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Abstract. We study the asymptotic behavior of solutions to the multidimensional diffu-
sion (heat) equation with continuous time and discrete space. We focus on initial-value
problems with bounded initial data, and provide sufficient conditions for the existence
of pointwise and uniform limits of solutions.

Keywords: semidiscrete diffusion equation, lattice diffusion equation, modified Bessel
function.

2020 Mathematics Subject Classification: 34A33, 35K05.

1 Introduction

In the present paper, we are concerned with the n-dimensional diffusion (heat) equation with
continuous time and discrete space, i.e., with the equation

n n
Z—Ltl(x,t) =a (Z u(x +e;, t) —2nu(x,t) + Y u(x —ei,t)> , xeZ', t>0, (1.1)
i=1 i=1

where ey, ..., e, is the canonical basis of IR", the constant 2 > 0 is the diffusion strength, and
the terms inside the parentheses represent the n-dimensional discrete Laplace operator. The
study of Eq. (1.1) is meaningful not only from the viewpoint of numerical mathematics, but the
equation is of independent interest; for example, it describes the continuous-time symmetric
random walk on Z", with a being the intensity of transitions between two neighboring lattice
points in Z". In this case, the value u(x, t) is the probability that the random walk visits point
x € Z" at time t > 0.
We impose the initial condition

u(x,0)=cy, xe2, (1.2)

where {cy }rcz is a collection of real numbers such that |cy| < M for a certain M > 0 and all
x € Z", ie, {cy}lxezn € {*(Z"). We refer to {cy }rez» as a bounded array of real numbers, and
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2 A. Slavik

occasionally write cy, ., instead of c, if we need to refer to the components of x. According
to [13, Section 5.2], the problem (1.1)-(1.2) has a unique bounded solution, which can be
expressed in terms of the modified Bessel functions as follows (see also [9, Section 6] for
closely related results):

u(x,t) =e 2 N ol i, (2at) - Iy, _x,(2at), x€Z", t>0. (1.3)
kEZn

Note that the series is absolutely convergent, because the modified Bessel functions are non-
negative, and if we replace ¢, with |ci|, the series represents the solution of the problem with
initial values {|ck| }xezn-

Our goal is to investigate the asymptotic behavior of solutions, focusing on the pointwise
limits lim; ;e #(x, ) and the question whether they are uniform with respect to x € Z".

The asymptotic behavior of the classical diffusion equation with continuous time and space
was studied in numerous papers, see e.g. [2,7,11,15] and the references therein. The one-
dimensional semidiscrete case, i.e., the equation

ou
g(x,t) =a(u(x+1,t) —2u(x,t)+ulx—1,t), x€Z, t>0,
was treated in [12], where it was shown that the solution converges to the average of the
initial values, provided that the average exists. Generalization of the results from [12] to
the multidimensional case is not completely straightforward, and we believe it will be of
interest to the readers, also in view of the recent popularity of semidiscrete evolution equations
(including those with fractional derivatives), see e.g. [1,3-6,8,14], and the references therein.

2 Main results

Recall that I, k € Z, denotes the modified Bessel function of the first kind of order k. Through-
out the paper, we use only a few basic properties of modified Bessel functions, all of which
can be found e.g. in the online handbook [10]. Thus, the exposition is accessible also to readers
with no prior knowledge of Bessel functions.

Our first goal is to transform the formula (1.3) into an alternative formula, which shows the
dependence of the solution on sums (or averages) of initial values. The following statement
corresponds to Lemma 2.1 from [12], where it was derived using summation by parts.

Lemma 2.1. Let {ci }rez be an arbitrary real sequence. Then for each N € IN and t > 0, we have

N N-1 k N
Yo al() =) (k(t) —La(®) Y, a+Int) ), o
k="N+1 k=0 1=k k="N+1

We need the multidimensional version of Lemma 2.1, which reads as follows.

