
Electronic Journal of Qualitative Theory of Differential Equations
2022, No. 21, 1–30; https://doi.org/10.14232/ejqtde.2022.1.21 www.math.u-szeged.hu/ejqtde/

Multi-bump solutions for the magnetic
Schrödinger–Poisson system with critical growth

Chao Ji1, Yongde Zhang1 and Vicent,iu D. RădulescuB 2,3,4
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Abstract. In this paper, we are concerned with the following magnetic Schrödinger–
Poisson system{

−(∇+ iA(x))2u + (λV(x) + 1)u + φu = α f (|u|2)u + |u|4u, in R3,
−∆φ = u2, in R3,

where λ > 0 is a parameter, f is a subcritical nonlinearity, the potential V : R3 → R

is a continuous function verifying some conditions, the magnetic potential A ∈
L2

loc(R
3, R3). Assuming that the zero set of V(x) has several isolated connected com-

ponents Ω1, . . . , Ωk such that the interior of Ωj is non-empty and ∂Ωj is smooth, where
j ∈ {1, . . . , k}, then for λ > 0 large enough, we use the variational methods to show
that the above system has at least 2k − 1 multi-bump solutions.
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1 Introduction

In the past few decades, there is a vast literature concerning the nonlinear Schrödinger–
Poisson system {

−i ∂ψ
∂t = −∆ψ + V(x)ψ + φ(x)ψ− |ψ|p−1ψ, in R3,

−∆φ = ψ2, in R3,
(1.1)

where V : R3 → R is a nonnegative continuous function with infx∈R3V(x) > 0, 1 < p < 5
and ψ : R3 → C and φ : R3 → R are two unknown functions. In fact, the first equation
in the above system describes quantum (non-relativistic) particles interacting with the elec-
tromagnetic field generated by the motion. And φ(x) satisfies the second equation (Poisson
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equation) in the system, because the potential φ(x) is determined by the charge of wave func-
tion itself. Therefore, system (1.1) can be regarded as the coupling of the Schrödinger equation
and Poisson equation.

If one looks for stationary solutions ψ(x, t) := e−itu(x) of system (1.1), the system can be
reduced by {

−∆u + V(x)u + φ(x)u = |u|p−1u, in R3,

−∆φ = u2, in R3.
(1.2)

In [4], Azzollini and Pomponio considered system (1.2). More precisely, if V is a positive
constant, they proved the existence of a ground state solution (u, φ) for 2 < p < 5. If V
is a nonconstant potential that is measurable and (possibly) not bounded from below, they
obtained a similar existence result for 3 < p < 5. Existence and nonexistence results were also
proved when the nonlinearity exhibits a critical growth.

In a celebrated paper [13], by using the variational methods, Ding and Tanaka established
multiplicity of multi-bump solutions for a semilinear elliptic equation with deepening poten-
tial well. Recently, in [2], Alves and Yang considered system (1.2) which having a general
nonlinear term f and assumed the potential V(x) has the form V(x) = λa(x) + 1, where λ is
a positive parameter and a : R3 → R3 is a nonnegative continuous function. In the interesting
paper, the authors proved the existence of positive multi-bump solutions for the system{

−∆u + (λa(x) + 1)u + φ(x)u = f (u), in R3,

−∆φ = 4πu2, in R3.

For more results on the Schrödinger–Poisson system, we refer the reader to [3, 5, 7, 10, 11, 18,
19, 23–26, 28, 31–34, 36, 38, 40, 41] and the references therein.

In recent years, the magnetic nonlinear Schrödinger equation has also received consider-
able attention

ih̄
∂ψ

∂t
=

(
h̄
i
∇− A(x)

)2

ψ + U(x)ψ− f (|ψ|2)ψ, in RN ×R,

where i is the imaginary unit, h̄ is the Planck constant, and A : RN → RN is the magnetic
potential. When one looks for standing wave solutions ψ(x, t) := e−iEt/h̄u(x), with E ∈ R, of
the above equation, the problem can be reduced by(

h̄
i
∇− A(x)

)2

u + V(x)u = f
(
|u|2

)
u, in RN . (1.3)

From a physical point of view, the existence of such solutions and the study of their shape in
the semiclassical limit, namely, as h̄ → 0+ is of the greatest importance, since the transition
from Quantum Mechanics to Classical Mechanics can be formally performed by sending the
Planck constant h̄ to zero.

