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1 Introduction

Various kinds of mathematical models arising from physics, engineering and biology not only
involve random effects such as uncertain parameters, stochastic perturbation, but also relate
to multiple disparate time or spatial scales [2,16,21]. Many important physical models, such
as Burger’s equation, Ginzburg-Laudau equation, Swift-Hohenberg equation are highly re-
ferred in this field. In order to investigate a variety of equations in the context of random
influences, by combining probability theory, functional analysis and the theory of partial dif-
ferential equations, mathematicians gradually developed and perfected a systematic frame-
work of stochastic partial differential equations (SPDEs) in recent decades [13,30]. In terms
of SPDEs evolving on multi-scales, there are many methods used to analyze the dynamical
behaviours of SPDEs, such as averaging method [9, 10], amplitude equations [4,5] and the
theory of invariant manifolds [17,29].

Among these methods, the theory of invariant manifolds is considered as a practicable
tool, which can provide a geometric structure of complex systems [1,35,37]. For deterministic
systems, the pioneering results were obtained by Hadamard [22], Lyapunov [23] and Perron
[25]. Duan et al. [14,15] extended this theory to random dynamic systems and show the ex-
istence of random invariant manifolds for SPDEs with simple multiplicative noise. Equations
with more general multiplicative noise were studied by Caraballo et al. [7] and Mohammed
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et al. [24]. Also other dynamical properties of SPDEs have been already addressed in the lit-
erature, just to list a few but far from being complete: random invariant foliations [26,32,34],
asymptotic dynamical behaviors [19,33,34,36], geometric shape [6,11,18,20], etc.

Applying the property that the random invariant manifolds contribute to the reduction
of SPDEs, mathematicians can eliminate the fast variable of slow-fast systems to reduce the
original system to a lower dimensional system. At earlier stage of the research, Schmalfufs
and Schneider [31] studied a class of slow-fast systems with noise in the finite dimensional
case by Hadamard method, and obtained that inertial manifolds tend to slow manifolds if
the scaling parameter ¢ tends to 0. Fu et al. [17] applied Lyapunov—Perron method to a
class of stochastic evolution equations with slow and fast components, and proved that slow
manifolds asymptotically approximate to critical manifolds. Qiao et al. [28,29] obtained a
reduced system of a class of SDEs under slow-fast Gaussian noisy fluctuations on the random
invariant manifolds, and showed the delicate error between the filter of the original system
and that of the reduced system. The slow invariant foliation, another interesting object in this
field, was originally studied by Chen et al. [12]. They constructed random invariant foliations
for a class of slow-fast stochastic evolutionary systems, and presented the approximation of
slow foliations. Recently, slow-fast systems with non-Gaussian noise have gained substantial
attention from researchers. For details, please see [27,38,39], etc.

In this paper, we investigate a class of slow-fast PDEs driven by strong multiplicative noise:

dXE — éxs_i_w dt+£odw, in Hy, (1.1)
€ Ve
dY® = [BY® + g(X%,Y*)]dt + L oaw, in H, (1.2)

/e

where H; and H, are separable Hilbert spaces, ¢ is small parameter (0 < ¢ < 1), W(t) is a
two-sided Wiener process taking value in R, o means Stratonovich stochastic differential, and
A, B, f, g will be introduced later. Briefly, the main goal of this paper is to construct the random
invariant manifolds and foliations for (1.1)—(1.2) and to derive corresponding approximations
for both. Compared with [17,28,29,31], the system we study is forced by multiplicative noise
rather than additive noise. To the best of our knowledge, this is the first research to consider
the slow manifolds and slow foliations for slow-fast SPDEs with multiplicative noise.

This paper is organized as follows. In next section, we present some assumptions and
recall some basic concepts in random dynamical systems. In Section 3, the existence of random
invariant manifolds of (1.1)—(1.2) is established. Moreover, we show the orbit starting from
random invariant manifold can exponentially approach to the other orbits in forward time,
and prove that invariant manifolds can converge to slow ones as ¢ tends to 0. Section 4 is
aimed at the theory of random invariant foliations including existence, exponential tracking
property in backward time, and asymptotic foliations.

2 Preliminaries

The section is devoted to presenting some conditions that we need later, and reviewing some
background materials in random dynamic systems.
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2.1 Notations and assumptions

Let Hy and Hj be separable Hilbert spaces in (1.1) and (1.2). Denote their norms by || - ||; and
|| - |l2, respectively. Set H := Hy; x H, with norm || - || = || - |l + || - ll2- A, B, f,g in (1.1)-(1.2)
satisfy the following conditions.

Assumption 1. Suppose that linear operator A generates a Cp-semigroup {e4'};>0 on H;
fulfilling

et x|y < e M||x||y, for x € Hy, t >0,

and linear operator B generates a Co-group {e?'};cg on H, fulfilling
le®yll2 < €™ lyll2, for y € Ha, t <0,

where v1 > 0,72 > 0.
Assumption 2. Suppose that nonlinear terms

fZH1><H2—>H1,
g:H1XH2—>H2,

satisfy f(0,0) = 0 and g(0,0) = 0, and there exists a constant K > 0 such that

1f(x1,y1) — f(x2,y2) lh < K([[x1 — x20l1 + llyr — y2ll2),
1g(x1,y1) — &(x2,y2) ll2 < K(||x1 — x2|1 + [[y1 — y2ll2),

for all x1,x, € Hy and y1,y2 € Ho.

Assumption 3. f(x,y) and g(x,y) are C! functions, and all the first order partial derivatives
of them are uniformly bounded.

Assumption 4. The Lipschitz constant K and decay rate y; of A satisfy

K < 7. 2.1)

Assumption 5. The Lipschitz constant K, decay rate 1 of A and decay rate 7, of B satisfy

Y172
— 2.2
271+ 72 22)

Remark 2.1. (1) We remark that our main theorems hold when H; and H; are real or complex
separable Hilbert spaces. For simplicity, we ignore it.

(2) Assumption 3 and Assumption 4 will be imposed in Section 3 and Section 4, respec-
tively. We would like to point out that condition (2.2) is sufficient for condition (2.1), which
implies that the condition used for the study of the random invariant manifolds is weaker
than that used for the study of the random invariant foliations.

(3) Moreover, we remark that there are other conditions, which can also play the same role
as condition (2.2). For the details, please see Remark 4.3 and Remark 4.4 in [12].
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2.2 Random dynamical systems

Referring to the literature [1,12,14,15,26], we introduce some concepts of random dynamical
systems.

Definition 2.2. Let (), F,IP) be a probability space, and a flow 6 of mappings {6;};cr be
defined by 6 : R x () — () such that

0o = idq,
etl o Gtz = 9t1+t2/ thr b € IR/

the flow is (B(R) ® F, F)-measurable,
0P =1P, VteR.

Then (Q, F,IP,{6;}+cr) is called a metric dynamical system.

Definition 2.3. A random dynamical system on the topological space X over a metric dynam-
ical system (Q), F, P, {6; }+cr) is a mapping

p:RxOQxX—X, (t,w,x) = @(t,w, x),
such that

¢ is (B(R) ® F ® B(X), B(X))-measurable,

¢(0,w) =idx, Yw € Q,

p(t+s,w,) = ¢t 0w, ¢(s,w,-)), ¥s,t eR, weQ,

¢(t,w, x) is continuous with respect to ¢, for fixed w € O, x € X.

