 x for x ∈ [0, 1]. It follows that for µ > 1,

µ arctan
(

1
µ

)
≥ 1

2
. (3.9)

Using (3.9) and arctan
(

1
µ

)
< π

4 for µ > 1 in (3.8), we have

F (1, µ) ≤ exp
(

π − 1
2
+

π

4

)
−
√

1 + µ2 = exp
(

5π

4
− 1

2

)
−
√

1 + µ2.

From the fact that exp
( 5π

4 −
1
2

)
< 32, we have F (ω, µ) < 0, if we set ω = 1 and µ ≥ 32. With

the intermediate value theorem, it is trivial that F (ω, µ) has at least one zero point ω ∈ (0, 1).
It follows that (3.7) is satisfied with this ω depending on the even integer µ ≥ 32. Hence, the
proof of assertion (i) is completed.

(ii) Consider a sequence µk, µk → ∞ with corresponding ωk ∈ (0, 1) such that F (µk, ωk) =

0. Then
√

1 + µ2
k

ω2
k
→ ∞. Further, (µk − 1) arctan

(ωk
µk

)
is bounded. The exponential term in

(3.7) must go to +∞, so ωk → 0 necessarily. This completes the proof of (ii) and the proof of
Lemma 3.3.

Remark 3.4. Consider the equation (3.5). Because µ > 1, so ϕ1(1−µ)
ω < 0, and

√
1 + µ2

ω2 > 1,
the term −π

ω [kµ− ` (k)] must be positive, if we have a solution. Accordingly, ` (k) > kµ must
be satisfied. It means (3.6) has no solution for ` (k) ≤ kµ. Thus ` (k) ≥ kµ + 1 necessarily; we
made the choice ` (k) = kµ + 1.
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Figure 3.2: Graph of F(·, µ) for µ = 32.

Numerical observations. In order to find a numerical solution we use two starting points
where F (·, µ) has opposite signs and at the 9 th step of a bisection method we obtained
ω = 0.69895 and µ = 24 as an appropriate F (ω, µ) = 0. Although one can obtain some other
solution points ω, for some other the parameters µ, we numerically found out that there is no
solution for µ < 3.1.

Lemma 3.5. Choose an even integer µ ≥ 32 and ω ∈ (0, 1) with the properties as in Lemma 3.3.
Define ` (k), η, δk and δ`(k) as in Theorem 3.1. Then with the intervals Uk = (mk − δk, mk + δk), we
have f (Uk) ⊂ U`(k).

Proof. Let µ and ω be as in the assumption of the lemma, and x ∈ Uk. With ` (k) = kµ + 1 we
claim that ∣∣∣ f (x)−m`(k)

∣∣∣ < δ`(k) = ηq`(k) . (3.10)

From the second order Taylor expansion, we have

f (x) = f (mk) + f ′ (mk) (x−mk) +
f ′′ (ξ)

2
(x−mk)

2 (3.11)

with ξ ∈ (mk − δk, mk + δk). Since µ > 2, note that we also have

q(k+1)(µ−2) ≤ |ξ|µ−2 ≤ qk(µ−2). (3.12)

Substituting the equality (3.11) in the left hand side of (3.10), we get∣∣∣ f (x)−m`(k)

∣∣∣ = ∣∣∣∣∣ f (mk) + f ′ (mk) (x−mk) + f ′′ (ξ)
(x−mk)

2

2
−m`(k)

∣∣∣∣∣ .

From the fact that we now have fixed parameters µ, ω with the property f (mk) = m`(k) as in
Lemma 3.3 and using f ′(mk) = 0 and (x−mk) < δk, the last equality gives∣∣∣ f (x)−m`(k)

∣∣∣ ≤ ∣∣∣∣∣ f ′′ (ξ) δ2
k

2

∣∣∣∣∣ .
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Using (2.4) in the last equality, we obtain∣∣∣ f (x)−m`(k)

∣∣∣ = ∣∣∣∣∣gω,µ · gω,µ−1 · sin (ω ln (ξ) + ϕ1 + ϕ2) |ξ|µ−2 δ2
k

2

∣∣∣∣∣ . (3.13)

Using the upper estimate of (3.12) and substituting the value of δk in (3.13), we get∣∣∣ f (x)−m`(k)

∣∣∣ ≤ ∣∣∣∣gω,µ · gω,µ−1 ·
∣∣∣qk
∣∣∣µ−2 η2q2k

2

∣∣∣∣
=
∣∣∣gω,µ · gω,µ−1 · qkµ ηη

2

∣∣∣ . (3.14)

Finally, using the definition of η from (3.1) in (3.14), we have∣∣∣ f (x)−m`(k)

∣∣∣ ≤ ∣∣∣∣gω,µ · gω,µ−1 · qkµ η

2
q

gω,µ · gω,µ−1

∣∣∣∣
= qkµ+1 η

2
< ηqkµ+1 = ηq`(k) = δ`(k).

Proof of Theorem 3.1. Choose µ, ω as in Lemma 3.3, and let ` (k) be as in Theorem 3.1.
(i) Lemma 3.5 shows f (Uk) ⊂ U`(k) and the definition of U`(k) implies 0 /∈ U`(k), so

f−1 ({0}) ∩Uk = ∅.

(ii) If k is odd and µ is as above (therefore even), then all `j (k) (j ≥ 0) are odd and all U`j(k)
are intervals around maxima of f , where f is positive. Hence the assertion is proved.

(iii) For k0 ∈ N, x ∈ Uk0 and n ∈ N0, f n (x) ∈ ⋃k∈N Uk, in particular f n (x) 6= 0, which
proves assertion (iii).

Note that the possible existence of the orbits which remain close to critical points, i.e
implying non-density has been mentioned as a remark by P. J. Holmes in the bottom of the
page 395 of [2] with only a vague indication of proof. With this section we gave a rigorous
proof of that idea.

4 Behavior of the map fµ,ω in some ‘steep’ intervals

In this section we first construct some orbits whose points stay entirely in so-called ‘steep’
intervals, and then analyze the measure of the set of points which have such orbits. In con-
trast to Sections 3 and 5, where the parameters µ and ω are connected by the conditions
given in assertion (i) of Lemma 3.3 and in (5.1), in this section both of them can be varied
independently.

Consider the interval (−mk,−mk+1) or (mk+1, mk). From Lemma 2.2 we have∣∣∣ f ′µ,ω(q
k+1)

∣∣∣ = ω
(

qk+1
)(µ−1)

.

Since f ′µ,ω (∓mk) = f ′µ,ω (∓mk+1) = 0, continuity of f ′µ,ω implies that we can choose a ‘steep’
interval Sk, either as a subset of (mk+1, mk) or as a subset of (−mk,−mk+1), on which | f ′µ,ω|
satisfies a lower estimate. We begin by specifying the boundaries of the ‘steep’ interval Sk and
by giving some new notations.

We use the notation |I| for the length of an interval I.
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Definition 4.1. Let k ∈N and c ∈ (0, 1). Define

ak := min
{

x ∈
(

mk+1, qk+1
]

:
∣∣∣ f ′µ,ω(x)

∣∣∣ ≥ cω
(

qk+1
)(µ−1)

on
[

x, qk+1
]}

and

bk := max
{

x ∈
[
qk+1, mk

)
:
∣∣∣ f ′µ,ω(x)

∣∣∣ ≥ cω
(

qk+1
)(µ−1)

on
[
qk+1, x

]}
.

Note that qk+2 < ak < qk+1 < bk < qk (see Figure 4.1). Given a symbol sequence of the form

s = (s0, s1, s2, . . . ) ∈ {+1,−1}N0 ,

where symbols represent the signs of f j
µ,ω (x) for some starting value x, we construct corre-

sponding orbits of fµ,ω. Note that in terms of the motivation by the three dimensional vector
field, such orbits correspond to solutions converging to the doubly homoclinic loop, and tak-
ing turns along the upper and lower homoclinic orbit according to the symbol sequence. For
0 ≤ a ≤ b, define

[a, b]+1 := [a, b] ,

[a, b]−1 := [−b,−a] ,

and define ‘steep’ intervals by

Sc
k,s := [ak, bk]s =

{
[ak, bk] , if s = +1,

[−bk,−ak] , if s = −1.

So, we have ∣∣∣ f ′µ,ω(x)
∣∣∣ ≥ cω

(
qk+1

)(µ−1)
for x ∈ Sc

k,s, s ∈ {±1} , k ∈N. (4.1)

We also define Sk,±1 := Sc
k,+1 ∪ Sc

k,−1 and define the union of all ‘steep’ intervals by

qkqk+1 mkqk+2
mk+1 akak bk

f (x)

x

Figure 4.1: One interval (qk+2, qk), with corresponding ‘steep’ interval Sc
k,+1 =

[ak, bk].
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Ψc=
⋃

k∈N

Sk,±1.

Note that for s ∈ {±1} , Sc
k,s ⊂ (mk+1, mk)s , and hence

∣∣Sc
k,s
∣∣ ≤ mk −mk+1 = qke−

ϕ1
ω (1− q) (4.2)

Setting f := fµ,ω, we define sets of points with forward orbits which are contained in these
‘steep’ intervals (see Figure 4.2). Namely,

Ωc
n =

n⋂
j=0

f−j (Ψc) ; Ωc
∞ =

∞⋂
j=0

f−j (Ψc) .

qk0

y0

Σ1

qk0+1

f (x)

qk1+1 qk1

y1

x f (x)

x

Figure 4.2: Graphical construction of Σ1 from Σ0 = [qk0+1, y0] (in case s0 = s1 =

+1).