As far as we know, the first result involving the magnetic field was obtained by Esteban and
Lions [15]. In [15], for h̄ > 0 fixed and special classes of magnetic fields, the authors found the
existence of standing waves to problem (1.3) by solving an appropriate minimization problem
for the corresponding energy functional in the cases of N = 2 and 3. Afterwards, in [27],
Kurata assumed a technical condition relating V(x) and A(x). Under these assumptions, he
proved that the associated functional satisfies the Palais–Smale condition at any level and
further obtained a least energy solution of the problem for any ε > 0. Also, Alves et al.
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[1] studied the multiple solutions by combining a local assumption on V, the penalization
techniques of del Pino and Felmer [12] and the Ljusternic–Schnirelmann theory.

Recently, Tang [35] considered multi-bump solutions of the following nonlinear magnetic
Schrödinger equation with critical frequency

−(∇+ iA(x))2u + (λV(x) + E)u = f
(
|u|2

)
u, in R2,

where λ > 0, E ∈ R is a constant, infx∈RN V(x) = E and f satisfies subcritical growth. Later, by
using the variational methods, Ji and Rădulescu [22] established the existence and multiplicity
of multi-bump solutions for the following nonlinear magnetic Schrödinger equation

−(∇+ iA(x))2u + (λV(x) + Z(x))u = f
(
|u|2

)
u, in R2,

where λ > 0, f (t) is a continuous function with exponential critical growth, the magnetic
potential A : R2 → R2 is in L2

loc

(
R2, R2) and the potentials V, Z : R2 → R are continu-

ous functions verifying some conditions. Recently, Ma and Ji [30] studied the existence and
multiplicity of multi-bump solutions for the magnetic Schrödinger–Poisson system with sub-
critical growth. It is natural to consider multiplicity of multi-bump solutions for the magnetic
Schrödinger–Poisson system with critical growth. To the best of our knowledge, this prob-
lem has not ever been studied. For more results related to the nonlinear partial differential
equations with magnetic field, we refer to [6, 8, 9, 14, 17, 20, 21, 39, 42] and references therein.

Inspired by the previous works of [22,30,35], the aim of this paper is to study existence of
multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth{

−(∇+ iA(x))2u + (λV(x) + 1)u + φu = α f (|u|2)u + |u|4u, in R3,

−∆φ = u2, in R3,
(1.4)

where λ > 0 is a parameter, the magnetic potential A is in L2
loc(R

3, R3), f has subcritical
growth and the potential V : R3 → R is continuous. Due to the appearance of magnetic field
A(x), problem (1.4) can not be changed into a pure real-valued problem, hence we should
deal with a complex-valued directly. Also, since the electrostatic potential φ(x) depends on
the wave function, φ(x)u is nonlocal which will make some estimates more difficult and
complicated. Moreover, since the problem we deal with has critical growth, we need more
refined estimates to overcome the lack of compactness.

Now we present the general assumptions on the potentials in this paper:

(A) A : R3 → R3 be in L2
loc(R

3, R3);

(V1) V (x) ∈ C
(
R3, R

)
and V (x) ≥ 0, for all x ∈ R3;

(V2) Ω = int V−1(0) is a nonempty bounded open subset with smooth boundary and Ω =

V−1(0) where int V−1(0) denotes the set of the interior points of V−1(0), Ω consists of k
components:

Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωk,

and Ωi ∩Ωj = ∅ for all i 6= j.

Furthermore, the nonlinearity f is a continuous function satisfying the following conditions:

( f1) f (t) = 0, ∀ t ≤ 0, and limt→0+
f (t)

t = 0;
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( f2) There exists q, ι ∈ (4, 6) and ς > 0 such that

lim
t→+∞

f (t)

t
q−2

2

= 0, and f (t) ≥ ςt(ι−2)/2 for any t > 0;

( f3) There exists θ ∈ (4, 6) such that

0 <
θ

2
F(t) ≤ t f (t), for any t > 0

where F(t) =
∫ t

0 f (s)ds;

( f4) f (t) is an increasing function in t > 0.