In what follows, we consider ¢(t, w, -) as a random dynamical system on a complete sep-
arable metric space (H,dy) over a metric dynamical system (Q, F, P, {6; }tcr).

Definition 2.4. A family of nonempty closed sets M = { M(w)} contained in (H, dp) is called
a random set if

inf dpy(x,
w= yell\r/ll(w) H(x y)

is a random variable for x € H.

Definition 2.5. A random set M = {M(w)} is called a positively invariant set contained in
(H,dy) if
p(t,w,M(w)) C M(biw), t>0, w e Q.

Furthermore, if, for every w € (), we can represent M by a graph of a Lipschitz mapping
4)(cu, ) : Hz — H],

B M(w) = {(¢(w, ), 1)y € Ha},

then M(w) is called a Lipschitz continuous invariant manifold.
Definition 2.6. (i) Fixing x € H, we call W,,(x,w) is an a-stable fiber passing through x

with & € R, if ||¢(t,w,x) — ¢o(t,w,%)||g = O(e™),Vw € Q as t — +oo for all ¥ €
Wis (X, w).
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(ii) Fixing x € H, we call W, (x, w) is a B-unstable fiber passing through x with g € R*, if
lp(t,w,x) — @(t,w,%)||g = O(eP!),Vw € Qas t — —oo for all £ € Wy (x, w).

(iil) Wis(w) := UyegWhas(x, w) is called stable foliation.
(iv) Whu(w) := UrepWsu(x, w) is called unstable foliation.

(v) A foliation Wy, (w) is invariant with respect to random dynamical system ¢ if each fiber
of it satisfies that
@(t, w, Weu(x,w)) C Weu(o(t, w, x),0w).

2.3 Transformation from SPDEs to RPDEs

The motivation of this subsection is to transform SPDEs (1.1)—(1.2) into random partial differ-
ential equations (RPDEs), and show the relationship between them. For our applications, we
introduce the metric dynamical system induced by Wiener process. Let W(t) be a two-sided
Wiener process with trajectories in the space Cy(IR,R) which is the collection of continuous
functions w : R — R with w(0) = 0. Set O := Cp(IR, R). This set is equipped with a compact-
open topology (please see the Appendix in [1]). Let F be its Borel o-field and P be the Wiener
measure. Set
Oiw(-) i =w(-+t)—w(t), we, teR

Note that IP is ergodic with respect to 6;. Then (Q), F, P, {6; }+cr) is a metric dynamical system.
In order ot obtain RPDEs, we need the following preparation. Consider the linear stochas-

tic differential equation:

€
dzt = —%dt + Law, (2.3)
&

N

The solution of (2.3) is called an Ornstein-Uhlenbeck process. Following Lemma 2.1 in [14],
we present the properties of z°(t) as follows.

Lemma 2.7.

(1) There exists a {6} }ter-invariant set Q) € B(Co(IR, R)) of full measure with sublinear growth:

©Ol_g,wea.

lim
t—+oo |t|
(2) For w € Q) the random variable
3 0 T
zf(w) = —e’i/ erw(t)dT

exists and generates a unique stationary solution of (2.3) given by

0 T 0 T
QOxR> (w,t) = zf(6w) = —s’%/ et Oy (T)dT = —£ 2 / ecw(T+ t)dT—f—s’%w(t).

—0o0

The mapping t — z°(6;w) is continuous.

(3) In particular, we have
.|z (6rw)|
lim ——~—

AW =0 forw e Q.
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(4) In addition,
t

tgrfw% ; zf(0rw)dt =0 for w € Q).

In the followings of this paper, we consider (1.1)—(1.2) on the new metric dynamical system
(Q, F,P, {6 }ter), where Q is given in Lemma 2.7, F := {QN A, A € B(Cy(R,R))}, and P is
the restriction of the Wiener measure P to F. We proceed to show the solution of (1.1)—(1.2)
can generate a random dynamical system over the metric dynamical system (Q, F, P, {6; }1eRr).
Letting X¢ = e % (®w) X2, Y& = ¢=% (@) y?, we obtain RPDEs:

A z¢(0;0) X¢ N F(XE,YE, 0w)

% = | 2%+ dt, (2.4)

£ s

z¢(0w) Y
€

4y = [BY" + GRSV 00)]dt, 25)

where

F(XE, Y5, 0yw) = &= (0) f(¢ O g o= (Ol ye),
G(XE, Y%, bw) = o™= (g (= (M) XE, = 00)ye),

Since F and G are also Lipschitz functions with the same Lipschitz constant K for w € (), there
exists a unique solution Z¢(t) = (X*(t), Y(t)) of (2.4)—(2.5) for w € Q. Hence, the mapping

(t,w, Z£(0)) — Z2(t, w, Z£(0))

is (R® F @ B(H), B(H))-measurable and generates a random dynamical system. We intro-
duce the transform
T(w,x) = xe = (@) (2.6)

and its inverse transform
TN w, x) = xe* @ (2.7)

forx € Hand w € Q.

Lemma 2.8. Suppose that u(t, w, x) is the random dynamical system generated by (2.4)—(2.5). Then
(t,w,x) = T 0w, uf(t,w, T(w,x))) =: 0°(t,w, x)

is a random dynamical system. For any x € H this process (t,w) — 0°(t,w, x) is a solution to
(1.1)=(1.2).

Proof. Note that T(w, -) is a homeomorphism for any w € Q, T(-,x), T~!(-, x) are measurable
for any x € H, and u*(t,w, x) is a random dynamical system. Hence, #°(t, w, x) is a random
dynamical system. For x € H, applying It6’s formula to T(6;w, (¢, w, T~(w, x))), we can
obtain a solution of (2.4)—(2.5). Because T (6;w, x) and u(t, w, x) are well defined for any w € ),
and T~ is the inverse of T, the converse is also true, which implies 7°(t, w, x) is a solution of
(1.1)—(1.2). O

Based on the above lemma, we can investigate (1.1)—(1.2) via (2.4)—(2.5). Then we are
concerned with the random partial differential equations (RPDEs) (2.4)—(2.5) in the remainder
of this paper.
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3 Random invariant manifolds and slow manifolds

In this section, we use Lyapunov—-Perron’s method to prove the existence of random invariant
manifolds for (2.4)-(2.5), and state that any orbit can be exponentially attracted by random
invariant manifolds. Moreover, we show slow manifolds can approach to random invariant
manifolds as the parameter ¢ tends to 0.

3.1 Random invariant manifolds

Let us give some notations. For « € R, a real-valued stochastic process p(t,w) and i = 1,2,
define Banach Space

C,i';, = {qb : (—o0,0] — Hjl|¢ is continuous and ?up ]e—“t—.fgp(sfw)dsu(p(t)Hi < oo}
te(—o0,0

with the norm H‘PHC;;;, = ?up ]e"‘tfot P(sw)ds|| () ||;, and
g te(—o0,0

C,ﬁg,;; = {(p : [0, +00) — H;|¢ is continuous and sup e_”‘t—f(fp(sfw)d5||¢(t)||i < oo}
te[0,+00)

with the norm [|¢|| i+ = sup;cpg ;o) ety P(sw)ds|| ¢ (t)||;. Furthermore, define product Ba-
a,p ’
Lt 24 o

nach space C; , := Cyp x Cy with the norm HZHC’%IJ = Hx”cﬁ + Hy||c§,§, z=(v,y) € Cyp-

Let u be a positive number satisfying 71 — pu > K. Let Z¢(t,w, Zy) be the solution of (2.4)-
(2.5) with the initial value Zy € H. Set M*(w) = {Zy € H|Z*(-,w,Zy) € C", . }. More

precisely, M¢(w) is the set containing all initial data such that corresponding solutions belong
toC™

BozEe

Foii(g)wing the idea from [15,17], we will show M?(w) can be represented by a Lipschitz
function with Lyapunov-Perron’s method.