Theorem 4.2. Let c ∈ (0, 1). Assume µ > 1 and define Sc
k,±1 and Ωc

∞ as above. Then for k0 ∈ N the
following statements are true:

(i) For every symbol sequence s = (s0, s1, s2, . . . ) there exists a point y0 ∈
(

Sc
k0,s0
∩Ωc

∞

)
with the

property that sign f j (y0) is given by sj ∈ {±1}, where j ∈N0.

(ii) Let ω > 1
c + π (µ + 1). Then with the set Z from (3.2) we have

(
Sc

k0,s0
∩Ωc

∞

)
⊂ Z.

(iii) Let c ∈
( 2

π , 1
)

and ω > cπ2(2µ+3)
2(cπ−2) . Then Ωc

∞ ⊂ Z, and Ωc
∞ has Lebesgue measure zero.

Remark 4.3. A similar argument is sketched in the page 395 of [2], with the purpose to show
that Z can be dense, but it seems that the method gives density only in a set of measure zero
(see part (iii) of the above theorem).

The proof starts with the following lemma.
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Lemma 4.4. Let k0 ∈ N, c ∈ (0, 1) and s = (s0, s1, s2, . . . ) ∈ {+1,−1}N0 be given. Define Sc
k0,sj

as
in the passage given before Theorem 4.2. Then the following statements are true:

(i) There exists a point y0 ∈ Sc
k0,s0

and a sequence k0 < k1 < k2 < · · · such that ∀j ∈ N0

f j (y0) ∈ Sc
k j,sj

, in particular, y0 ∈ Ωc
∞.

(ii) Let y0 ∈
(
Sc

k0,s0
∩Ωc

∞
)

be given and define the sequence k0 < k1 < k2 < · · · by f j (y0) = yj ∈
Sc

k j,sj
(j ∈N0). Then there exists a sequence

(
Σj
)

of intervals in Sc
k0,s0

with Σj ⊃ Σj+1 3 y0,(
f j)′ 6= 0 on Σj and

f j (Σj
)
=
[
qk j+1, yj

]
sj
=


[
qk j+1, yj

]
, if sj = +1,[

yj,−qk j+1
]

, if sj = −1
⊂ Sc

k j,sj
for j ∈N0, (4.3)

in particular, Z ∩ Σj 6= ∅ for all j ∈N0.

(iii) For y0 ∈
(

Sc
k0,s0
∩Ωc

∞

)
and k0, k1, k2, . . . as in assertion (ii) and all j ∈N we have

∣∣∣∣( f j
)′

(y0)

∣∣∣∣ ≥ (cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

. (4.4)

(iv) Let y0 and the sequence k0 < k1 < k2 < · · · be as in (ii). Then

∀j ∈N : qk jµ ≥ qk j+1+2. (4.5)

(v) Let ω > 1
c + π (µ + 1). Let y0 and the associated Σj be as in assertion (ii) and ϕ1 be as in

Lemma 2.1. Then
∣∣Σj
∣∣ ≤ qk0 e−

ϕ1
ω (1−q)

(cωqµ+1)
j and cωqµ+1 > 1; in particular,

∣∣Σj
∣∣→ 0, as j→ ∞.

Proof. (i) Let k0 ∈ N and s = (s0, s1, s2, . . . ) be given. For Sc
k0,s0

= [ak0 , bk0 ]s0
it is clear that

f
(
Sc

k0,s0

)
is an interval which contains 0 in its interior, and since ak → 0, bk → 0 as k → ∞,

there exists k1 > k0 with Sc
k1,s1
⊂ f

(
Sc

k0,s0

)
. Further f |Sc

k0,s0
is injective, and we set

J1 :=
(

f |Sc
k0,s0

)−1 (
Sc

k1,s1

)
.

( f maps J1 bijectively onto Sc
k1,s1

.) Similarly, there exists k2 > k1 with Sc
k2,s2
⊂ f

(
Sc

k1,s1

)
, and a

closed subinterval J2 ⊂ J1 such that f 2|J2 : J2 → Sc
k2,s2

is bijective. Thus, we obtain a nested
sequence

J1 ⊃ J2 ⊃ J3 ⊃ · · ·

of closed intervals and sequence of numbers

k0 < k1 < k2 < · · ·

with the property that f j (Jj
)
= Sc

k j,sj
, j = 1, 2, 3, . . . Furthermore, the intersection of nested

closed intervals
⋂

j∈N Jj is not empty. It means that there exists a point y0 ∈
⋂

j∈N Jj which
follows the symbol sequence s, and this result completes the proof of assertion (i).
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(ii) For the proof of this assertion we use a recursive construction. Define

Σ0 :=
[
qk0+1, y0

]
s0
=


[
qk0+1, y0

]
, if s0 = +1[

y0,−qk0+1
]

, if s0 = −1
⊂ Sc

k0,s0
.

Then y0 ∈ Σ0, and the definition of Sc
k0,s0

implies f ′ 6= 0 on Σ0, so (4.3) holds for j = 0. Assume
Σj with the properties in (4.3) is constructed and we want to construct Σj+1 ⊂ Σj such that
(4.3) is also satisfied for j + 1. We have, observing that sign

(
yj
)
= sj,

f
([

qk j+1, yj

]
sj

)
=
[
0, f

(
yj
)]

sj+1
=
[
0, yj+1

]
sj+1

,

and f j|Σj as well as f |[
qkj+1,yj

]
sj

are invertible. Hence, we can define

Σj+1 =
(

f−j|Σj

)−1
(

f |[
qkj+1,yj

]
sj

)−1 ([
qk j+1+1, yj+1

]
sj+1

)
.

Then y0 ∈ Σj+1 ⊂ Σj, the chain rule shows
(

f j+1)′ 6= 0 on Σj+1, and(
f j+1

) (
Σj+1

)
=
[
qk j+1+1, yj+1

]
sj+1
⊂ Sc

k j+1,sj+1
.

Hence, the recursive construction is completed. Note also that for j ∈ N, Σj contains a point

xj with f j (xj
)
= qk j+1, so f j+1(xj

)
= f

(
qk j+1

)
= 0, hence xj ∈ Σj ∩ Z.

(iii) By the chain rule the derivative
(

f j)′ at y0 ∈
⋂

j∈N Σj can be calculated as the product
of the derivatives of f along the orbit∣∣∣∣( f j

)′
(y0)

∣∣∣∣ = ∣∣ f ′ (y0) · f ′ (y1) · . . . · f ′
(
yj−2

)
· f ′
(
yj−1

)∣∣ = j−1

∏
n=0

∣∣ f ′ (yn)
∣∣ .

Using (4.1) for each derivative in the last equality, we have∣∣∣∣( f j
)′

(y0)

∣∣∣∣ = j−1

∏
n=0

∣∣ f ′ (yn)
∣∣ ≥ (cω)j

j−1

∏
n=0

(
qkn+1

)µ−1

= (cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

.

This gives the proof of (4.4).
(iv) Let now y0 ∈ Sc

k0,s0
and sequence k0 < k1 < k2 < · · · as in (ii) be given. With Σj from

(4.3) we have f j (Σj
)
⊂ Sc

k j,sj
, and so

f j+1 (y0) ∈ Sc
k j+1,sj+1

∩ f j+1 (Σj
)
⊂ f

(
f j (Σj

))
⊂ f

(
Sc

k j,sj

)
, for j ∈N0

which implies f
(
Sc

k j,sj

)
∩ Sc

k j+1,sj+1
6= ∅. Moreover, since | f | ≤ qk jµ on Sc

k j,sj
, we obviously have

qk jµ ≥ max
{
| f (x)| : x ∈ Sc

k j,sj

}
. Together with

max
{
| f (x)| : x ∈ Sc

k j,sj

}
≥ min

{
|y| : y ∈ Sc

k j+1,sj+1

}
,
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we conclude

qk jµ ≥ max
{
| f (x)| : x ∈ Sc

k j,sj

}
≥ min

{
|y| : y ∈ Sc

k j+1,sj+1

}
= ak j+1 ≥ qk j+1+2.

Hence, the proof of (iv) is also completed.
(v) Finally, from (2.13) we know that on Σj we have

∣∣Σj
∣∣ ≤ ∣∣( f j) (Σj

)∣∣
minΣj

∣∣∣( f j
)′∣∣∣ . (4.6)

From (4.3) we have
∣∣( f j) (Σj

)∣∣ ≤ ∣∣∣Sc
k j,sj

∣∣∣, and from (4.2) we have
∣∣∣Sc

k j,sj

∣∣∣ ≤ qk j e−
ϕ1
ω (1− q).

Combining both inequalities, we get∣∣∣( f j
) (

Σj
)∣∣∣ ≤ ∣∣∣Sc

k j,sj

∣∣∣ ≤ qk j e−
ϕ1
ω (1− q) . (4.7)

Using (4.7) and (4.4) in (4.6), we obtain

∣∣Σj
∣∣ ≤ qk j e−

ϕ1
ω (1− q)

(cω)j

(
j−1
∏

n=0
qkn+1

)µ−1 . (4.8)

By using (4.5) we can estimate the denominator of (4.8) as follows:

(cω)j

(
j−1

∏
n=0

qkn+1

)µ−1

= (cω)j ·
(

j−1

∏
n=0

q

)µ−1( j−1

∏
n=0

qkn

)µ−1

= (cω)j ·
qj(µ−1)

j−1
∏

n=0
qknµ

j−1
∏

n=0
qkn

≥ (cω)j · qj(µ−1) ·

j−1
∏

n=0
qkn+1+2

j−1
∏

n=0
qkn

= (cω)j · q(µ−1)j ·
q2j

j−1
∏

n=0
qkn+1

j−1
∏

n=0
qkn

=
(

cωqµ+1
)j
· qk j

qk0
.