The main result of this paper to be proved is the theorem below:

Theorem 1.1. Assume that (A), (V1)− (V2) and ( f1)− ( f4) hold. Then, for any non-empty subset Γ
of {1, 2, . . . , k} , there exist constants α∗ > 0 and λ∗ = λ∗(α∗) such that, for all α ≥ α∗ and λ ≥ λ∗,
problem (1.4) has a nontrivial solution uλ. Moreover, the family {uλ}λ≥λ∗ has the following properties:
for any sequence λn → ∞, we can extract a subsequence λni such that uλni

converges in H1
A(R

3, C) to
a function u, which satisfies u = 0 for x 6∈ ΩΓ = ∪j∈ΓΩj, and the restriction u |Ωj is a least energy
solution of−(∇+ iA(x))2u + u +

(
1

4π

∫
Ωj

|u(y)|2
|x−y| dy

)
u = f (|u|2)u + |u|4u, x ∈ Ωj,

u ∈ H0,1
A

(
Ωj
)

,

where j ∈ Γ.

Corollary 1.2. Under the assumptions of Theorem 1.1, there exist α∗ > 0 and λ∗ = λ∗(α∗) such that,
for all α ≥ α∗ and λ ≥ λ∗, problem (1.4) has at least 2k − 1 nontrivial solutions.

The paper is organized as follows. In Section 2, we shall introduce the variational setting
and give some necessary preliminaries. In Section 3, we study an modified problem, and
prove the Palais–Smale condition for the modified problem and study the behavior of (PS)∞
sequence. Moreover, we establish L∞ estimate of the solution of the modified problem. In
Section 4, by adapting the deformation flow method, we show that the existence of a special
critical point and prove the main theorem.

2 Preliminaries

In this section, we shall present the variational framework for problem (1.4) and some useful
preliminary lemmas.

For u : R3 → C, let us denote by

∇Au = (∇+ iA) u,

and
H1

A
(
R3, C

)
=
{

u ∈ L2 (R3, C
)

: |∇Au| ∈ L2 (R3, R
)}

.

The space H1
A
(
R3, C

)
is an Hilbert space under the scalar product

〈u, v〉 = Re
∫

R3

(
∇Au∇Av + uv

)
dx, ∀u, v ∈ H1

A
(
R3, C

)
,
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where Re and the bar denote the real part of a complex number and the complex conjugation,

respectively. Moreover, the norm induced by the product 〈·, ·〉 is ‖u‖A=
(∫

R3 |∇Au|2+|u|2 dx
)1

2 .
By (A), on H1

A
(
R3, C

)
, we have the important diamagnetic inequality (see [29], Theo-

rem 7.21) which is frequently used in this paper:

|∇Au (x)| ≥ |∇ |u (x)|| . (2.1)

Let

Eλ =

{
u ∈ H1

A
(
R3, C

)
:
∫

R3
λV (x) |u|2 dx < ∞

}
,

with the norm
‖u‖2

λ =
∫

R3

(
|∇Au|2 + (λV (x) + 1) |u|2

)
dx.

For λ ≥ 0, a direct computation gives that (Eλ, ‖·‖λ) is an Hilbert space and Eλ ⊂ H1
A
(
R3, C

)
.

Also, for an open set K ⊂ R3,

H1
A (K, C) :=

{
u ∈ L2 (K, C) : |∇Au| ∈ L2 (K, R)

}
,

‖u‖H1
A(K,C) =

(∫
K

(
|∇Au|2 + |u|2

)
dx
) 1

2

,

Eλ (K, C) :=
{

u ∈ H1
A (K, C) :

∫
K

λV (x) |u|2 dx < ∞
}

,

‖u‖2
λ,K =

∫
K

(
|∇Au|2 + (λV (x) + 1) |u|2

)
dx.

Let H0,1
A (K, C) be the Hilbert space obtained as the closure of C∞

0 (K, C) under the norm
‖u‖H1

A(K,C) .
The diamagnetic inequality (2.1) implies that, if u ∈ H1

A
(
R3, C

)
, then |u| ∈ H1 (R3, R

)
and

‖u‖ ≤ ‖u‖A. Therefore, the embedding H1
A
(
R3, C

)
↪→ Lr (R3, C

)
is continuous for 2 ≤ r ≤ 6

and the embedding H1
A
(
R3, C

)
↪→ Lr

loc

(
R3, C

)
is compact for 1 ≤ r < 6.

By the continuous embedding H1 (R3, R
)
↪→ Lr (R3, R

)
for 2 ≤ r ≤ 6, we have

H1 (R3, R
)
↪→ L

12
5
(
R3, R

)
.