Lemma 3.1. Suppose that Assumptions 1, 2, 4 hold. Zy = (Xo,Yo) € M®(w) if and only if there
exists a function Z¢(-) = (X*(-), Y*(+)) € C~, .. with Z*(0) = Zy and satisfies

e’ €

_ 1 t A(tfs)+fst 28 (Orw)dr _ _

X%ﬂzg/ T R (RE, Y, B5c0)dis, (3.1)

_ ftze(f)yw)dr _ t fst 28 (0yw)dr _ _

Ye(t) = BT m+/eWﬂ*4f*Qmewm& (32)
0

Proof. The proof can be completed by that of Theorem 3.1 in [15], so it is omitted here. O

Theorem 3.2 (Existence of invariant manifold). Under Assumptions 1, 2, 4, for sufficiently small
e > 0, there exists a Lipschitz invariant manifold M*(w) for (2.4)—(2.5) represented as a graph

MS((U) = {(Hg(w, Yo),Yo)‘Yg S Hz}, (3.3)

where H(-,-) : QO x Hy — Hj is a Lipschitz continuous mapping with Lipschitz constant Lip H*(w, -)
satisfying that

Lip H(w, ) < K wen. (3.4)

(m—m {1 _K(%lﬂl * Hﬁe“rz)} ,

Moreover, H¢(w,0) = 0.
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Proof. The proof consists of four steps.

Step1. Claim that for ¢ > 0 sufficiently small, (3.1)—(3.2) will have a unique solution Z¢(-, w, Zy) =
(X*(-,w, Zo), Ye(-,w, Zy)) € C_, ... We will use Banach'’s Fixed Point Theorem to achieve the

e’ e

claim.

Define two operators J{ : C wx —CY, Ci = and J5:C~ I Cizi satisfying
e/ e 1 t A(t—s)+f5tz€(9yw)dr e oe
Rz = [ & TR Y bw)ds, (3.5)
_ ftZS(Gyw)dY _ t fstzs(ﬂyw)dr _ _
JE(ZE(8)) = BTN, 4 / B9+ BT G % Ye 0.w)ds, (3.6)
0

for t < 0. Define J¢ : C:y £ 7 C . E by means of J¢(Z¢(-)) = (J5(Z%(+)), J5(Z%(-))). Firstly,

let us show that J* maps C, o

e’e

into 1tse1f Since F, G keep the Lipschitz condition, we have

;4t+fq (6rw)dr

- toae oo -
e, , =5 s {] T (R ¥ w)ds )

mm
M\Nm
(e
-
m
—_
3
=)

and

_ yt+js (rw)d _ _
IEZ e, , = sup {0+ [ ens e G e ¥ g s
-e%  te(—o00

0 _
<K sup {/t e(’Yz+ )(t— st}HZeHC_#Z +HY0H2

te(—o0,0]
eK - _
= Zfe- 4+ |Yol2.
e | HC_%’% [1Yoll2
Thus, ||]8(Z£())||C:E - < p(K, NGV 7218) + HYOHZ/ where p(K/ Hr 71, ')’215) = %K—y yﬁf’yg'
Next, we verify that J is a contractive mapping. Let Z¢(-) and Z¢(-) € C~ wEe Then

IFZ ) = KEZ (D,
K t (71+y s
<< sup { [ IR X Y-V )ds
€ tG(oo,O}{ - C*%'é ¢ %'ZT }
K £ 1 -
R T
3 tE(—O0,0] —o0 7%'%
K _
= 2= 2
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and

112(2()) = ]5(28('))“(:2; .

€

t
<K sup { [ (X =Ko, Y=V )
uozE

te(—00,0] 0 —e %
0
<K sup {/ et D=)gs k175 — 77 -
( 00,0] %ZT
E ZE _
- ez -2,

Therefore, ||J(Z°(-)) = J/(Z* ()l . < p(K 71,72, €)1 Z° — ZEHc— . Since 71 — p > K,

UozE
7??

mm
»«‘N

; ; — (n—pu—Kp
we have p < 1if e € (0,&0) with gg = =)=t —F72"
Consequently, we use Banach’s Fixed Point Theorem to obtain the existence of the unique
solution Z¢(+) € C™, . for (2.4)—(2.5), and the standard a-priori estimate:

_ Kz
e’

< 1
ez T 1= p(K 71, 72,€)

1Z5(-) w, Zo) = Z°(-, w0, Zo) | - 1Yo — Yoll2, (3.7)

forallw € O, Yy, Yo € Hy.

Step 2. Construct the random invariant manifold M*(w).
Define

1 0 —As— f Gyw r _ _
Hf(w,Yy) := f/ e F(X®(s,w, Yp), Y(s,w, Yp), Osw)ds.

€ J—o0
Then, the Lipschitz constant of H*(w, Yp) is given by

K o o

y—u HZ ('/w/ZO) —-Z ('/w/ZO)HC:%%
K _

< ’ - 1Yo — Yoll2

(1 —n) [1 - K(’h*# T Hm)}

forall w € O, Yy, Yy € Hy. Lemma 3.1 yields that M*(w) = {(H*(w, Yo), Yo)|Yo € Ha}.

I1H* (w, Yo) — H(w, Yo)|l1 <

Step 3. We need to prove M*(w) is a random set. To this end, we show that

w — mlqu(x y) — (H*(w, PZ'), PZ)|| (3.8)
e
is measurable, where P is the projection from H to H,. Let H. be a countable dense set of
the separable space H. The continuity of H*(w, ) yields that the right-hand side of (3.8) is
equivalent to
w — inf ||(x,y) — (H (w, PZ"), PZ)]|. (3.9)

Z/cH,

Since w — H*(w, Pz') is measurable, we obtain that measurability of any expression under
the infimum of (3.9). Then the fact that M® is a random set follows from Theorem IIL.9 in [8].

Step 4. We are going to show that M® is positively invariant which means that for every
Zo = (Xo,Yo) € M8 (w), Z(s,w,Zy) € Mé(0sw) for all s > 0. For every fixed s > 0, we claim
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that Z(t +s,w, Zp) is the solution of
A N z¢(0; (0sw) ) X N F(X, Y,St({)sw))

dt,

dY® = [BY® + Z(6:(60))¥* + G(X5, Y5, 6:(65w))]dt

with initial value Z(0) = Z(
tZ

,w,”Zp). Then Z(t+s w,Zy) = Z(t,0;w,Z(s,w,”Zy)). Since
Z(-,w,Zy) € C” ,,Zt,wege T2

s
(-, 05w, Z(s,w,7Zp)) € Thus Z(s,w, Zy) € M*(6sw). The
proof is completed o O

Next, we want to show that the Lipschitz invariant manifolds for (2.4)—(2.5) given in (3.3)
has exponential tracking property

Theorem 3.3 (Exponential tracking property in forward time). Under Assumptions 1, 2, 4, for
sufficiently small € > 0, there exists a positive constant C and a random process D(t,w) such that for
any Zo = (Xo, Yo) € H, there exists Zg = (Xo, Yo) € M¢(w) satisfying that

| ZE(t, w, Zo) — ZE(t, w0, Zo) || < D(t,w)e™ | Zo — Zol|, t > 0.