Substituting this estimate in (4.8), we finally have

∣∣Σj
∣∣ ≤ qk j e−

ϕ1
ω (1− q) qk0

(cωqµ+1)
j qk j

=
qk0 e−

ϕ1
ω (1− q)

(cωqµ+1)
j .

To show that
∣∣Σj
∣∣ → 0 as j → ∞, it is enough to show

(
cωqµ+1) > 1. Note that the first order

Taylor expansion of qµ+1 = exp
(
− π

ω (µ + 1)
)

is

exp
(
−π

ω
(µ + 1)

)
= 1− π (µ + 1)

ω
+ R1 (ξ) ,

where R1 (ξ) =
exp′′(ξ)

2

(
π(µ+1)

ω

)2
> 0, and ξ ∈

(
−π(µ+1)

ω , 0
)

. The assumption of (e) gives us
1
c + π (µ + 1) < ω, and hence

1 < cω− cπ (µ + 1) = cω

(
1− π (µ + 1)

ω

)
.
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Since R1 (ξ) > 0, we obtain

1 < cω

(
1− π (µ + 1)

ω

)
< cω

(
1− π (µ + 1)

ω
+ R1 (ξ)

)
= cω exp

(
−π

ω
(µ + 1)

)
= cωqµ+1,

and this completes the proof of (v).

The next lemma estimates the measure of the points in the ‘steep’ interval Sc
k0,+1 which

have the first n iterates in the union of all ‘steep’ intervals.

Lemma 4.5. Let k0 ∈ N, c ∈
( 1

π , 1
)
. Let Ψc and Sc

k0,±1 be as in the passage before Theorem 4.2.
Define ϕ1 as in Lemma 2.1. Then for k0 ∈N we have∣∣∣∣∣Sc

k0,+1 ∩
n⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤ 2nqk0 e−
ϕ1
ω (1− q)

(cωqµ+1 (1− q))n . (4.9)

(The same estimate holds for Sc
k0,−1.)

Proof. Let k0 ∈ N and c ∈
( 1

π , 1
)

be given. It is clear that f
(
Sc

k0,+1

)
contains infinitely many

‘steep’ intervals, because it is a neighborhood of zero. Assume `, i ∈ N are such that Sc
k0,+1 ∩

f−i(Sc
`,±1

)
6= ∅. Since

∣∣ f i(x)∣∣ ≤ |x|µi
on Sc

k0,±1, one must have qk0µi ≥ min
{∣∣y∣∣ : y ∈ Sc

`,±1

}
≥

q`+2. It follows that ` ≥ k0µi − 2 ≥ k0µ− 2. Thus

f−i (Ψc) = f−i

(⋃
`∈N

Sc
`,±1

)
= f−i

 ⋃
`∈N

f−i(Sc
`,±1) 6=∅

Sc
`,±1

 = f−i

 ⋃
`≥k0µ−2

Sc
`,±1

 .

Hence, the intersection in (4.9) equals Sc
k0,+1 ∩

⋂n
i=1 f−i

(⋃
`≥k0µ−2 Sc

`,±1

)
. We now prove (4.9)

by induction over n. For n = 1,

∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ =
∣∣∣∣∣∣Sc

k0,+1 ∩ f−1

 ⋃
`≥k0µ−2

Sc
`,±1

∣∣∣∣∣∣
= ∑

`≥k0µ−2

∣∣∣Sc
k0,+1 ∩ f−1 (Sc

`,±1
)∣∣∣ . (4.10)

From (4.2) we have ∣∣Sc
`,±1

∣∣ ≤ 2q`e−
ϕ1
ω (1− q) . (4.11)

Using (2.13), (4.1) and (4.11) in (4.10), we have∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ = ∑
`≥k0µ−2

∣∣∣Sc
k0,+1 ∩ f−1 (Sc

`,±1
)∣∣∣ ≤ ∑

`≥k0µ−2

1
cωq(k0+1)(µ−1)

∣∣Sc
`,±1

∣∣
≤ 2e−

ϕ1
ω (1− q)

cωq(k0+1)(µ−1) ∑
`≥k0µ−2

q`. (4.12)

Here, note that

∑
`≥k0µ−2

q` = ∑
`≥dk0µ−2e

q` = qdk0µ−2e 1
1− q

, (4.13)
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where d·e denotes the ceiling function. Setting ε (k0) := dk0µ− 2e − (k0µ− 1) ∈ [−1, 0) and
using (4.13) in (4.12), we obtain

∣∣∣Sc
k0,+1 ∩ f−1 (Ψc)

∣∣∣ ≤ 2e−
ϕ1
ω

cωq(k0+1)(µ−1)
qdk0µ−2e =

2qk0 e−
ϕ1
ω

cω
· qdk0µ−2e

qk0µ−1 ·
1
qµ

= 2qε(k0) · qk0 e−
ϕ1
ω

cωqµ
≤ 2q−1qk0 e−

ϕ1
ω

cωqµ
=

2qk0 e−
ϕ1
ω (1− q)

cωqµ+1 (1− q)

which proves the case n = 1.
Assume the assertion is true for n, i.e, for all k0 ∈N we have∣∣∣∣∣Sc

k0,+1 ∩
n⋂

i=1

f−i (Ψc)

∣∣∣∣∣ ≤ qk0 e−
ϕ1
ω (1− q)

(
2

cωqµ+1 (1− q)

)n

, (4.14)

then the same estimate is true for Sc
k0,−1. Now we show that it is true for n + 1. Using (4.10)

for the third equality we obtain∣∣∣∣∣Sc
k0,+1 ∩

n+1⋂
i=1

f−i (Ψc)

∣∣∣∣∣ = ∣∣∣Sc
k0,+1 ∩ f−1 (Ψc) ∩ · · · ∩ f−n−1 (Ψc)

∣∣∣
=

∣∣∣∣∣Sc
k0,+1 ∩ f−1

(
n⋂

i=0

f−i (Ψc)

)∣∣∣∣∣
=

∣∣∣∣∣∣Sc
k0,+1 ∩ f−1

 ⋃
`≥k0µ−2

Sc
`,±1

 ∩ n⋂
i=0

f−i (Ψc)

∣∣∣∣∣∣ .

Note that Sc
`,±1 ⊂ Ψc implies

Sc
`,±1 ∩

n⋂
i=0

f−i (Ψc) = Sc
`,±1 ∩

n⋂
i=1

f−i (Ψc) .

So, we obtain

∣∣∣∣∣Sc
k0,+1 ∩

n+1⋂
i=1

f−i (Ψc)

∣∣∣∣∣ =
∣∣∣∣∣∣Sc

k0,+1 ∩ f−1

 ⋃
`≥k0µ−2

(
Sc
`,±1 ∩

n⋂
i=1

f−i (Ψc)

)∣∣∣∣∣∣ (4.15)

Using (2.13), (4.1), (4.11), (4.13) and (4.14) for Sc
k0,+1 and Sc

k0,−1 in (4.15), we have

∣∣∣∣∣Sc
k0,+1 ∩

n+1⋂
i=1

f−i (Ψc)

∣∣∣∣∣ ≤ 1
(cω) q(k0+1)(µ−1) ∑

`≥k0µ−2
2
(

2
cωqµ+1 (1− q)

)n

q`e−
ϕ1
ω (1− q)

=
2n+1qk0 e−

ϕ1
ω

(cω)n+1 (qµ+1)
n qµqk0µ−1

(
1

1− q

)n−1

∑
`≥k0µ−2

q`

=
2n+1qk0 e−

ϕ1
ω

(cω)n+1 (qµ+1)
n qµ

(
1

1− q

)n−1 qdk0µ−2e

qk0µ−1
1

1− q
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With ε (k0) as above, we obtain∣∣∣∣∣Sc
k0,+1 ∩

n+1⋂
i=1

f−i (Ψc)

∣∣∣∣∣ ≤ 2n+1qk0 e−
ϕ1
ω qε(k0)

(cω)n+1 (qµ+1)
n qµ

(
1

1− q

)n

≤ 2n+1qk0 e−
ϕ1
ω q−1

(cω)n+1 (qµ+1)
n qµ

(
1

1− q

)n

= qk0 e−
ϕ1
ω (1− q)

(
2

cωqµ+1 (1− q)

)n+1

,

so the assertion is true for n + 1 and hence, the proof of Lemma 4.5 is completed.

Remark 4.6. Let c ∈
( 2

π , 1
)

and µ > 1. Then 1
c + π (µ + 1) ≤ cπ2(2µ+3)

2(cπ−2) .

Proof. Let c ∈
( 2

π , 1
)
. Then

1
c
+ π (µ + 1) =

1 + cπµ + cπ

c
=

π + cπ2µ + cπ2

cπ
≤ 2cπ2µ + 2cπ2 + 2π

2 (cπ − 2)
.

Since cπ > 2, we have 2π < cπ2 and hence

1
c
+ π (µ + 1) ≤ 2cπ2µ + 3cπ2

2 (cπ − 2)
=

cπ2 (2µ + 3)
2 (cπ − 2)

.