For any u ∈ H1
A
(
R3, C

)
, we obtain that |u| ∈ H1 (R3, R

)
, and the linear functional L|u| :

D1,2 (R3, R
)
→ R given by

L|u|(v) =
∫

R3
|u|2vdx

is well defined and continuous in view of the Hölder inequality and (2.2). Indeed, we can see
that ∣∣L|u|(v)∣∣ ≤ (∫

R3
|u| 12

5 dx
) 5

6
(∫

R3
|v|6dx

) 1
6

≤ C‖u‖2
A‖v‖D1,2 . (2.2)

Then, given u ∈ H1
A
(
R3, C

)
, |u| ∈ H1 (R3, R

)
, by the Lax–Milgram Theorem, there exists an

unique φ = φ|u| ∈ D1,2 (R3, R
)

such that

−∆φ = u2.

Moreover, φ|u| can be expressed as

φ|u| (x) =
1

4π

∫
R3

|u (y)|2

|x− y| dy.
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Next, we provide the following properties about φ|u| in the following lemma whose proof is
similar to one in [11, 32, 41], so we omit it.

Lemma 2.1. For any u ∈ H1
A
(
R3, C

)
, we have

(i) there exists C > 0 such that∫
R3

∣∣∇φ|u|
∣∣2 dx =

∫
R3 φ|u| |u|

2 dx ≤ C ‖u‖4
A , ∀u ∈ H1

A
(
R3, C

)
;

(ii) φ|u| ≥ 0, ∀u ∈ H1
A
(
R3, C

)
;

(iii) φ|tu| = t2φ|u|, ∀t ∈ R and u ∈ H1
A
(
R3, C

)
;

(iv) if un ⇀ u in H1
A
(
R3, C

)
, then φ|un| ⇀ φ|u| in D1,2 (R3, R

)
and

lim
n→+∞

∫
R3

φ|un||un|2dx ≥
∫

R3
φ|u||u|2dx;

(v) if un → u in H1
A
(
R3, C

)
, then φ|un| → φ|u| in D1,2 (R3, R

)
. Hence,

lim
n→+∞

∫
R3

φ|un||un|2dx =
∫

R3
φ|u||u|2dx.

Now, we define the energy functional Iλ associated with problem (1.4) given by

Iλ (u) =
1
2

∫
R3

(
|∇Au|2 + (λV(x) + 1) |u|2

)
dx +

1
4

∫
R3

φ|u| (x) |u|2dx

− α

2

∫
R3

F
(
|u|2

)
dx− 1

6

∫
R3
|un|6dx,

it is standard to prove that Iλ (u) ∈ C1 (Eλ, R), and for any ϕ ∈ Eλ, we have

〈
Iλ
′ (u) , ϕ

〉
=Re

∫
R3

(
∇Au∇A ϕ + (λV (x) + 1) uϕ

)
dx + Re

∫
R3

φ|u| (x) uϕdx

− Re
∫

R3
α f
(
|u|2

)
uϕdx− Re

∫
R3
|u|4 uϕdx.

Definition 2.2. A pair (u, φ) ∈ Eλ×D1,2 (R3, R
)

is said to be a weak solution of problem (1.4),
if I′λ (u) ϕ = 0, ∀ϕ ∈ Eλ, where φ|u| = φ.

By (V3), we can derive that for any open set K ⊂ R3,

M0‖u‖2
2,K ≤

∫
K

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx,

for all u ∈ Eλ (K), and λ > 0, where ‖u‖2
2,K =

∫
K |u|

2 dx. So, from this relation, we have the
following result:

Lemma 2.3. There exist δ0, ν0 > 0 with δ0 ≈ 1 and ν0 ≈ 0 such that for any open set K ⊂ R3,

δ0‖u‖2
λ,K ≤ ‖u‖2

λ,K − ν0‖u‖2
2,K, for all u ∈ Eλ(K, C), and λ > 0.
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3 A modified problem

Since R3 is unbounded and nonlinear term has the critical growth, we know that the Sobolev
embeddings are not compact, as so Iλ can not verify the Palais–Smale condition. In order to
overcome this difficulty, we adapt the argument of the penalization method introduced by del
Pino and Felmer [12] and Ding and Tanaka [13], and consider a modified problem satisfying
the Palais–Smale condition.

Let ν0 > 0 be a constant given in Lemma 2.3, κ > θ
θ−2 and a > 0 verifying α f (a) + a2 = ν0

κ

and f̃ , F̃ : R→ R given by

f̃ (t) =

{
α f (t) + t2, t ≤ a,
ν0
κ , t ≥ a,

thus
f̃ (t) ≤ α f (t) + t2, t ≥ 0. (3.1)

Also,

F̃ (t) =
∫ t

0
f̃ (s) ds.