Proof. Suppose that Z¢(t) = (X¢(t), Y¢(t)) and Z¢(t) = (XE(t), YE(t)) are two solutions of (2.4)-
(2.5) with initial data 7¢(0) = Zo and Z¢(0) = Zo, respectively. Then Z&(t) = Z¢(t) — Z&(t) =
(X®(t), YE(t)) satisfies that the following system:

Ao,  Z(0w)XE n F(XE, Y5, 6,w)

dXt = | =X° + dt, (3.10)
€ € €
dY® = [BY* + Z(ef’)y +G(XE, Y5, fpw)]dt, (3.11)
where
F(XE,Y¢, 0,w) = F(XE+ X, YE + Y5, 6,w) — F(XE, Y, 0,w), (3.12)
G(XE, Y¢, 0w) = G(XE+ X5, YE 4 Y5, 0w) — G(XE, Y5, Buw). (3.13)
Acoording to the variation of constants formula, we state that Z¢(-) = (X*(-), Y(-)) with

initial value Z¢(0) = Zg — Zo = (X(0), Y(0)) is the solution in Cf%é of (3.10)-(3.11) if and

only if

~ At [ 2 (Brew)dr 1t AG-s)+[iErw)dr ~
RE() = e e RE0) + E/ e E(RE, Y, Buw)ds, (3.14)
0
~ t fs (rw)dr ~ ~ ~
V() = / eBl=5)+ B 5 (e ¥ 9 0) ds. (3.15)
“+o0

Now, let us show that there exists a unique solution Z#(-) = (X?(-), Y*(+)) in C*, . with initial
value (X*(0), Y¢(0)) such that -
(Xo, Yo) = (X(0), Y*(0)) + (X0, Yo) € M*(w). (3.16)
It follows from Theorem 3.2 that
X¥(0) = —Xo + He(w, Y¥(0) + Yo)

B R N S y
- —X0+g/ e T R(RXE (s, YE(0) + Yo), Y(s, YE(0) + Yo), Bsw)ds.
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Let Z¢(-) = (X&(-),Y(+)) € C*, .. Fort > 0, define two operators C*, . — Cizé and

e’ e e’ e e’ e

C*, . — C* . by means of

el e €’e

~ At ftzg(eyw)dr,v 1 EooAt-s) fstzs(ﬂrw)dr ~ o~
THZE() = e R(0) + - / eT R (RE YR, fuw)ds,
0
~ t fs'zs(ﬂrw)dr ~ o~
TEZED) = / B+ G (R, ¥, 0.w0)ds,
+o00

where X¢(0) is from (3.16). Furthermore, define J¢: C*, . — C*, . as

THZE() = (FF(ZE()), T5(ZE()))-

As the proof of Theorem 3.2, we apply Banach’s Fixed Point Theorem to (3.14)—(3.15). Obvi-
ously, J*¢ is self-map. It remains to show that J°¢ is contractive. Note

A+ [p2f(Orw)dr

[Fa— (Xi(O)—XE(O))Ich; .
ot - -
<e ¢ Lip H[|Y{(0) — Y3(0))]2
(= [b erdr ~ ~ ~ o~ o~
< Lip He|| / e BT (GRS, Y, ) — G(XS, Y2, Ouw) ) dis
(71‘*’#

+o0 ,
LipH - KIZi() = Z5()ller, , [ el Fds.
_,é 0

Then,

£/ 7e e p £ e Fe [CIRTOLIN (—y2—1)s
1T = )y, < LipH KIZE() = Z30)lr,  sup e [ el s

K, ~ ~ o (em+m-s)
+8wwwzchwmm{/e : %}
- % >0 0

LipHt-eK = K
< ( +
Ht+er Y1 —

and

~ ~ — —+o0 "
| T5(Z5 = Z8) | o < KIZS§(-) — Z5(-) ||+ S&g{[ e(n@)(ts)ds}
t>

L
g/

M\N
|

eK ~ ~
< Z5() — Z5(- .
< e 0 - 70,

By (3.4), we further obtain

ITZE() = THZE (DI, , < B 1,721 ZE() = Z5C) e,

_ B o2E _kz
£ € £
where

ek? +K( 1 n € )
(M —mp+en)1-KG5+a5) Mm—K #ten

B(K, y1, 72, 1) =
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Note B(K,v1,72,#) < 1 if ¢ is sufficiently small. Then there exists a unique solution Z¢(-) for
(3.14)-(3.15) in C+ i

Furthermore,
1ZE (M, , < 1Z5O)] + K( 4 E MZE s,
b MoK ptET b
which implies that
1ZC)lles, ., < 1 1Z:(0)].
1_K<%1—u+u+€m>
Thus, we obtain

_ v — - _k > =
| ZE(t, w, Zo) — ZE(t, w, Zo)|| < e Zo— Zo|, t>

1
1= K(%u + T
The proof is completed. O

3.2 Slow manifolds

In this subsection, we are going to present the approximation of M*(w) in slow time-scale
T = é Scaling t = €T in (2.4)—(2.5), we have

dX® = [AX® + 25 (0rw) X + F(X5, Y¢, Oerw)]dT, (3.17)
dY® = [eBY® + z°(0.rw) YE + eG(XE, Y, Oerw ) |dT. (3.18)

Let 77(67w) be the stationary solution of
dy = —ndT +dW(T), (3.19)

where W(T) and ¢ 2W/(eT) are identical in distribution. Replacing z¢(6;7w) by #(6rw) in
(3.17)—(3.18), we have

dXS = [AXE “+ U(QTW)XS + ﬁ(}/zsl ?5, GT(U)]dT, (3.20)

d?fi = [SB?S + W(GTC‘))?S + 8@(5&8’ ?S, GTCU)]dT, (3‘21)
where

1/:\(}?8 ?E QTw) — 67’7(9TCU)f(e’l(9Tw)X er](ﬁﬂu)? )

G(RE, V¢, 070) = o107 g (£10rw) Re, 1(0r0) ey,

Since z¢(0,rw) is the same as (f7w) in distribution (please see Lemma 3.2 in [31]), the dis-
tribution of the solution (3.17)—(3.18) coincides with that of (3.20)—(3.21). Using the similar
procedure as the proof of Theorem 3.2, we obtain that (3.20)-(3.21) has a random invariant
manifold M¢(w) represented as

M (w) = {(B(w,Yo), Yo)|Yo € Hy}
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with 0
A (w, Vo) = / e A5y 16 F(Re V¢, 0,c0)ds,

where
T
)?S(T) _ / eA(T*S)vaSTr](GrW)d”]/—”\(Xe, ?e, Gsw)ds,
T
?S(T) _ eeBT+f0T,7(9,w)dr?0 +e / EEB(T_SHLT ,](e,w)dré(f(e, ?sl st)ds.
0
Then, for fixed Y, € Hy, H¢(w, 1?0) = I/—]S(w, )?0) in distribution. In fact,

H(w,Yp) = ~ F(X(s,w, 170),17(5, w, 170),95cu)ds

€ J—o0

~ 1 0 —As— [§ 25 (rw)dr

0 s e _ ~ ~
:/ e‘As_foZ(Gs’w)drF(X(ss,w,Yo),Y(ss,w,YO),BSSw)ds

0 .. SN P ~
i/ e‘AS_fd’l(e’w)drF(X(s,w,Yo),Y(s,w,Yo),Gsw)ds

= H(w, Yp), (3.22)

where £ denotes the equivalence in distribution.