Proof of Theorem 4.2. (i) From assertion (i) in Lemma 4.4 we see that there exists a point
y0 ∈ (Sc

k0,s0
∩Ωc

∞) with sign f j (y0) = sj, because f j(y0) ∈ Sc
k j,sj

.
(ii) Assume y0 ∈ (Sc

k0,s0
∩ Ωc

∞). Assertion (ii) of Lemma 4.4 shows that Σj 3 y0 and
Z ∩ Σj 6= ∅. Further, assertion (v) of Lemma 4.4 shows that |Σj| → 0 as j → ∞. This means
that there exists a sequence (zj) ⊂ Z with zj → y0, and this completes the proof.

(iii) Let c ∈ ( 2
π , 1) be given. Remark 4.6 shows that the condition ω > cπ2(2µ+3)

2(cπ−2) from

assertion (iii) of Theorem 4.2 implies the condition ω > 1
c + π(µ + 1) of assertion (ii). Hence,

(Sc
k0,±1 ∩Ωc

∞) ⊂ Z for all k0 ∈ N. It follows that Ωc
∞ =

⋃
k0∈N(Sc

k0,±1 ∩Ωc
∞) ⊂ Z, so Ωc

∞ ⊂ Z.
To prove that Ωc

∞ has measure zero, we show limn→∞ |Ωc
n ∩ Sc

k0,±1| = 0 for every k0 ∈ N. For
this purpose it is enough to show that under the conditions of assertion (iii) of Theorem 4.2,
cωqµ+1(1− q) > 2 in (4.9). We use the second order Taylor expansion of e−y around 0 for
y > 0,

e−y = 1− y +
y2

2
+ R3,

with R3 = exp′′′(ξ)
3! (−y)3 < 0 for some ξ ∈ (−y, 0). Hence, since

q = e−
π
ω = 1− π

ω
+

(π)2

2ω2 + R3

(π

ω

)
< 1− π

ω
+

(π)2

2ω2 ,

we have

1− q = 1− e−
π
ω =

π

ω
− π2

2ω2 − R3

(π

ω

)
>

π

ω
− π2

2ω2 . (4.16)

On the other hand, with appropriate ξ,

qµ+1 = e−
π
ω (µ+1) = 1− π (µ + 1)

ω
+

exp′′ (ξ)
2!

(
−π (µ + 1)

ω

)2

> 1− π (µ + 1)
ω

. (4.17)
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Using (4.16) and (4.17), we get

cωqµ+1 (1− q) > cω

(
1− π (µ + 1)

ω

)(
π

ω
− π2

2ω2

)
= cπ

(
1− πµ + π

ω

)(
1− π

2ω

)
= cπ

(
1− (3π + 2πµ)

2ω
+

π2 (µ + 1)
2ω2

)
> cπ

(
1− π (3 + 2µ)

2ω

)
. (4.18)

In view of Remark 4.6, and using the assumption which is given in the assertion (iii) of
Theorem 4.2 in (4.18), we finally obtain

cωqµ+1 (1− q) > cπ

1− π (3 + 2µ)

2 · cπ2(2µ+3)
2(cπ−2)

 = cπ

(
1− cπ − 2

cπ

)
= 2.

5 The behavior of the points whose orbits follow ‘flat-steep-flat’ in-
tervals

In chapter three we analyzed the behavior of the points which are mapped from ‘flat’ intervals
to some other ‘flat’ intervals, and in chapter four we studied the behavior of the points which
are mapped from ‘steep’ intervals to some other ‘steep’ intervals. Finally in this chapter, as
we briefly mentioned in the summary of this thesis, we first construct a specific type of orbit
whose points travel from ‘flat’ intervals to ‘steep’ intervals, then from ‘steep’ intervals again
to ‘flat’ intervals under the iteration (see Figure 5.1).

x

qkqk+1

Û`2(k)
mk

ÛL
k ÛR

kq`1(k)

q`1(k)+1

Sl1(k)

q`2(k)+1

q`2(k)

f (x)

x

Figure 5.1: The parameters adjusted so that f (mk) = q`1(k), and the sets ÛL
k

and ÛR
k constructed as counterimages under f 2 of the interval Û`2(k) ⊂ U`2(k)

(indicated only for the lower endpoint of ÛL
k ). The dotted parts of the graph

indicate possible maxima/minima in between which are not shown.

Besides, to avoid repeating the same expression, we shall use gω,µ+1−j as in Lemma 2.1
and c ∈ (0, 1) for the rest of the paper. For a specific choice of µ, ω > 0, maxima mk get
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mapped to zeros q`1(k) of fµ,ω = f . We shall first introduce ‘flat’ intervals of the form Uk =

[mk − δk, mk + δk] for odd k and use the notations UR
k = [mk, mk + δk] and UL

k = [mk − δk, mk]
for the right and left part of Uk respectively. We also introduce ‘steep’ intervals S`1(k), where
`1 (k) = kµ + 1, of the form

[
q`1(k) − r`1(k), q`1(k)

]
, with a suitable r`1(k). Then we define U =⋃

k∈N
k odd

Uk , S =
⋃

k∈N
k odd

S`1(k), and we construct orbits
(

f j (x)
)

j∈N
, with the properties

f j (x) ∈
{

U, j is even,

S, j is odd.

Furthermore, for k, µ ∈N, ω > 0 and with ϕ1 as in Lemma 2.1, we define

`2 (k) := min

{
` ∈N : q` ≤ q`1(k)µ · q

ϕ1(µ−2)
π · c (1− c)ω3

4gω,µ · g2
ω,µ−1

}
.

We denote by `
j
2 (k) the j th iterate of the function `2 applied to k. Then, given a symbol

sequence of the form {L, R}n+1, where symbols represent the left ‘L’ or right ‘R’ hand part of
Uk (that is UL

k , UR
k ), we construct corresponding orbits of f . Given a finite sequence

s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1

and k ∈N, we first construct the subset of points x in Uk which follow this symbol sequence in
the sense that f 2j (x) ∈ UL

`
j
2(k)

or f 2j (x) ∈ UR
`

j
2(k)

, j = 0, 1, 2, . . . , n depending on whether sj = L

or sj = R. Hence, we construct the set In
k,s =

⋂n
j=0 f−2j(Usj

`
j
2(k)

)
and the set Γn

k =
⋃

s∈{L,R}n+1 In
k,s

which is the set of points following symbol sequences in the set {L, R}{0,1,2,...,n}. Note that strict
monotonicity of f 2 on each interval UL

k and UR
k implies that the sets In

k,s are closed intervals.
The corresponding set for infinite symbol sequences is I∞

k,s =
⋂∞

j=0 f−2j(Usj

`
j
2(k)

)
. Finally, we

analyze the Lebesgue measure of the set Γn
k , and consider the limit as n→ ∞.

Note that the ‘steep’ intervals Sk that we use in our calculations in this chapter are some
subintervals of

(
mk, qk], whereas the ‘steep’ intervals which were used in the fourth chapter

are some subintervals of (mk+1, mk). In the theorem below we restrict ourselves to µ ∈ N for
simplicity.

Theorem 5.1. Let k be a positive odd integer. Let c ∈ (0, 1), and µ ∈N, µ ≥ max
{( 30e

7π

)2( 1−c
2c

)
, 15
}

be given. Then there exist an ω > 0 (depending on µ) such that f = fµ,ω has the following properties:

(i) Let a sequence of the form s ∈ {L, R}N0 be given. Then, there exists exactly one point xk,s ∈ Uk
with the property:

For all n ∈N0, f 2n (xk,s) ∈ U`n
2 (k)

, and f 2n (xk,s) is to the left of m`n
2 (k)

or to the right of m`n
2 (k)

,
depending on whether sn = L or sn = R. That is, I∞

k,s = {xk,s} .

(ii) The measure of Γn
k as defined above goes to zero, as n→ ∞.

The proof requires several lemmas and propositions. The proof of the following lemma is
analogous to the proof of Lemma 3.3, but is included for completeness.

Lemma 5.2. Define ϕ1 as in Lemma 2.1. Then the following statements are true.
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(i) Assume µ ∈N, µ ≥ 15 and define `1 (k) as in the passage before Theorem 5.1. Then there exists
an ω ∈ (0, 1) such that for all k ∈N, f has the property

| f (mk)| = q`1(k), (5.1)

which is equivalent to

exp

π − µ arctan
(

ω
µ

)
ω

 =

√
1 +

µ2

ω2 . (5.2)

(ii) For any choice of ω as in assertion (i), we have ω → 0 as µ→ ∞.

Proof. (i) Let k ∈N be given. With mk from (2.10), we have from (2.11)

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
· sin(ϕ1).

Using (2.3) we obtain

| f (mk)| = exp
(
− kπµ + ϕ1µ

ω

)
· 1√

1 + µ2

ω2

. (5.3)

On the other hand, from (2.8) we have

q`1(k) = exp
(
−π`1 (k)

ω

)
. (5.4)

With (5.3) and (5.4) together, we see that (5.1) is equivalent to

exp
(
−π`1 (k)

ω

)
= exp

(
− kπµ + ϕ1µ

ω

)
1√

1 + µ2

ω2

and hence to

exp
(

π (`1 (k)− kµ)− ϕ1µ

ω

)
=

√
1 +

µ2

ω2 . (5.5)

So, if we substitute `1 (k) = kµ + 1 and the value of ϕ1 given by Lemma 2.1 in (5.5), we finally
get that (5.1) is equivalent to

exp

π − µ arctan
(

ω
µ

)
ω

 =

√
1 +

µ2

ω2 ,

which proves the equivalence of (5.1) and (5.2). Now, we want to find ω and µ such that
| f (mk)| = q`1(k). Define

F (ω, µ) = exp

π − µ arctan
(

ω
µ

)
ω

−√1 +
µ2

ω2
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and try to find F (ω, µ) = 0 at least for a special pair of (ω, µ) (see Figure 5.2). On the one
hand, for a fixed µ > 2, arctan

(
ω
µ

)
→ 0 as ω → 0. Hence, due to the exponential growth,

F (ω, µ)→ ∞ as ω → 0. On the other hand, for ω = 1 we have

F (1, µ) = exp
(

π − µ arctan
(

1
µ

))
−
√

1 + µ2. (5.6)

From 3.9 we have µ arctan
( 1

µ

)
≥ 1

2 for µ > 2, and using this estimate in (5.6), we finally have

F (1, µ) < eπ− 1
2 −

√
1 + µ2. From the fact that eπ− 1

2 < 15, we finally have F (1, µ) < 0, if we
choose µ ≥ 15. With the intermediate value theorem, it is clear that there exists at least one
ω ∈ (0, 1) which satisfies F (ω, µ) = 0 for fixed µ. This gives the proof of assertion (i).