Lemma 2.2. Let n € IN and {cy }rezn be an array of real numbers. Then for each N € N and t > 0,
we have

Ky o —N41 ki ook =0 j=1 ek L=k,
j—1 n ki1 kau

i I () TT () = Lesa () ) - ) Chyyon i 1ol

j=1 kj+1 ..... k=0 kl,...,k]' —N+1i=1 i=j+1 lj+1:_ i1 lLi=—k,
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Proof. We use induction with respect to n. For n = 1, the statement reduces to Lemma 2.1.
Suppose next that the statement holds for n € IN and let us show that it holds for n + 1. Using
Lemma 2.1, we get

N N N

Y Chekal )L (= Y ()L () ) Ik (B,
ki ook =—N+1 ki, — N1 kpi1=—N+1

N N-1 kni1
= Z Ikl (t> I, (t) Z <Ikn+1 (t> - Ikn+1+1 Z Chi oo on s T In(t Z Chy,enkinia
Ky e —N+1 ki1 =0 [ K1 ——N+1

N kn+1 N
= Z Z (Ikn+1 (t) - Ikn+1+1 (t)) Z Ik1 (t) e Ikn (t)ckl ,,,,, kn,ln+l
kn+1:0 ln+1:7kn+1 ki,...kn=—N+1
N

+IN(t> Z Ikl (t) T Ikn (t)ck1,~--,kn+1‘
ki kn 1= —N+1

Using the induction hypothesis to rewrite the inner sum in the first term on the right-hand
side, we get

N kn+1

Z (Ikn+1(t) - Ikn+1+1 ( Z H Ik - Ik].+1 E Z cll n+1
k1,

kn+1:0 ln+1:_kn+l wokn= h=-k In=~ky

n — i—1 n kji1
+In(H) ) Nzl % ]l_llki(t) I Ue(t) = La () ), - Z Chy ki i1 l,,H)

=1 ki1 ekn=0 Ky, kj=—N+1i=1 i=j+1 li=—kjs1  n=—ky
N

+IN(t) Z Ikl (t) o I (t)ck1 Ky s

k1, knr1=—N+1

Expanding the product inside the first term and performing some elementary manipulations,
we get:

N-1  n+1 kq ki1
Z (Ik](t) - Ik]+1(t)) Z e Z Cllr~~~rln+1
ki, kpi1=0 j=1 h=-ki  lyy1=—knn1
n N-1 N j—1 n+1 ki1 knt1
+In(H Y ) I() TT (T (8) = T () X -+ X Chpeidyneidin
J=1kj1,ekng1=0 ki,...kj=—N+1i=1 i=j+1 l]+1*—k;+1 In+1=—kn+1

N

+IN<t> Z Ikl (t) T Ikn( )Ckl Kng1e

k1, knr1=—N+1

This completes the proof, because the third term can be incorporated into the second term as
the summand corresponding to j = n + 1. O

Proposition 2.3. Let n € IN and {cixez» be a bounded array of real numbers. Then the unique
bounded solution of the problem (1.1)—(1.2) is given by the formula

0 n x1+ky Xn+kn
u(x,t) =e 2 Y (H(%(Zﬂf) - ij+1(2ﬂf))> ( Y Y Czl,...,zn)
ky

ki,...kn=0 \j=1 hi=x1—k; In=2xn—

forallx e Z", t > 0.
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Proof. It suffices to prove the statement for x = 0, since for a nonzero x € Z", one can consider
the shifted solution satisfying shifted initial conditions (cf. the proof of Lemma 2.2 in [12]).
Using formula (1.3) and the fact that I_;(t) = I¢(¢) for all k € Z and t > 0, we have

N
u(0,8) = e 2™ Y oy, (2at) - - I, (2at) = e > lim ) Chy

Ty (2at) - I, (2a0).
kezr N=vooy k= N+1

.....