We proceed to want to explore the approximation form of the invariant manifold M¢(w)
as € — 0. To achieve it, we observe (3.20)—(3.21) when ¢ = 0.

Consider

dX° = [AX" 4 1(07w)X° + F(X°, Y°, 07w)]dT, (3.23)
dY? = y(6rw)YdT. (3.24)

We comment that (3.23)—(3.24) is the critical system of (3.20)—(3.21). It is clear that there exists
a random invariant manifold M°(w) for (3.23)—(3.24) which is

M°(w) = {(H(w, Y0), Y0)[Yo € Ha}, (3.25)
where .
Ho(w,?o) :/ e’As’f(f”(g’“’)drl?()A(O,efgﬂ(e"")dr?o,&w)ds. (3.26)

Furthermore, using the idea coming from Theorem 5.1 in [17], we state that Iflg(w, 170) =
H%w,Yy) + O(e), for w € Q.

Theorem 3.4. Under Assumptions 1, 2, 4, for sufficiently small ¢ > 0, we have
1A (w, Yo) = H(w, Yo) |1 = O(e),
forall Yo € D(B)*, w € Q.
Proof. For T < 0 and Yy € D(B),
HEEBTH&)TU(er)dr?O _ ejaTﬂ(er)dr?O,b < gﬁ)T’?(Orw)de /O B BYods|
eT

. _ omeT
< gfoTW((?rw)dr"BYOHzl e’

*D(B) means the domain of operator B
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Then,

IYE(T) = Y(T) 2
< HeeBT—i—fO 17(6rw) drYO er Qw)dr?OHZ
T . o~
+ HS/ esB(Tfs)+js ﬂ(orw)er(Xs,YS,GS(U)dSHZ
0

. R _ el
< eJOT”("V‘”)drHBYOHQi

0 T ~ ~
ek [T OO (R Ve )
T Nz

< efoT’l(QV‘*’)dr||Bl70||21 — emeeT EKHYOHZ/ s'yz(T s) ys—i—fo (6yw drds
= 1—p Jr

T
1 — et N efoTW(er)dr

eK|| Yol e T — erT

< €f°T'7(9rw)dr||B?0H2 I-p p+tey
— 2

where we use the estimation (3.7) in the third inequality. By (3.27), we obtain

%) = X0 er.

- T
<K[|X() = X°() | o sup{/ooe—(%—#)(T—S)dS}

M T<0

T
+ Ksup { / e—'yl(T—s)—i-yT—i-fs U(G,w)dr”?s o ?OHZdS}
T<0 o

K - .
< Xe() — XO(. _
< IR =Xy, + R,
where
R = sup KeHT(HB?OHZ _||BYolpeT eK | Yo|2e72T )
T<0 7172 (Mt (1—p)(p+er2)(r1 + 7e)
eK?||Yoll2
(1—p)(p+er2)(n —n
= sup X(T).
T<0

(3.27)

(3.28)

Note that there exists Ty, < 0 such that & dT |T T, = 0, which implies that R = 2(Tsup) =

O(e). Then we have

e (’Y —“l/l)R
1X°() = R0 lery, <0 PP
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Therefore,
|8 (w, Yo) — H*(w, Yo) |1

0 ~ ~ 0 s . v
<K [ em R RO o ds K [ emsm RO ve— YO)pds
—o0 W —0o0

. KR eK2|| o] K||BYoll2
< +
1—pu—K  (1—p)(p+ey2)(r—n) 1172
_ K[[BYol2 eK?||Yoll2
(11 +728)72 (1 —p) (1 +er2) (71 + 728)
= O(e).

O

We now show the better approximation of slow manifolds. According to Assumption 3,
we know F(x,y) has the partial derivatives. Let

X¥(T) = XO(T) + eX"(T) + 2X*(T) + - - -
YE(T) = YO(T) 4+ eY(T) + Y2(T) 4 - - - .

7

Then, we have
F(XE, Y%, 0rw) = E(X°,Y°, 0rw) + eFe (X0, Y0, 67w) X
+ efy(f{o, YO, OTw)l?l + O(sz),
e(/}\(}A(s, Ye, Orw) = eé(}?o, ?O,GTa)) + (’)(sz),

where F, and fy are the partial derivatives of F(x,y) with respect to x and v, respectively.
Equating the same degree of ¢, we have

dX° = [AX" 4 (07w)X° + F(X°, Y°, 07w)]dT, (3.29)
dY? = y(6rw)YdT, (3.30)
and
dX' = [AX! + y(0rw) X" + E (X0, Y°, 07w) X" + F, (X%, Y?, 0rw)Y'|dT, (3.31)
dY' = [BY® + 5(67w)Y" + G(X°, Y°, 67w)]dT. (3.32)

We note (3.29)—(3.30) is the same as (3.23)—(3.24). Hence, (3.29)—(3.30) has a random invariant
manifold M°(w) given in (3.25).
Let us consider

A~ T o~ A~ A~ A~ o~ A~ A A

RU(T) = / AT+ [ 1(Ew)dr [ (R0, 70, 0,00) K1 + F,(R°, V0, 0,0) Y1 dis, (3.33)
~ T ~ T r ~ ~ mp o~

YY(T) = el 1Ow)dry, 4 /O els 16:)drBY0 4 G(X0, Y9, 0,w)]ds, (3.34)

where
T
RO(T) = eAT+h 10 G0y, ) + / AT 1C O E (RO, Y0, 6,0)dT,
0

YO(T) = el nt0larg
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with H(Yy, w) given in (3.26).
We state there exists a unique solution for (3.33)—(3.34) in Cf « = without proof. Then, it is

easy to obtain that (3.31)—(3.32) has the random invariant manifold represented as
M (w) = {(H'(w, Y1), Y1) |V € Hy},
where
H'(w, 1)) :/ A= [T 1B B (RO, 70, 0,0) R + B (RO, V0, 0,0 V1]ds.

Set
HY(w,Yy) = H'(w,0)

—/ e~ As—Jo 1(Brw)d { (X0, Y0, 0,0) X + F, (X%, YY, bsw)
S S A~ ~ A~ ~
x [ / e<f7’7(9"")dr(BYo+G(XO,YO,OTw))dT} }ds. (3.35)
0

Then, we can formally show the first order approximation of H¢(Yp, w) as follow:

H(w,Y)
L B (w, o)

0 ~
o~ As— Jon 9“)drF(X(s,a),Yo),Y(S,w,Yo),st)dS

—00

(=]

—As fO (6,w) drF(XO YO 0 w)d

I
+ T T

/ e~ Ao @) B (X0, Y0, 6,0) X" + Fy (X0, Y0, 60) Y1]ds + O(&2)

= H(w, Yo) + eH (w, Yo) + O(£2). (3.36)

Note that H(w, Yp) coincides with H*(w, Yp) in distribution. We have, in fact, proved the
following theorem.