(ii) The proof is analogous to the proof of the assertion (ii) of Lemma 3.3.

In order to find a numerical solution, one can use the bisection method, and we found
numerically that there is no solution for µ < 2.3. The numerical investigation suggests that
ω in Lemma 5.2 is unique. We made no effort to prove that, because part (ii) is true for any
possible choice of ω.

The next three propositions (5.3–5.5) give some preparatory calculations.

0 1 2 3 4 5
−40

−20

0

20

40

60

80

100

ω

F(
ω

,1
5)

Figure 5.2: Graph of F(·, µ) for µ = 15.

Proposition 5.3. Let ϕ1 be as in Lemma 2.1. Set α(ω, µ, c) :=
exp
(

(µ−2)ϕ1
2ω

)
gω,µ−1

√
1−c
2cω . If µ ∈N,

µ ≥ max

{(
30e
7π

)2 (1− c
2c

)
, 15

}
,

and ω is a corresponding value obtained as in Lemma 5.2, then we have α (ω, µ, c) < 1
2 .

Proof. Let µ and ω ∈ (0, 1) be as in the assumption. Then, it is clear that 3µ2

ω2 ≥ 1, and in view
of (5.2) we have

2µ

ω
=

√
3µ2

ω2 +
µ2

ω2 ≥
√

1 +
µ2

ω2 = exp

π − µ arctan
(

ω
µ

)
ω

 .
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Since arctan
(

ω
µ

)
≤ ω

µ , we get

2µ

ω
≥ exp

(
π − µ · ω

µ

ω

)
= exp

(π

ω
− 1
)

,

and hence we have 2µe ≥ ωe
π
ω . Using the second order Taylor expansion of e

π
ω in the last

inequality, we obtain

2µe ≥ ω

(
1 +

π

ω
+

1
2

π2

ω2

)
≥ 1

2
π2

ω
or

4eµ ≥ π2

ω
. (5.7)

On the other hand, we know that µ ≥
( 30e

7π

)2 ( 1−c
2c

)
, so
√

µ ≥ 30e
7π

√
1−c
2c which implies

1
2
≥ e

1
2

√
1− c

2c
30e

1
2

14π
√

µ
.

Since e
1
2 > e

1
2−

1
µ , it follows that

1
2
> exp

(
1
2
− 1

µ

)
·
√

1− c
2c
· 15
√

4e
14π
√

µ
= exp

(
ω

2µω
(µ− 2)

)
·
√

1− c
2c
·

15
√

4eµ

14πµ
.

On the other hand, since µ ≥ 15, we have 1
µ−1 ≤

15
14µ , and with the fact that arctan

(
ω
µ

)
≤ ω

µ we
get

1
2
> exp

 (µ− 2) arctan
(

ω
µ

)
2ω

 ·√1− c
2c
·
√

4eµ

π (µ− 1)
.

Finally, using (5.7) and the definition of ϕ1, we obtain

1
2
> exp

(
(µ− 2) ϕ1

2ω

)
·
√

1− c
2cω

·
√

1

(µ− 1)2

≥ exp
(
(µ− 2) ϕ1

2ω

)
·
√

1− c
2cω

·
√

1

ω2 + (µ− 1)2

=
exp

(
(µ−2)ϕ1

2ω

)
gω,µ−1

·
√

1− c
2cω

= α (ω, µ, c)

and this completes the proof.

Proposition 5.4. Let ϕ1 be as in Lemma 2.1 and c ∈ (0, 1) be given. Set η̃1 (ω, µ) := ωe−
ϕ1(µ−2)

ω

2gω,µ−1·gω,µ−2
,

η̃2 (ω) := e−
ϕ1
ω −q
2 , η̃3 (ω) := 1−e−

ϕ1
ω

2 and η̃4 (ω, µ) :=
√

(1−c)qω

gω,µ·gω,µ−1
. There exist ω0 > 0 and µ0 > 3

such that for ω ≤ ω0 and µ ∈N, µ ≥ µ0, the number

η̃ := min {η̃1 (ω, µ) , η̃2 (ω) , η̃3 (ω) , η̃4 (ω, µ)}

satisfies
η̃ = η̃4 (ω, µ) . (5.8)
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Proof. We prove that η̃4 (ω, µ) ≤ η̃1 (ω, µ) ≤ min {η̃2 (ω) , η̃3 (ω)} for µ large enough, ω small

enough. For ω > 0, we have gω,µ−1 ≥
√
(µ− 1)2, gω,µ−2 ≥

√
(µ− 2)2 and using these

simplifications, we obtain

η̃1 (ω, µ) ≤ ωe−
ϕ1(µ−2)

ω

2
√
(µ− 1)2 (µ− 2)2

=
ωe−

ϕ1(µ−2)
ω

2 (µ− 1) (µ− 2)
. (5.9)

We have already defined

η̃2 (ω) =
e−

ϕ1
ω − q
2

=
1
2

e−
ϕ1
ω

(
1− e

ϕ1−π
ω

)
,

and there exists ω̃1 > 0 such that for ω ∈ ω0 ∈ (0, ω̃1], the property ϕ1 − π < 0 implies(
1− e

ϕ1−π
ω

)
> 1

2 . Hence, for such ω we have

η̃2 (ω) ≥ 1
4

e−
ϕ1
ω . (5.10)

From (5.9) and (5.10) it is obvious that η̃1 (ω, µ) ≤ ωe−
ϕ1
ω

2 ≤ η̃2 (ω) for µ ≥ 3 and ω ≤ ω12,
where ω12 =: min

{ 1
2 , ω̃1

}
. Analogously there exists ω13 > 0 such that for µ ≥ 3 and ω ≤ ω13,

one has η̃1 (ω, µ) ≤ η̃3 (ω); observe η̃3 (ω) → 1
2 as ω → 0. There exist c1, c2 > 0, and µ̃0 > 0

such that for µ ≥ µ̃0 we have η̃1 (ω, µ) ≥ c1
ωe−

ϕ1(µ−2)
ω

µ2 and η̃4 (ω, µ) ≤ c2

√
ωe−

π
ω

µ2 . Hence, we
have for µ ≥ µ̃0 and ω > 0

η̃4 (ω, µ)

η̃1 (ω, µ)
≤ c2

√
ωe−

π
ω

c1ωe−
ϕ1(µ−2)

ω

=
c2

c1

1√
ω

exp
(

ϕ1 (µ− 2)− π
2

ω

)
.

Substituting the explicit form of ϕ1 as in Lemma 2.1, the last equality turns to

η̃4 (ω, µ)

η̃1 (ω, µ)
≤ c2

c1

1√
ω

exp

 (µ− 2) arctan
(

ω
µ

)
− π

2

ω

 . (5.11)

Using the fact that

lim
µ→∞, ω→0

 (µ− 2) arctan
(

ω
µ

)
ω

 = lim
µ→∞, ω→0

(
(µ− 2) ω

µ

ω

)
= 1, and

limω→0
1√
ω

exp
(−π

2ω

)
= 0 in (5.11), we finally have

lim
µ→∞, ω→0

(
η̃4 (ω, µ)

η̃1 (ω, µ)

)
≤ lim

µ→∞, ω→0

c2

c1

1√
ω

exp
(

1− π

2ω

)
= 0

and that shows that there exists µ0 ≥ µ̃0 and ω0 ∈ (0, min {ω12, ω13}] such that for ω ≤ ω0

and µ ∈N, µ ≥ µ0 one has η̃4 (ω, µ) ≤ η̃1 (ω, µ) ≤ min {η̃2 (ω) , η̃3 (ω)}.

Now, we aim at finding an interval Uk := [mk − δk, mk + δk] as indicated in the passage
before Theorem 5.1, which gets mapped to a ‘steep’ interval S`1(k), but we first provide upper
and lower estimates for the second derivative f ′́′µ,ω of f .
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Proposition 5.5. Let k ∈ N. Assume that with µ0 and ω0 as in Proposition 5.4, one has µ ≥ µ0 and
ω ≤ ω0. Define η̃ as in Proposition 5.4 and set δk := η̃δk, Jk :=

[
qk+1, qk] . Then

Uk := [mk − δk, mk + δk] ⊂
[
qk+1, qk

]
= Jk

and the following estimates hold:

∀x ∈ [mk − δk, mk + δk] : gω,µ · gω,µ−1 · qk(µ−2) ≥
∣∣ f ′′ (x)

∣∣ ≥
(

qke−
ϕ
ω

)µ−2
·ω · gω,µ

2
. (5.12)

Proof. Let k ∈ N. With η from Lemma 3.2, the definition of η̃ given in Proposition 5.4 shows
η̃ ≤ min {η̃2, η̃3} = η. Hence, in view of Lemma 3.2, we see that

Uk = [mk − δk, mk + δk] ⊂
[
mk − ηqk, mk + ηqk

]
⊂
[
qk+1, qk

]
= Jk.