The sum can be rewritten using the formula from Lemma 2.2. But let us first observe that
the second term on the right-hand of that formula tends to zero as N — co. To see this, we
perform some estimates. Let M > 0 be such that |y, x,| < M for all k € Z". Using the
fact that the modified Bessel functions are nonnegative and nonincreasing with respect to the
order, we get

L
100 TT G = ()] < (.
i=1 i=j+1

For kiy1,...,kn € {0,...,N — 1}, this implies that

kf+] ky j—1 n .
Yo o Y T TT k() = Tega (8))ex,,. Kl | < (2N = 1" (H)" M.
l]url:*k]qu li=—k, i=1 i:j+1
Consequently,
n N-1 N ki1 ko 1 n
INODIEEDY )3 Yo o TTR®) TT ((®) = I (8) ey, iy,
J=1kj 1, k=0 Ky, kj=—N+11l=—kiy1  ly=—k, i=1 i=j+1

< IN(H)nN"T(2N) (2N — 1)" Iy (£)" M < In(£)nN"(2N)"Io(t)" ' M,

which tends to zero as N — oo, because Iy () ~ \/217N (5 ) for N — oo (see formula 10.41.1

in [10]). Returning to the beginning of the proof and applying Lemma 2.2, we now see that

N—o0

N-1 n k1
u(0,t) = e~ 2™ lim ( ) H(ij(2at) — Iy 41(2at)) Y - Z Ciy,... >
k1

..... kn=0 j=1 h=—ki  ly=—kn
2 ky ky
—2ant
= 2 Z Hlk (2at) = L1 (2at)) Y - Y cnp
kl ..... k 0] 11:—k1 ln:—kn
and the statement for x = 0 is proved. O

We need two more auxiliary lemmas to be able to prove our main result.

Lemma 2.4. For every n € N and t > 0, we have
e Z H I, (t) = Iga (1)) (2k; + 1)) = 1.

Proof. According to Proposition 2.3, the formula on the left-hand side corresponds to the
unique bounded solution of the initial-value problem (1.1)-(1.2) with a = 1/2 and ¢, = 1 for
all x € Z. But this problem admits the constant solution u(x,t) =1 forallx € Z and t > 0,
and therefore the equality is proved. O
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Lemma 2.5. Let n,kg € N, 1 € {1,...,n}. Ifiy,... i, j1,...,jn1 € IN are distinct integers such
that {il, - .,il,jl, .. .,jn_[} = {1, .. .,1’1}, then

ko—1 00

n
lim Y Z e’”tn[(fkj(t) — I+1(4))(2k +1)] = 0.
t*>00k k Ok ki I=k0 j=1
Proof. We have
kg—l [e9) n
0< Y Y eI — Iy () 2k +1)]
kil ..... kiZ:O k/ ""’kjn—I:kO ]:1

< ) e TT [k, () = T () (2K +1 Z e TT [Tk, (8) = Tiya (1)) 2k + 1)

ko—1 00
kiy yoeoikiy=0 me{i,...,i } ki

jp =0 mE{jijni}
ko—1

= Y " TT [k (t) = Tkpsa () 2k + 1)),

kil""’kil =0 me{il,...,i]}

where the last equality follows from Lemma 2.4 (with n replaced by n — I). Because I(f) ~
\/% (see formula 10.30.4 in [10]), we get lim;_,o e ' (t) = O for each k € Z. Thus,

limy—ye0 e F(Ii(#) — Ix41(t))(2k + 1) = O for each fixed k € N, which completes the proof. [

Here is the main result dealing with the asymptotic behavior of solutions to the problem
(1.1)-(1.2).

Theorem 2.6. Let n € IN and {cy }xezn be a bounded array of real numbers. Denote

1 xlifcl Xn+kn
Ay (X) = =% e .1, XE€EZ", ki,...,kp € No. (2.1)
' H?zl(ij +1) Li=x1—k Ly=x,—kp, ' !