Theorem 3.5 (First order approximation of slow manifold). Under Assumptions 1-4, for suffi-
ciently small ¢ > 0, we obtain the approximation of the random invariant manifold for (2.4)—(2.5)
as

where the second equality holds in distribution, that means for fixed Yy € D(B), H*(w,Yo) and
Ht(w, Yy) are identical in distribution, while the third equality holds for all w € Q, H(w, Yy) is the
critical manifold as (3.26), and H'(w, Yy) is the first order manifold as (3.35).
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We now go back to investigate the approximation of the random invariant manifold for
SPDEs (1.1)—(1.2). Recall the transforms T and T~! defined in (2.6) and (2.7). Let M¢(w) :=
T~ Y(w, Mé(w)), Z¢(t,w, -) be the solution of SPDEs (1.1)—(1.2) and Z(t,w, -) be the solution
of RPDEs (2.4)—(2.5). By Lemma 2.8, we have

Z¢(tw, ME(w)) = T~ Y (0w, Z¢(t, w, T(w, ME(w))))
= T 16w, ZE(t, w, ME(w)))
Til (Htw, Mg(Gtw))
= M*(6,w), (3.37)

which implies that ME(w) is an invariant set. Moreover, we notice that

M (w) = T‘l(w M (w))

= {(#“H (w ?) (Y)Y € Ho}
= {(eze He(w,e*“Yy), )| Yo € Ha}
= {(H(w, Y0), Y )I?o € Hy}, (3.38)

where Hf(w,Yy) = =@ H (w,e *@Y;). Then, M*(w) can be represented by a graph of a
Lipschitz function H*(w, -). Therefore, M*(w) is the random invariant manifold for (1.1)—(1.2).

With the help of Theorem 3.5, we show the approximation of the random invariant manifold
for SPDEs (1.1)—(1.2) as follows.

Theorem 3.6. Under Assumptions 1-4, for sufficiently small ¢ > 0, we obtain the approximation of
the random invariant manifold for (1.1)—(1.2) as

M (w) = {(H*(w, o), Yo)|Yo € D(B)}

W H (w, e 9Y), Yo)|Yo € D(B)}

" (w,e 1Y), Yo)| Yo € D(B)}

1 H (w, e 19)Yy) + e W H (w, e 1) Yy) + O(€2), Yo)|Yo € D(B)},

~—~~ o~~~

where the third equality holds in distribution while the fourth equality holds for all w € Q, n(6rw) is
the stationary solution of (3.19), e"“) HO(w, e 1\“)Yy) is the critical manifold, and (@) H' (w, e~ 1(@)Yy)
is the first order manifold.

4 Random invariant foliations and slow foliations

In the section, we are going to show there also exist random invariant foliations for RPDEs
(2.4)-(2.5), and any two orbits start from the same fiber can approach to each other as expo-
nential rate in backward time. Then, we prove that random invariant foliations converge to
slow foliations as the parameter ¢ tends to 0.

4.1 Random invariant foliations

For (Xo,Y),(X0,Yo) € H, let Y(0) = Yo —Yp. Set Z:(tw) = Z(tw,(Xo,Y0)) —
ZE(t,w, (Xo, Yo)) =(XE(t, w, (Xo, Yo); Y(0)), Y ( , (X0, Y0); Y2(0))). Introduce a set:

W%z% ((Xo, YQ),C(]) = {()u(o, YQ) - H|Z€(t,w, (Xo, YO)) — ZS (t,w, ()_(0, YQ)) - C% é} (4.1)

’e
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In the followings, we will prove W%, . ((Xo, Yo), w) is a fiber of the random invariant foliations
for (2.4)~(2.5). o

Lemma 4.1. Under Assumptions 1, 2, 5, for sufficiently small € > 0, we have the following results:
(1) (Xo,Yo) € sz - ((Xo,Yo),w) if and only if Z¢(+) € Cs, .. satisfies

27 ¢
> 1 t +fs (0rw)dr ~ ~
Xe(t) = - / TN (R Y, By ds, 4.2)
~ f 28 (Orw) dr~ t fstzg(erw)dr ~ o~ o~
Ve(t) = BT e (0) + / B9+ TN B (R Ve, 0,0)ds, 4.3)
0

where nonlinear functions Fand G are defined in (3.12)—(3.13).

(2) There exists a unique solution Z¢(-) € C;, . for (4.2)~(4.3).
277¢
(3) Let Y£(0) and Y5(0) € Hy. Then

1Z5 (-, w, (Xo, Y0); Y5(0)) — Z(-, w, (Xo, Yo); Y5(0 ))Hc—
< 1
~— 1—-p(K, 71,72, ¢)

I\J‘N
m‘N

1Y (0) — Y3(0)lI2,

where
2K

—_—t 4.4
T2 271 téem (“44)

ﬁ(K/ Y1, Y2, S) -

Proof. The proof of (i) follows from the variation of constants formula. With the help of
Banach’s Fixed Point Theorem, we can prove (2). Using the same techniques as in the proof
of Theorem 3.3, we can obtain (3). O

For { € H;, we define

. o B 1 0 —As— [§ 2 (Bbw)dr Se - = -
F(E (Ko Yo w) i =Kot ; [ e e F(RE (5,0, (%0, Vo) — Vo),
Ye(s,w, (Xo, Yo); ¢ — Yg),Gsw) ds. (4.5)

By (4.5), we can show the existence of random invariant foliations for (2.4)—-(2.5) as follows.

Theorem 4.2 (Existence of random invariant foliations). Under Assumptions 1, 2, 5, for suffi-
ciently small e > 0, we have the following results:

(1) (2.4)—(2.5) has a random invariant foliation, whose each fiber is represented as
72 Zs ((Xo, YQ ) = {(le XO, Yo ) g) ’g S Hp_}, (46)
where I¥(Z, (Xo, Yo), w) is defined in (4.5).

(2) I¢is a Lipschitz mapping with respect to {, whose Lipschitz constant Lip I*(-, w) satisfies that

2K

Llplg(/w) < (8’)’2"‘271)[1 — (K Y1,7Y2,€ )]

with p(K, y1, 72, €) given in (4.4).
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Proof. (1) According to (4.2)—(4.3), we obtain

. _ 1 0 —As—[§ZE(frw)dr ~ ~ ~
Xy — X = 7/ e E(RL Y Osw)ds

€ J—o0

1 0 —As— [ E(Orw)dr ~ ~ _ _ o _
_ 7/ e R (R (s, w0, (Ko, Yo); (Yo — Yo)),

€ J—o0

?(S, w, (X(), YO),' (Yo — Yo)),Gsw)ds.

Then, replacing Yy with ¢, we have (4.6) by (4.1), (4.5) and Lemma 4.1.
We proceed to verify that each fiber is invariant. Let (Xo,Yy) € W5, . ((Xo, Vo), w).
2,

Since Z¢(-,w, (Xo, Yo)) — Z¢(-,w, (X0, Yo)) € Co, .., we have Z¢(- + 1, w, (Xo, Yo)) — Z¢(- +
T
w, (Xo,Yp)) € C,, .. Then, the cocycle property leads to
T

9

E('/ 91-(4], ZE(T/ w, (XOI YO))

2, 0-w, Z5(7, w, (Xo, Vo)),

I
N

ZE(- + 7T, w, (XO Y0)>
78+ 1, w, (Xo, Yo))

7

which can yield that Z¢(t, w, (Xo, Yo)) € WE, . (Z¢(T,w, (X0, Vo)), 6-w).
277
(2) Let  and € Hp. Then

15(Z, (X0, Yo)) — I5(Z, (X0, Y0)) [l
<X, w, (X0, Y0); € — Xo) — X°(-, @, (X0, Y0); § — Xo) I 1.~

72 zg

2K ~ - _
< —=  |Z&-,w, (X0, Yo); L — X _7E Sw, (Xo,Yo); L — X _
< 572+271H (-, w, (X0, Y0); T — Xo) (-, w, (Xo,Y0); ¢ 0)||c%%e

2K _
S En e K e ¢l

where the second inequality is from direct calculation and the last one is from Lemma 4.1. [

Theorem 4.3 (Exponential tracking property in backward time). Under Assumptions 1, 2, 5, for
sufficiently small e > 0, any two points (X}, Y3) and (XZ,Y3) in a same fiber sz Zs ((Xo, Yo), w),

we have

¢ [0 z5( Hyw)dr +2 1ot

<
I'< 1—p(K,71,72,€)

1Z5(t, w, (X0, o)) — Z5(t,w, (X5, Y)) 1Yo — Y3ll2 (4.7)

witht < 0.