Further, inserting mk from (2.10) in (2.4) we have∣∣ f ′′ (mk)
∣∣ = gω,µ · gω,µ−1 · |mk|µ−2 |sin ((ω ln (mk) + ϕ1) + ϕ2)|
= gω,µ · gω,µ−1 · |mk|µ−2 |sin (−kπ + ϕ2)| .

Using ϕ2 = arctan
(

ω
µ−1

)
from Lemma 2.1, we have sin (ϕ2) =

ω
gω,µ−1

and, inserting this value
in the last equality, we have∣∣ f ′′ (mk)

∣∣ = gω,µ · gω,µ−1 · |mk|µ−2 ω

gω,µ−1
= |mk|µ−2 ω · gω,µ. (5.13)

From (2.5) we have on
[
qk+1, qk]∣∣ f ′′′ (x)

∣∣ = ∣∣gω,µ · gω,µ−1 · gω,µ−2 · xµ−3 sin (ω ln (x) + (ϕ1 + ϕ2 + ϕ3))
∣∣

≤ gω,µ · gω,µ−1 · gω,µ−2 · qk(µ−3). (5.14)

From (2.13) for x ∈ [mk − δk, mk + δk] and with the definition of δk, we also have∣∣ f ′′ (x)
∣∣ ≥ ∣∣ f ′′ (mk)

∣∣− δk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′∣∣
=
∣∣ f ′′ (mk)

∣∣− η̃qk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′∣∣
≥
∣∣ f ′′ (mk)

∣∣− η̃1qk · max
[mk−δk ,mk+δk ]

∣∣ f ′′′∣∣ . (5.15)

With the definition of η̃1, using (2.10), (5.13) and (5.14) in (5.15), we finally have

∣∣ f ′′ (x)
∣∣ ≥ mµ−2

k ω · gω,µ −
qkωe−

ϕ1(µ−2)
ω

2gω,µ−1 · gω,µ−2
gω,µ · gω,µ−1 · gω,µ−2 · qk(µ−3)

=
(

qke−
ϕ1
ω

)µ−2
·ω · gω,µ −

qk(µ−2)ωe−
ϕ1(µ−2)

ω

2
gω,µ

=
(

qke−
ϕ1
ω

)µ−2
·ω · gω,µ −

(
qke−

ϕ1
ω

)µ−2
·ω · gω,µ

2

=

(
qke−

ϕ1
ω

)µ−2
·ω · gω,µ

2
.

This is the lower estimate for | f ′′ (x)|; the upper estimate even on the interval
[
qk+1, qk] follows

with the formula for f ′′ in (2.4).
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For k ∈ N, we specify the boundaries of an associated ‘steep’ interval S`1(k) with the next
proposition.

Proposition 5.6. Let k ∈N. Assume µ and ω are as in Proposition 5.4 and define `1 (k) = kµ + 1 as
in the passage before the Theorem 5.1. Set r`1(k) := (1−c)ω

gω,µ·gω,µ−1
q`1(k) and S`1(k) :=

[
q`1(k)− r`1(k), q`1(k)

]
.

Then, S`1(k) ⊂
(
m`1(k), q`1(k)

]
and on S`1(k) we have∣∣ f ′∣∣ ≥ cωq`1(k)(µ−1). (5.16)

Proof. Let k ∈N. From the upper estimate of (5.12), on S`1(k) we have∥∥ f ′′
∥∥

∞,S`1(k)
≤ gω,µ · gω,µ−1 · q`1(k)(µ−2). (5.17)

From (2.13) we have

∀x ∈ S`1(k) :
∣∣ f ′ (x)

∣∣ ≥ ∣∣∣ f ′ (q`1(k)
)∣∣∣− ∥∥ f ′′

∥∥
∞,S`1(k)

· r`1(k) , (5.18)

and from (2.9) we also have
∣∣ f ′(q`1(k)

)∣∣ = ωq`1(k)(µ−1). Using (5.17) and substituting the
explicit values of both

∣∣ f ′(q`1(k)
)∣∣ and r`1(k) in (5.18), we get

∀x ∈ S`1(k) :
∣∣ f ′ (x)

∣∣ ≥ ∣∣∣ f ′ (q`1(k)
)∣∣∣− gω,µ · gω,µ−1 · q`1(k)(µ−2) · r`1(k)

= ωq`1(k)(µ−1) − gω,µ · gω,µ−1 · q`1(k)(µ−2) · (1− c)ω

gω,µ−1 · gω,µ
q`1(k)

= ωq`1(k)(µ−1) − (1− c)ωq`1(k)(µ−1) = cωq`1(k)(µ−1) .

It follows now from f ′(m`1(k)) = 0 that m`1(k) < q`1(k) − r`1(k).

From the graph of the map one can understand that the image of S`1(k) under fµ,ω includes

many ‘steep‘ and ‘flat’ intervals, but we continue our calculations with a subinterval S̃`1(k) of
S`1(k) which is contained in f (Uk). The next lemma gives an estimate for the size of f (Uk)

with a relation between S̃`1(k) and S`1(k).

Note that for the sake of simplicity we shall use k as a positive odd integer number for the
rest of the paper. Note also that in addition to the notations UL

k , UR
k which represent to the

left ‘L’ and right ‘R’ hand part of Uk respectively, we also use the notation UL\R
k in statements

which are valid for both UL
k and UR

k .

Lemma 5.7. Let k be a positive odd integer number. Let ω and even integer µ be as in Proposition 5.4
and satisfying (5.2). Define η̃ as in Proposition 5.4, δk and Uk as in Proposition 5.5, and UL\R

k as in
the passage before Theorem 5.1. Then the following statements are true.

(i) Define r`1(k) and S`1(k) as in Proposition 5.6. Then we have f (Uk) ⊂ S`1(k);

(ii) Set

r̃`1(k) := q`1(k) · q
ϕ1(µ−2)

π · (1− c) ·ω2

4gω,µ · g2
ω,µ−1

(5.19)

and S̃`1(k) =
[
q`1(k) − r̃`1(k), q`1(k)

]
. Then we have f

(
UL\R

k

)
⊃ S̃`1(k).
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Proof. Note that due to (5.1), and since k is odd (see (2.11)), max { f (Uk)} = f (mk) = q`1(k).
For the interval Uk we have

min
{∣∣∣ f (mk − δk)− q`1(k)

∣∣∣ ,
∣∣∣ f (mk + δk)− q`1(k)

∣∣∣}
≤ | f (Uk)|

≤ max
{∣∣∣ f (mk − δk)− q`1(k)

∣∣∣ ,
∣∣∣ f (mk + δk)− q`1(k)

∣∣∣} .

It follows from second order Taylor expansion of f around the extremum mk and from (5.1)
that

min
ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)∣∣ δ2
k

2
≤ | f (Uk)| ≤ max

ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)∣∣ δ2
k

2
. (5.20)

Consequently, using (5.8) and inserting the upper estimate of | f ′′| given in (5.12) and the value
of δk in the upper estimate of (5.20), we finally get

| f (Uk)| ≤ max
ξ∈[mk−δk ,mk+δk ]

∣∣ f ′′ (ξ)∣∣ δ2
k

2
≤ gω,µ · gω,µ−1 · qk(µ−2) δ2

k
2

= gω,µ · gω,µ−1 · qk(µ−2)η̃2q2k

≤ gω,µ · gω,µ−1 · qk(µ−2) (η̃4)
2 q2k

≤ gω,µ · gω,µ−1 · qk(µ−2)

(√
(1− c) qω

gω,µ · gω,µ−1

)2

q2k

= qkµ+1 (1− c)ω

gω,µ · gω,µ−1
=

(1− c)ω

gω,µ · gω,µ−1
q`1(k) = r`1(k) =

∣∣∣S`1(k)

∣∣∣ .

From (5.1) we know that f (mk) = q`1(k). So, f (Uk) =
[
min f (Uk) , q`1(k)

]
and the estimate

| f (Uk)| ≤ r`1(k) shows f (Uk) ⊂
[
q`1(k) − r`1(k), q`1(k)

]
= S`1(k)

and this completes the proof of assertion (i).
Note that, although there is no symmetry between the graph of fµ,ω to the left and right

hand side of Uk, we can estimate the size of f
(
UL

k

)
and f

(
UR

k

)
in a similar way. Substituting

the lower bound of | f ′′| given by (5.12), the value of δk in the analogue of the lower estimate
of (5.20) for UL\R

k , and using (5.8) we obtain

∣∣∣ f (UL\R
k

)∣∣∣ ≥ min
ξ∈Uk

∣∣ f ′′ (ξ)∣∣ δ2
k

2
≥

(
qke−

ϕ1
ω

)µ−2
·ω · gω,µ

2
δ2

k
2

=

(
qke−

ϕ1
ω

)µ−2
·ω · gω,µ

4
η̃2q2k =

qkµ−2k · e−
ϕ1(µ−2)

ω ω · gω,µ

4
(η̃4)

2 q2k

=
qkµ−2k · e−

ϕ1(µ−2)
ω ω · gω,µ

4

(√
(1− c) qω

gω,µ · gω,µ−1

)2

q2k

=
qkµ+1 · e−

ϕ1(µ−2)
ω ·ω2

4
(1− c)

gω,µ · g2
ω,µ−1

= q`1(k) · q
ϕ1(µ−2)

π · (1− c) ·ω2

4gω,µ · g2
ω,µ−1

= r̃`1(k) =
∣∣∣S̃`1(k)

∣∣∣ ,

and this completes the proof of assertion (ii) and the proof of the lemma.
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We continue analyzing the next ‘flat’ interval obtained by the second iteration of f .