Then the unique bounded solution of the problem (1.1)=(1.2) has the following properties:

1. For every x € Z",

liminf Ay k, (x) <liminfu(x,t) <limsupu(x,t) < hmsup Ay (X).

kl ..... kn—)OO t—o0 t—00 k k e

2. Ifx € Z" and limy,, koo Aky,.. ki, (X) = d, then limy o u(x, t) = d.

3. Iflimy, ko0 Ay, k, (x) = d uniformly for all x € Z", then lim;_,o u(x,t) = d uniformly
with respect to x € Z".

Proof. Fix an arbitrary x € Z" and denote

A= khmmf Agy, ke (1), A= limsup Ay, (x).

kn—ro0 Ky e p—300

Using Proposition 2.3, we get

e i ﬁ[(l’v (2at) — I 11(2at)) (2k; + 1)] Ag,, _j, (%) (2.2)
k1, kn=0j=1
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Let M > 0 be such that |¢;| < M for all I € Z". Then |Ay,,_x,(x)| < M forall ky, ..., k, € No.
Given an ¢ > 0, there exists a kg € IN such that for all ky,...,k, > ko, we have A —¢ <
Ak1,~~,kn (X) < A+e

From Lemma 2.4, we know that for each t > 0,

T=e2 3" TTI(I (2at) — I 41 (2at) ) (2k; + 1)].
ki, oy =0 j=1

We split the sum in two parts, one containing all terms with kq,...,k, > ko, and the second
one containing all remaining terms, i.e., those where I € {1,...,n} indices, say k;,, ..., ki, are
smaller than kg:

1= Y TTi(0 (20t) — Ly (208)) (2K; + 1]

ki oo Jon=ko j=1
) n ko—1 [ n
4o 2ant Z 2 Z 2 H[(ij (2at) — ij—&-l (2at)) (Zk]' +1)].
I=1 ilr“v?l!]:l/“'r]"nfl6{1""'11} ki] """ l{"]:0 k]] ’""k/.nfl:ko ]:1

{il,---,lz,]l,-nl]n#}2{1,---,71}

By Lemma 2.5, the second term tends to zero as t — co. Thus, there exists a fy > 0 such that
for all t+ > t;y, we have

n ko—1 00 n
0<e ™y Y Y Y (I, (2at) — 11 (2at)) (2K +1)] < ¢,
=1 il,“.,%’l,]:l,...,]:n,le{l ,,,,, n} kil""’kil:O kjl""’kjn—l:ko j:1

{iveeivsjiresjui}={1,..m}

e} n
1-e< e—Z“"fk Zk; k n[(lkj(Zat) — I 11(2at))(2kj +1)] < 1.
17/ Kn=Ko ]=

We now use these estimates together with Ay, x,(x)| < M and (2.2) to obtain

u(x, t) _ o 2ant i ﬁ[(lk/ (tht) — ij+1 (2111’))(2](]' + 1)]Ak1,...,kn (x)

ki kn=ko j=1
) n ko—1 [ n
+em ). ). Y. TTl(k(2at) = I 1 (2at)) (2k; + 1)] Ag,,_ g, (%)
=1 l'l,...,l'l,]'1,...,]'n,[E{1 ..... n} kil,...,kiZ:O kjl""’kjn—I:kO j:1

{it,eidpjisesju—1}={1,...mn}

o0 n
< (Z + E)efzunt Z H[(ka (2at) — ij+1 (2(1t>)(2k] + 1)] + Me.
Kt fn =Ko =1

If A + ¢ is nonnegative, the first term on the right-hand side is majorized by A + ¢. Otherwise,
if A+ ¢ is nonpositive, the term is majorized by (A +¢€)(1 —¢) = A+e—eA — 2. In any case,
we get the estimate

u(x,t) <max(A+eA+e—eA—e?)+eM=A+eM+e+emax(0,—A—¢), t>t.

This proves that limsup, .., u(x,t) < A. Similarly, we have

[ n
u(x, t) > (A— e)e’z‘mtk ; k H(ij (2at) — I 11(2at)) (2k; + 1) — Me.
17+ Kn=Ko ]=



Multidimensional semidiscrete diffusion equation 7

If A — e is nonnegative, the first term on the right-hand side is minorized by (A —¢)(1 —¢) =
A —e—¢eA+ €2 Otherwise, if A —¢is nonpositive, the term is minorized by A —¢. In any
case, we get the estimate

u(x,t) > —eM+min(A—e—sA+sz,A—e) =A—eM—¢e+emin(—A+¢0), >t

This proves that liminf; e u(x, ) > A.