Proof. Let
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Applying Lemma 4.1, we know that

125w, (X5, Y0)) = Z°(-, w, (X&Y&))Hc—

N
m\'\'

NS

— 1 Z5() - ()Hc—zz
e
A(=s)+ f; 2 (Brew)dr o~ — e~
</ ¢ [F(R5, Y1, 0.0) — F(X3, V5, 0500)ds o
ZzE
) foz(yw)dr o
BT (= W llea
e
er)dr ~ e .
[T G(R, Vi, 0uw) — (X5, V5, 00,
2 e
<V = Rl + K 1,720 Z5() = Z5(0) e
TT
For sufficiently small € > 0, we have
A0 I/ 10| P — Y2 = Y3,
2,2 = 1=p(K 71,72¢€)
which implies (4.7). O

4.2 Slow foliations

The motivation of this subsection is to investigate the approximation of the random invariant
foliations for RPDEs (2.4)—(2.5) in slow time-scale T = é As the arguments in Subsection 3.2,
we will study the approximation of the random invariant foliations for RPDEs (2.4)—(2.5) via
(3.20)—(3.21).

Let 2S(T w, ()?0, Yo)) and Z(T,w, (Xo, Yo)) be the solutions of (3.20)~(3.21) with initial
data (XO,YO) and (X, Yo), respectively. Set Z¢(T,w) = Z&(T,w, (Xo, Yo))—Z5(T, w, (Xo, Yo)),
YE(O) = Yo Yo. According to the variation of constants formula, we state ZE(-,w) =
(Xe(-, w, (Xo, Yo); YE(0)), YE(-, w, (Xo, Yo); YE(0))) € Cy, , if and only if Z¢(T,w) satisfies

T
XE(T) = / A=)+ [T nw)dr f (X Ve g s, (4.8)
T
?S(T) — eeBT-y-foT,](erw)dr?z\:(O) +€/ eeB(T—s)+fsT,](erw)dré(f(e,?e, st)dsl (4.9)
0

where

F(XE, Y5, Osw) = F(X* + X5, Y° + Y5, 0.w) — F(X5, Y5, 0sw),
E(RE T, 0u0) = (X + K8, T + T2, 0.00) — C(RE, T2, 0u0).
By Banach’s Fixed Point Theorem, we can prove there exists a unique solution Z¢(-) € C,

of (4.8)—(4.9). Then, by the similar arguments as in Theorem 4.2, we can prove that there exists
a random invariant foliation for (3.20)-(3.21), each fiber of which is represented as

Wi, (R0, Yo),w) = { (X, Yo) € HIZ{(T, w, (X0, Y0)) = Z5(T, w, (X0, Y0)) € 3}

{( , (X0, Y0),w),0)|¢ € Ha}, (4.10)
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where
F(Z, (Ro, Yo),w) : = Ko + / e A 1O E (R (s, w, (R0, Yo);  — Vo),
% (s, w, (XO, 170);5 — 170),95w> ds.
Using the similar discussion as (3.22), we derive

E(Z, (Ro, Yo), w) £ (Z, (R0, Yo), ). (4.11)

Based on (4.11), we turn to the study of the approximation of £(Z, (Xo, o), w). Taking into
account the critical system (3.23)~(3.24). Let Z9(T,w, (Xo, Yo)) and Z9(T, w, (Xo, Yo)) be the
solutions of (3.23)~(3.24) with initial data (X, Yo) and (Xo, Yp), respectively. Set Z°(T,w) =
Z9(T,w, (Xo, Y0))—Z9(T, w, (XO,YO)) YO(0) = Yo — Yo.

Clearly, Z°(-,w) = (X°(-, w, (X0, Y0); Y°(0)), YO(-, w, (X0, Y0); Y°(0))) € Cy, , if and only if

Z%(T, w) satisfies
X(T) = [ 1 AT=5)+ SO0 (X0 Y0 ) ds, (4.12)
YO(T) = el n6@)dry0 gy, (4.13)
where
E(X°, Y0, 0rw) = F(X°+ X3,Y' + Y2, 0rw) — F(X9, Y3, 0rw).

Furthermore, we claim that (3.23)—(3.24) has a random invariant foliation, whose each fiber is
represented as

W(W)Tzrﬂ ((XO/ ?0)/(*(]) = {(/Zb(gl (XO/ /Y\()),(IJ), C) ’g € HZ}/ (414)
where
P(E, (%o, Vo)) = Kot [ e im0 (R9(s, 00, (R0, o ¢~ Vo),
Y2(s, @0, (X, Yo); ¢ = Vo), bscw ) dis. (4.15)

Inspired by the technique from Theorem 5.2 in [12], we are going to prove that the random
invariant foliation for (3.20)—(3.21) converges to that for (3.23)-(3.24) as ¢ — 0.

Theorem 4.4. Under Assumptions 1, 2, 5, for sufficiently small € > 0, we have
(2, (X0, Vo), w) = 1°(Z, (X0, Vo), w) + Oe),
for all Xo € Hy, ?o,g € D(B), w € Q.

Proof. Due to the representations of ¥ and I°, we obtain

I175(2, (Xo, Yo), w) = 1°(Z, (Xo, Yo), w)]hx
= [|X*(T, w, (Xo, Yo); (T — Y0)) — X°(T, w, (X0, Y0); ( — Yo)) 11 |7—o.
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Hence, if we can estimate the error between X¢(T) and X°(T), the proof will be done. For
T < 0, we have

1X8(T, w, (Xo, Yo); (¢ — Yo)) — X°(T, w, (Xo, Y0); (¢ — Y0)) I

T T 0~ ~ o~ -
= / eAT=s)+ [ n(6:)dr[F (X2 (5), YE(s), fsw) — E(XO(s), YO(s), Bsw)]ds

= [ AT OIS E(RE(s) 4 Rg(5), V() + Vi), )
— F(X(s) + X3(s), YO(s) + Y3(5), fsw) + F(X3(s), Y3 (s), Osw)
— E(X5(s), Y5(s), 6sw)]ds
<K [ ATEIRe(s) - K(s) |y + 7))
+2(|X5(s) — X3(5) | + 2] Y3(s) — Y3 (s)2]ds
In order to show the bounds of || X¢(T) — X°(T)||;, we need the estimates of | Y¢(T) — YO(T) ||,

277 ]
7 a2V

|X5(T) — X9(T)||1 and ||YZ(T) — YI(T)|2, respectively. Choose fi satisfying fi € (0
which implies K < 71 — fi. Similar to the deduction in (3.27), we derive

T T T
H?ZE(T)_?Z( )||2 BIU (6w dyHBYoﬂzﬁ ef 17(6yw) dysKHYone Iz eE12
72 1-p jtern
and