Lemma 5.8. Let k be a positive odd integer number. Let ω, µ be as in Lemma 5.7. Define `1 (k) and
`2 (k) as in the passage before Theorem 5.1. Then for S̃`1(k) as in Lemma 5.7, we have

f
(

S̃`1(k)

)
⊃
[
0, q`2(k)

]
.

Proof. Using (2.13) on S̃`1(k), we obtain∣∣∣ f (S̃`1(k)

)∣∣∣ ≥ r̃`1(k) · min
x∈S̃`1(k)

∣∣ f ′ (x)
∣∣ . (5.21)

Using (5.16) and (5.19) in (5.21), and also the definition of `2 (k) at the beginning of this section,
we have ∣∣∣ f (S̃`1(k)

)∣∣∣ ≥ r̃`1(k) · min
x∈S̃`1(k)

∣∣ f ′ (x)
∣∣

= q`1(k) · q
ϕ1(µ−2)

π · (1− c) ·ω2

4gω,µ · g2
ω,µ−1

· cωq`1(k)(µ−1)

= q`1(k)µ · q
ϕ1(µ−2)

π · c (1− c)ω3

4gω,µ · g2
ω,µ−1

≥ q`2(k).

Note also that `1 (k) = kµ + 1 is odd, since µ is even. Hence, f ≥ 0 on S̃`1(k) and since

f
(
q`1(k)

)
= 0, f

(
S̃`1(k)

)
=
[
0, max f

(
S̃`1(k)

)]
. The estimate

∣∣ f (S̃`1(k)
)∣∣ ≥ q`2(k) implies that

f
(
S̃`1(k)

)
⊃
[
0, q`2(k)

]
.

From Lemma 5.7 we know f
(
UL\R

k

)
⊃ S̃`1(k). In Lemma 5.8 we showed that f

(
S̃`1(k)

)
⊃[

0, q`2(k)
]
. In particular, U`2(k) ⊂

[
q`2(k)+1, q`2(k)

]
⊂ f

(
S̃`1(k)

)
. Now, in the next lemma we

estimate the counterimage of subsets of U`2(k) under
(

f 2|
UL\R

k

)
.

Lemma 5.9. Let k be a positive odd integer. Assume µ is an even integer, µ ≥ max
{( 30e

7π

)2 ( 1−c
2c

)
, 15
}

and ω ∈ (0, 1) is a corresponding value satisfying (5.2) and such that the assertion of Proposition 5.4
is true (this is possible due to assertion (ii) of Lemma 5.2). Define α (ω, µ, c) as in Proposition 5.3 and
Jk as in Proposition 5.5. Then, for p ∈ (0, 1] and any subinterval Û`2(k) of U`2(k) with `2 (k) as in the
passage before Theorem 5.1, if ∣∣∣Û`2(k)

∣∣∣ = p
∣∣∣J`2(k)

∣∣∣
then ( f |Uk)

−2(Û`2(k)
)

has two parts of the form

ÛL
k =

[
mk − δL

k,2, mk − δL
k,1

]
⊂ UL

k and ÛR
k =

[
mk + δR

k,1, mk + δR
k,2

]
⊂ UR

k ,

where δL
k,1, δL

k,2 ∈
(
0, mk − qk+1) and δR

k,1, δR
k,2 ∈

(
0, qk −mk

)
, and each of them has the size∣∣∣∣ÛL\R

k

∣∣∣∣ ≤ α · p · |Jk| . (5.22)
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Proof. Set Ŝ`1(k) :=
(

f |S̃`1(k)

)−1(Û`2(k)
)
. Note that injectivity of f |S`1(k)

and Lemma 5.8 imply

that
(

f |S`1(k)

)−1(Û`2(k)
)
=
(

f |S̃`1(k)

)−1(Û`2(k)
)
. Using (2.13) on Ŝ`1(k), we have

∣∣∣∣∣
(

f |S̃`1(k)

)−1 (
Û`2(k)

)∣∣∣∣∣ = ∣∣∣Ŝ`1(k)

∣∣∣ ≤
∣∣∣Û`2(k)

∣∣∣
minŜ`1(k)

| f ′| .

On the other hand, from Proposition 5.6 we already know that on S`1(k), | f
′| ≥ cωq`1(k)(µ−1).

Because of Ŝ`1(k) ⊂ S̃`1(k) ⊂ S`1(k), this property also satisfied on Ŝ`1(k). Hence, inserting both∣∣Û`2(k)
∣∣ = p

∣∣J`2(k)
∣∣ and the estimate of minS`1(k)

| f ′| in the last expression, we have

∣∣∣Ŝ`1(k)

∣∣∣ ≤
∣∣∣Û`2(k)

∣∣∣
minŜ`1(k)

| f ′| ≤
p
∣∣∣J`2(k)

∣∣∣
minS`1(k)

| f ′| ≤
p · q`2(k) (1− q)

cωq`1(k)(µ−1)
. (5.23)

Now, we calculate subintervals of (mk − δk, mk + δk) which get mapped bijectively to Ŝ`1(k).

Note that the counterimage of Ŝ`1(k) has two parts in the form ÛL
k ⊂ UL

k , and ÛR
k ⊂ UR

k . It
follows from strict monotonicty of f on [mk − δk, mk] and [mk, mk + δk] and from the fact that
f
(
UL\R

k

)
⊃ S̃`1(k) that there exist δ

L\R
k,1 , δ

L\R
k,2 with∣∣∣ f (ÛR

k

)∣∣∣ = ∣∣∣ f ([mk + δR
k,1, mk + δR

k,2

])∣∣∣ (5.24)

=
∣∣∣ f ([mk − δL

k,2, mk − δL
k,1

])∣∣∣ = ∣∣∣ f (ÛL
k

)∣∣∣ = ∣∣∣Ŝ`1(k)

∣∣∣ .

We continue our calculations by using the boundaries of ÛR
k . Note that for the interval[

mk, mk + δR
k,1

]
we know that f

(
mk + δR

k,1

)
= max Ŝ`1(k) and f (mk) = q`1(k). Again from the

monotonicity of the map it follows that f
([

mk, mk + δR
k,1

])
=
[

max Ŝ`1(k), q`1(k)
]
. Consequently,

since f
(
q`1(k)

)
= 0 and f

(
max Ŝ`1(k)

)
∈
[
q`2(k)+1, q`2(k)

]
, from (2.13) we have

∣∣∣max Ŝ`1(k) − q`1(k)
∣∣∣ ≥ q`2(k)+1

‖ f ′‖∞,S`1(k)

. (5.25)

From (2.1) we also have that ‖ f ′‖∞,S`1(k)
≤ gω,µ · q`1(k)(µ−1). Inserting this estimate in (5.25), we

obtain ∣∣∣max Ŝ`1(k) − q`1(k)
∣∣∣ ≥ q`2(k)+1

gω,µ · q`1(k)(µ−1)
. (5.26)

In addition, from (2.4) we know that∥∥ f ′′
∥∥

∞,Uk
≤ gω,µ · gω,µ−1 · qk(µ−2). (5.27)

Now, using the second order Taylor expansion of f
(
mk + δR

k,1

)
, we have

∣∣∣ f (mk + δR
k,1

)
− f (mk)

∣∣∣ ≤
∣∣∣∣∣∣ f ′′ (ξ)

(
δR

k,1

)2

2

∣∣∣∣∣∣ , (5.28)
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where ξ ∈
(
mk, mk + δR

k,1

)
. Substituting the values of f

(
mk + δR

k,1

)
and f (mk) in (5.28), we have

∣∣∣ f (mk + δR
k,1

)
− f (mk)

∣∣∣ = ∣∣∣max Ŝ`1(k) − q`1(k)
∣∣∣ ≤ ∥∥ f ′′

∥∥
∞,Uk

(
δR

k,1

)2

2
,

which implies

δR
k,1 ≥

√√√√2

∣∣∣max Ŝ`1(k) − q`1(k)
∣∣∣

‖ f ′′‖∞,Uk

. (5.29)

Using both estimates (5.26) and (5.27) in (5.29), we finally get

δR
k,1 ≥

√
2

q`2(k)+1

g2
ω,µ · gω,µ−1 · qk(µ−2) · q`1(k)(µ−1)

. (5.30)

On the other hand, from Taylor’s formula with the integral remainder term we have

f (mk + δ) = f (mk) +
∫ mk+δ

mk

(mk + δ− t) f ′′ (t) dt

= f (mk) +
∫ δ

0
(δ− t) f ′′ (mk + t) dt. (5.31)

Consequently, applying (5.31) for the boundaries of ÛR
k , we have∣∣∣Ŝ`1(k)

∣∣∣ = ∣∣∣ f (ÛR
k

)∣∣∣ = ∣∣∣ f (mk + δR
k,2

)
− f

(
mk + δR

k,1

)∣∣∣
=

∣∣∣∣∣
∫ δR

k,2

0

(
δR

k,2 − t
)

f ′′ (mk + t) dt−
∫ δR

k,1

0

(
δR

k,1 − t
)

f ′′ (mk + t) dt

∣∣∣∣∣ .