Now, since the potential well Ω = int V−1 (0) can be decomposed into k connected compo-
nents Ω1, . . . , Ωk with dist(Ωi, Ωj) > 0, i 6= j, then for each j ∈ {1, 2, . . . , k} , we fix a smooth
bounded domain Ω′j such that

(i) Ωj ⊂ Ω′j;

(ii) Ω′i ∩Ω′j = ∅ for all i 6= j.

Next, we fix a non-empty subset Γ ⊂ {1, . . . , k} and

ΩΓ =
⋃

j∈Γ
Ωj, Ω′Γ =

⋃
j∈Γ

Ω′j,

χΓ(x) :=

{
1 for x ∈ Ω′Γ,

0 for x /∈ Ω′Γ.

Using the above notations, we set the functions

g(x, t) = χΓ(x)(α f (t) + t2) + (1− χΓ(x)) f̃ (t),

G(x, t) =
∫ t

0
g(x, s)ds = χΓ(x)αF(t) + (1− χΓ(x)) F̃(t).

(3.2)

In view of ( f1)–( f4), we have that g is a Carathéodory function satisfying the following prop-
erties:

(g1) g(x, t) = 0 for each t ≤ 0;

(g2) limt→0+
g(x,t)

t = 0 uniformly in x ∈ R3;

(g3) g(x, t) ≤ α f (t) + t2 for all t ≥ 0 and any x ∈ R3;

(g4) 0 < θG(x, t) ≤ 2g(x, t)t for each x ∈ Ω′Γ and t > 0;
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(g5) 0 < G(x, t) ≤ g(x, t)t ≤ ν0t/κ, for each x ∈ R3 \Ω′Γ, t > 0;

(g6) for each x ∈ Ω′Γ, the function t 7→ g(x,t)
t is strictly increasing in t ∈ (0,+∞) and for each

x ∈ R3 \Ω′Γ, the function t 7→ g(x,t)
t is strictly increasing in (0, a).

Moreover, we have the modified problem

− (∇+ iA(x))2u + (λV(x) + 1)u + φ|u|u = g
(
x, |u|2

)
u, x ∈ R3, (3.3)

and the energy functional Φλ (u) : Eλ

(
R3, C

)
→ R given by

Φλ(u) =
1
2

∫
R3

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx +

1
4

∫
R3

φ|u||u|2dx− 1
2

∫
R3

G
(
x, |u|2

)
dx.

We want to get some nontrivial solutions of (3.3) are ones of the original problem (1.4),
more precisely, if uλ is a nontrivial solution of (3.3) verifying |uλ (x)|2 ≤ a in R3 \Ω′Γ, then it
is a nontrivial solution to (1.4).

Next, we prove that the energy functional Φλ (u) satisfies the (PS) condition.

Lemma 3.1. All (PS)c sequences for Φλ are bounded in Eλ.

Proof. Let (un) be a (PS)c sequence for Φλ. Thus, we have

Φλ (un)−
1
θ

Φ′λ (un) un = c + on(1) + on(1) ‖un‖λ .

On the other hand, by (g4), (g5), κ > θ
θ−2 , and Lemma 2.3, we derive

Φλ (un)−
1
θ

Φ′λ (un) un =

(
1
2
− 1

θ

)
‖un‖2

λ +

(
1
4
− 1

θ

) ∫
R3

φ|un| (x) |un|2dx

+
∫

R3

(
1
θ

g
(

x, |un|2
)
|un|2 −

1
2

G
(

x, |un|2
))

dx

≥
(

1
2
− 1

θ

)
‖un‖2

λ +
2− θ

2θ

∫
R3\Ω′Γ

F̃(|un|2)dx

≥
(

1
2
− 1

θ

)
‖un‖2

λ +
(θ − 2)ν0

2θκ

∫
R3\Ω′Γ

|un|2 dx

≥
(

1
2
− 1

θ

)
(1− 1

κ
) ‖un‖2

λ .

So, (
1
2
− 1

θ

)
(1− 1

κ
) ‖un‖2

λ ≤ c + on(1) + on(1) ‖un‖λ .

This shows that (un) is bounded in Eλ.