ST T ~ o 1T eK[[g — Yol =7 — T
FE(T) = (T 2 < el 160 B(7 — Ty [, 222 1 ol ni@rrar
|7(T) - 7(T) | < IBE Tl L Rllze -

where
K eK

-+ — .
M—H RETET

(K, fi,71,72,€) =

Analogous argument as (3.28) yields

- ('h iR
1X5(-) — ()Hcg’;7 S Ak
where
IS .|| BY, BYp|pe72T K| Yol e72eT
R — sup yT(H oll2  [IBYpllae™*" _ E_H 0ll2¢ )
T<0 7172 (A1) (1=p) (A +er2) (1 + 72e)
eK?||Yol|2
(1—p)(a+er2)(n — i)
= O(e).
Furthermore, combining the above estimates, we obtain that
IR0) = RO, <K [ el BID@YR50) — KU o + 1K)~ K)o, )

FK [ eI () 5 Py 4 T )ds

. 2KR PO
—|| XE(- -+ ——+2R+R,
71-#” () — ()Hclm —fi—K

<
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where

7 = sup {Keﬂ( 1B —Yo)ll2 _ |IB(g — o) o€

T<0 1172 (71 + 728) 72
B eK||Z — Yol2e72¢T eK?||T — Yol|2
(1-p)(A+er2)(r1+72¢8)"  (A—p)(F+er2)(r—i)
= O(e).
Therefore, we deduce
2KR 5 D
N N KR 4 2R + R
IX() = X0() o < PR
—fn 1——==
T—H
= O(e),

which implies

2KR I
<= +2R+R
S S —i-K
|X4(T) = XD < ==
Ti—H
Our proof is completed. O

e~ FT+]y 1(6:w)dr

In the following, we study the first order approximation of the random invariant foliation
for (3.20)-(3.21). Let Z/(T,w, (X}, ¥3)) and Z1(T,w, (X}, Y3)) be the solutions of (3.31)—(3.32)
with initial data (X}, Y¢) and (X{, Y3), respectively. Set Z(T, w) = ZH(T, w, (X}, Y3))—Z3(T, w,
(X3,71). A

According to Assumption 3, we know F(x,y) has the partial derivatives. Expanding
Z4T,w) = (X4(T,w), Y¢(T,w)) with respect to ¢, we have Z¢(T,w) = Z%(T,w) + ¢Z*(T,w) +
O(e?), where Z°(T, w) satisfies

dX° = [AX" 4 (07w)X° + F(X° + X9, Y° + Y3, 07w) — F(X3,YY,6rw)]dT,
dy°® = q(GTw)YOdT,
and Z'(T, w) satisfies
dX!' = [AX' 4+ (07w) X' + F(X° + X9, Y? + Y9, 61w) (X! + X3)
+E (X + X3, Y0+ V2, 0rw) (Y 4+ Y7) — Fo(X3, Y2, 0rw) X3
— F,(X3,Y2,07w)Y2]dT,
dY' = [BY? + 5(07w)Y' + G(X° + X9, Y? + Y9, 61w) — G(X3,YY, 6rw)]dT.

The critical foliation for (3.23)—(3.24) has been presented in (4.14). We proceed to investi-

gate the first order of the random invariant foliations for (3.23)—(3.24). Consider

x(r) = [

+F (X0 + X3, YO+ Y2, 0,0) (Y + Y2) — Fe(X3, Y2, 050) X3
— (X3, Y2, sw)Y3]ds, (4.16)

T ~ o~ ~n o~ ~ ~ ~
AT+ 10w [F (R0 1 X9, Y0 + 9, 0sc0) (X! + X)

~ T ~ ~ ~ ~n ~ ~
YI(T) = / el @) BYO 4 G(X0 4 RO, Y0 + Y9, 6ycw)
0

— G(X3, Y3, 65)]ds, (4.17)
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where X°(T) and Y°(T) are from (4.12)—(4.13). By Banach’s Fixed Point Theorem, we know
that there exists a unique solution (X'(-),Y'(-)) of (4.16)~(4.17) in C}, . Similar to the argu-

ments as in Theorem 4.2, we can obtain the first order approximation of the random invariant
foliation for (3.20)—(3.21). Fixing Xy € Hj, Yo € D(B), define

. PN 0
(Yo, (Ro, ¥o), @) ::/ AT+ [0 E (X0 4 RO, Y0 1 79, 0,0) (X! + K1)

+E (X0 4+ X3, YO+ Y2, 0,0) (Y + Y2) — Fo(X3, Y2, 050) X3
— F,(X3,Y2,0,0)Y3]ds. (4.18)
Similar to (3.36), we formally obtain
(g, (Xo, Yo), ) =1°(g, (Xo, Yo), w) + 11, (X0, Vo), w) + O(?).
Ultimately, we have the following theorem.

Theorem 4.5 (First order approximation of slow foliation). Under Assumptions 1, 2, 3, 5, for
sufficiently small € > 0, we obtain the approximation fo the random invariant foliation for as

Wi « (%o, Yo), w) = {(I(2, (X0, Yo), ), §)[Z € D(B)}

L L(F(Z, (X0, Vo), w),0)|C € D(B)}
= {(1°(¢, (X0, Vo), w) + €}(g, (Xo, Yo), w) + O(e2),0)|¢ € D(B)},

where Xy € Hy, Yo € D(B), the second equality holds in distribution while the third equality holds for
all w € O, 17)(@ ()/Zo, Yo), w) is the critical foliation as (4.15), and Tl(é, (Xo, Yo),w) is the first order
foliation as (4.18).

We are going to study the the approximation fo the random invariant foliation for SPDEs
(1.1)=(1.2) in the followings. Recall the transforms T and T—! defined in (2.6) and (2.7). Let
(Xo,Yo) € H. By Lemma 2.8 and the similar arguments as in (3.19)~(3.37), we can obtain a
random invariant foliation for SPDEs (1.1)—(1.2), each fiber of which is represented as

W%Z,i (()?0, ?0),(4]) = T‘lw?%i ((TX\O, T?O),w)
= {1 (7R, e V), ), W) C € Hy)
= {(FF(¢, (X0, Y0),w),0) ¢ € Ha},

where [¢ is defined in (4.5), and I£(Z, (X0, Yo),w) = e*@][e(e= (@7 (e=2 (@) Xy o= @)Y)), w).
By Theorem 4.5, we can obtain the first order approximation of the random invariant foliation
for SPDEs (1.1)—(1.2) as follows.

Theorem 4.6. Under Assumptions 1, 2, 3, 5, for sufficiently small ¢ > 0, we obtain the approximation
of the random invariant foliation for (1.1)—(1.2) as

WEYTZ 3 ((20,?0),(0)
= {(l'S Xo,Yo )‘g € D(B)}
)

m‘N

= {(¢ <W‘e“wo,Wmﬂ@@MeDw»

L {(en) (e 1€)Xy, e 19)Yy), w),e"@)7) |7 € D(B)}

— {(eﬂ Z,(e” W(w);?ole—n(w)f/o)lw) +€eﬂ(a»)fl(§, (e‘”(“’))?o,e‘”(w)?o),w)
+0(>e)QM€NML
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where Xy € Hy, Yy € D(B), the third equality holds in distribution while the fourth equality holds for
all w e O, e”(‘”)@(g, (e_”(“’)XO,e_’?(“’)YO),w) is the critical foliation, and e'7<w>T1(g, (e‘W(w))A(o,
e 1@)Yy), w) is the first order foliation.
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