The second statement of the theorem follows from the first one.
,,,,, k,—so0 Aky,.. k, (X) = d uniformly for all x € Z, then the previous estimates are
independent of x, which proves the third statement. O

The second part of Theorem 2.6 says that u(x,t) tends to the limit of averages of initial
conditions over hyperrectangles centered at x, provided that the limit exists. The next result
implies that in fact, one can consider hyperrectangles centered at an arbitrary point. The
reason is that if we take two sufficiently large hyperrectangles, then their intersection is large,
while their symmetric difference is small. We use the notation introduced in (2.1).

Proposition 2.7. Let n € IN and {cy }kez» be a bounded array of real numbers. For every x € Z", we
have limy, koo Aky,.. e, (X) = limy, k00 Ay, k, (0) whenever at least one of the limits exists.

Proof. For each k = (ky,...,k,) € (INp)", let

S, = {xl—kl,...,xl—i—kl} X oo X {xn—kn,...,xn—i—kn},
Re={—ki, ..., k1} x - x {=kn,... kn}.

We need to show that

1
lim ——— 2 Clipefly — E n,.., ln> =0.
k],...,kn—)oo H;/l:l (Zk] + 1) ((ll,---/ln)esk ' (11,...,ln)€Rk '

Let M > 0 be such that |¢;| < M for all I € Z". Then

1

W Z Cll ~~~~~ In ey <
| |], 2

(I1,...1n) €Sk (11,10 ERy B H;?:l(ij +1)

where RiASy = (Ri \ Sk) U (Sk \ Rg) is the symmetric difference of the two hyperrectangles.
Since both have the same dimensions, it follows from symmetry that |RgASy| = 2|Ri \ S| =
2(|Rk| — |Rk N Sk|)- The intersection Ry N Sy is again a hyperrectangle. For each j € {1,...,n},
consider its orthogonal projection on the j-th coordinate axis. If x; > 0 and k; is sufficiently
large, then the projection is {x; —k;j,...,k;}. If x; < 0 and k; is sufficiently large, then the
projection is {—kj,...,x; + k;}. In both cases, the projection contains 2k; 41 — |x;| points.
Thus, for sufficiently large ki, ..., k, € IN, we have |Ry N S¢| = }1:1 (2kj +1—|xj|), and

IR\AS, 21_[}1:1(2’9‘ +1) = ITj2q (2k + 1= [x;))

[Tq(2k; +1) [Tiq(2k; +1)

In the numerator of the last fraction, note that [T (2k; + 1 — |x;|) equals [Ti_;(2k; + 1) plus
2" — 1 additional terms, each of which is a constant multiple of at most n — 1 terms of the
form 2k; + 1. Hence, the whole fraction tends to zero when k..., k, — oo, and the proof is
complete. O
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Proposition 2.8. If {c¢; };czn is an array of real numbers such that

lim Cly,ly = deR,

max(|lq],...,|ln|)—o0

then the unique bounded solution of the problem (1.1)—(1.2) satisfies lim;_,oo tt(x,t) = d uniformly
with respect to x. In particular, if {¢; }jczn € CF(Z") for a certain p € [1,00), then lim;_,o u(x,t) = 0
uniformly with respect to x.

Proof. Tt follows from the assumption that there is an M > 0 such that |¢;| < M for all | € Z".

For each x € Z" and all k, ..., k, € Ny, consider the average Ay, _x, (x) given by (2.1). In
the n-fold sum, there are at most (2ko + 1)"” terms with max(|l1|,..., |l4]|) < ko; their values lie
between —M and M. The values of the remaining [Tj_; (2k; + 1) — (2ko + 1)" terms lie between
d —e and d + e. Thus, if at least one of ki, ..., k, is sufficiently large, then Ay, _x, (x) will lie
uniform with respect to x, because the previous estimate does not depend on x. The third
part of Theorem 2.6 implies that lim;_, 1u(x, t) = d uniformly with respect to x. O
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