From (5.12) we already know that M := minx∈Uk | f ′′ (x)| ≥ qk(µ−2)q
ϕ1(µ−2)

π ·ω·gω,µ
2 . In particular, f ′′

has constant sign on Uk. Using the fact that δR
k,1 < δR

k,2 in the last equality, we obtain

∣∣∣Ŝ`1(k)

∣∣∣ = ∣∣∣∣∣
∫ δR

k,1

0

(
δR

k,2 − δR
k,1

)
f ′′ (mk + t) dt +

∫ δR
k,2

δR
k,1

(
δR

k2
− t
)

f ′′ (mk + t) dt

∣∣∣∣∣
≥
∣∣∣∣∣
∫ δR

k,1

0

(
δR

k,2 − δR
k,1

)
f ′′ (mk + t) dt

∣∣∣∣∣ ≥ ∣∣∣δR
k,2 − δR

k,1

∣∣∣ ·M · δR
k,1,

so ∣∣∣δR
k,2 − δR

k,1

∣∣∣ ≤
∣∣∣Ŝ`1(k)

∣∣∣
M · δR

k,1
. (5.32)

Substituting the estimate of M and the estimate δR
k,1 given by (5.30) in (5.32), we obtain

∣∣∣δR
k,2 − δR

k,1

∣∣∣ ≤
∣∣∣Ŝ`1(k)

∣∣∣
qk(µ−2)q

ϕ1(µ−2)
π ·ω·gω,µ
2 ·

√
2 q`2(k)+1

qk(µ−2)·gω,µ−1·g2
ω,µ·q`1(k)(µ−1)

. (5.33)
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Combining the estimate of Ŝ`1(k) given by (5.23) with (5.33), we finally have∣∣∣ÛR
k

∣∣∣ = ∣∣∣δR
k,2 − δR

k,1

∣∣∣
≤
√

2p · q`2(k) (1− q)
cωq`1(k)(µ−1)

√
qk(µ−2) · gω,µ−1 · g2

ω,µ · q`1(k)(µ−1)

qk(µ−2)q
ϕ1(µ−2)

π ·ω · gω,µ ·
√

q`2(k)+1

=
√

2p
q`2(k) (1− q)
cωq`1(k)(µ−1)

·

√
qk(µ−2)gω,µ−1

qk(µ−2)q
ϕ1(µ−2)

π ·ω
·

√
q`1(k)(µ−1)√

q`2(k)+1

=
√

2p
(1− q)√gω,µ−1

cω2 · q
ϕ1(µ−2)

π

· q`2(k)

q
`2(k)

2

·

√
qk(µ−2)

qk(µ−2)+ 1
2
·

√
q`1(k)(µ−1)

q`1(k)(µ−1)

=

√
2p · qk (1− q) · q

`2(k)
2

q
`1(k)(µ−1)

2 · q
kµ+1

2 · q
ϕ1(µ−2)

π

·
√gω,µ−1

cω2 .

Here, using the estimate of q`2(k) given in the passage before Theorem 5.1 and |Jk| = qk (1− q),
we obtain

∣∣∣ÛR
k

∣∣∣ ≤
√

2p · |Jk| ·
√

q`1(k)µ · q
ϕ1(µ−2)

π · c(1−c)ω3

4gω,µ·g2
ω,µ−1

q
`1(k)(µ−1)

2 · q
kµ+1

2 · q
ϕ1(µ−2)

π

·
√gω,µ−1

cω2

=

√
2

2
p · |Jk| ·

√
q`1(k)µ

q
`1(k)µ−`1(k)

2 · q
kµ+1

2

·

√
q

ϕ1(µ−2)
π

q
ϕ1(µ−2)

π

·
√

(1− c)
cωgω,µ · gω,µ−1

.

Inserting `1 (k) = kµ + 1 one gets

∣∣∣ÛR
k

∣∣∣ ≤ √2
2

p · |Jk| ·

√
q(kµ+1)µ

q
(kµ+1)µ−(kµ+1)

2 · q
kµ+1

2

·

√
q

ϕ1(µ−2)
π

q
ϕ1(µ−2)

π

·
√

(1− c)
cωgω,µ · gω,µ−1

= p · |Jk| · q−
ϕ1(µ−2)

2π ·
√

(1− c)
2cωgω,µ · gω,µ−1

.

Since gω,µ−1 < gω,µ, we can simplify the last inequality as follows:∣∣∣ÛR
k

∣∣∣ ≤ p · |Jk| · q−
ϕ1(µ−2)

2π ·
√

(1− c)
2cωg2

ω,µ−1

= p · |Jk| ·
q−

ϕ1(µ−2)
2π

gω,µ−1
·
√

1− c
2cω

.

Inserting q = e−
π
ω we have

∣∣∣ÛR
k

∣∣∣ ≤ p · |Jk| ·
exp

(
π
ω ·

(µ−2)ϕ1
2π

)
gω,µ−1

·
√

1− c
2cω

= p · |Jk| ·
exp

(
(µ−2)ϕ1

2ω

)
gω,µ−1

·
√

1− c
2cω

.
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Finally, using the definition of α (µ, ω, c), we get∣∣∣ÛR
k

∣∣∣ ≤ α · p · |Jk| ,

and this completes the proof for ÛR
k . The proof for ÛL

k is analogous.

Corollary 5.10. If the set Û`2(k) in Lemma 5.9 is not only one interval, but a disjoint union of subinter-

vals of U`2(k), and
∣∣Û`2(k)

∣∣ (the measure of Û`2(k)) satisfies
∣∣Û`2(k)

∣∣ = p
∣∣J`2(k)

∣∣, then
(

f |Uk

)−2(Û`2(k)
)

has two parts (one in UL
k and the other in UR

k ) and each of them has measure less or equal αp |Jk|.

Proof. (By summation over the subintervals.)

Now, we consider symbol sequences of the form {L, R}n+1 and construct corresponding
orbits of f . For given a finite sequence

s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1

and odd k ∈ N, we now construct the subset of points x in Uk which follow this symbol
sequence. Recall the set In

k,s =
⋂n

j=0 f−2j(Usj

`
j
2(k)

)
defined in the passage before Theorem 5.1.

We estimate the size of
∣∣In

k,s

∣∣.
Corollary 5.11. Let s = (s0, s1, s2, . . . , sn) and an odd k ∈ N be given. Then, with ω, µ as in
Lemma 5.9 and α (ω, µ, c) as in Proposition 5.3 we have ∅ 6= In

k,s and∣∣In
k,s

∣∣ ≤ αn |Jk| .

Proof. We prove the corollary by induction over n. For n = 0, I0
k,s = Us0

k 6= ∅, and∣∣I0
k,s

∣∣ = ∣∣Us0
k

∣∣ ≤ |Jk| .

Now, we assume the result is true for n, and we verify it for n + 1. Let s = (s0, s1, s2, . . . , sn+1)
be given. Define s̃ = (s1, s2, . . . , sn+1). From the induction hypothesis we have In

`2(k),̃s
6= ∅,

In
`2(k),̃s

⊂ U`2(k), and

∣∣∣In
`2(k),̃s

∣∣∣ =
∣∣∣∣∣∣

n⋂
j=0

f−2j
(

U
sj+1

`
j
2(`2(k))

)∣∣∣∣∣∣
≤ αn

∣∣∣J`2(k)

∣∣∣ .

Note that In+1
k,s = f−2

(
In
`2(k),̃s

)
∩Us0

k . Hence, we have∣∣∣In+1
k,s

∣∣∣ = ∣∣∣ f−2
(

In
`2(k),̃s

)
∩Us0

k

∣∣∣ . (5.34)

Applying Corollary 5.10 with p := αn and In
`2(k),̃s

instead of Û`2(k) in (5.34), and using this p
together with 5.22, we finally obtain∣∣∣In+1

k,s

∣∣∣ = ∣∣∣ f−2
(

In
`2(k),̃s

)
∩Us0

k

∣∣∣ ≤ α · p · |Jk| = αn+1 |Jk| .

This completes the induction and the proof of Corollary 5.11.
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Proof of Theorem 5.1. Assume k, c and µ are as in the assumptions of the Theorem 5.1 and,
α = α (ω, µ, c) be as in Proposition 5.3, so that α < 1

2 . Choose ω ∈ (0, 1) as in Lemma 5.2.
(i) Let a symbol sequence s = (s0, s1, s2, . . . ) ∈ {L, R}N0 be given. From Corollary 5.11 one

can see that for n ∈ N0 the closed interval In
k,s consists of the points x ∈ Uk which follow

the finite symbol sequence s = (s0, s1, s2, . . . , sn) ∈ {L, R}n+1. Further we have In+1
k,s ⊂ In

k,s. It
follows that

⋂
n∈N0

In
k,s 6= ∅. Since, in view of Corollary 5.11 and α < 1

2 , we have
∣∣In

k,s

∣∣ → 0
for n → ∞, the intersection

⋂
n∈N0

In
k,s contains exactly one point xk,s. This point xk,s has the

asserted properties. Any point in Uk with these properties would also be contained in this
intersection and thus equal xk,s.

(ii) The set {L, R}{0,1,...,n} has 2n+1 elements and from Corollary 5.11 we know that each set
corresponding to one s ∈ {L, R}{0,1,2,...,n} satisfies the estimate

∣∣∣In
k,s

∣∣∣ ≤ αn |Jk|. It follows that∣∣Γn
k

∣∣ ≤ 2n+1αn |Jk|, and it turns out that the measure

lim
n→∞
|Γn

k | = lim
n→∞

∣∣∣∣∣∣ ⋃
s∈{L,R}{0,1,2,...,n}

In
k,s

∣∣∣∣∣∣ ≤ 2 lim
n→∞

2nαn |Jk| = 0

and this completes the proof.
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