For each fixed j∈Γ, let us denote by cj the minimax level of the functional Ij : H0,1
A (Ωj, C)→

R given by

Ij(u) =
1
2

∫
Ωj

(
|∇Au|2 + |u|2

)
dx +

1
4

∫
Ωj

φ|u||u|2dx− α

2

∫
Ωj

F(|u|2)dx− 1
6

∫
Ωj

|u|6dx,

and
cj = inf

γ∈Λj

max
t∈[0,1]

Ij(γ(t)),
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where
Λj =

{
γ ∈ C([0, 1], H0,1

A

(
Ωj, C

)
) : γ(0) = 0, Ij(γ(1)) < 0

}
.

It is well-known that the critical points of are the weak solutions of the problem{
−(∇+ iA(x))2u + u + φ|u|u = α f

(
|u|2

)
u + |u|4u, in Ωj,

u = 0, on ∂Ωj.
(3.4)

Moreover, we have the following important result.

Lemma 3.2. There exists α∗ > 0 such that, for all α ≥ α∗, we have

cj ∈
(

0,
1

3(k + 1)
S3/2

)
, for all j ∈ {1, · · · , k} and all α ∈ [α∗,+∞).

Proof. We choose a function ϕj ∈ H0,1
A

(
Ωj, C

)
) \ {0} for each j ∈ {1, · · · , k}. There exists

tα,j ∈ (0,+∞) such that
cj ≤ Ij(tα,j ϕj) = max

t≥0
Ij(tϕj)

and hence, by ( f4), one has

t2
α,j

∫
R3

(∣∣∇A ϕj
∣∣2 + ∣∣ϕj

∣∣2) dx + t4
α,j

∫
R3

φ|ϕj||ϕj|2dx

= α
∫

R3
f
(∣∣tα,j ϕj

∣∣2) ∣∣tα,j ϕj
∣∣2 dx + t6

α,j

∫
R3
|ϕj|6dx

≥ α
∫

R3
f
(∣∣tα,j ϕj

∣∣2) ∣∣tα,j ϕj
∣∣2 dx ≥ αςtι

α,j

∫
R3

∣∣ϕj
∣∣ι dx.

(3.5)

If |tα,j| ≤ 1, by (3.5), we have

t2
α,j

∫
R3

(∣∣∇A ϕj
∣∣2 + ∣∣ϕj

∣∣2) dx + t2
α,j

∫
R3

φ|ϕj||ϕj|2dx ≥ αςtι
α,j

∫
R3

∣∣ϕj
∣∣ι dx.

The above inequality implies that

tα,j ≤
[∫

R3

(∣∣∇A ϕj
∣∣2 + ∣∣ϕj

∣∣2) dx +
∫

R3 φ|ϕj||ϕj|2dx

ας
∫

R3

∣∣ϕj
∣∣ι dx

]1/(ι−2)

.

If |tα,j| ≥ 1, by (3.5), one has

t4
α,j

∫
R3

(∣∣∇A ϕj
∣∣2 + ∣∣ϕj

∣∣2) dx + t4
α,j

∫
R3

φ|ϕj||ϕj|2dx ≥ αςtι
α,j

∫
R3

∣∣ϕj
∣∣ι dx.

The above inequality implies that

tα,j ≤
[∫

R3

(∣∣∇A ϕj
∣∣2 + ∣∣ϕj

∣∣2) dx +
∫

R3 φ|ϕj||ϕj|2dx

ας
∫

R3

∣∣ϕj
∣∣ι dx

]1/(ι−4)
.

Using the above limits, we have tα,j → 0 as α → +∞. This fact yields that Ij(tα,j ϕj) → 0 as
α→ +∞. Thus, there exists α∗ > 0 such that

cj ∈
(

0,
1

3(k + 1)
S3/2

)
, for all j ∈ {1, · · · , k}.
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Remark 3.3. In particular, the above lemma implies for α > 0 large that

k

∑
j=1

cj ∈
(

0,
1
3

S
3
2

)
. (3.6)

Proposition 3.4. For any λ > 0, the functional Φλ satisfies the (PS)c condition at the level c < 1
3 S

3
2 .

Proof. Let (un) ⊂ Eλ be a (PS)c sequence for Φλat the level c < 1
3 S

3
2 , that is

Φλ(un)→ c <
1
3

S
3
2 and Φ′λ(un)→ 0.

From Lemma 3.1, we know that the sequence (un) is bounded in Eλ. Thus, there exists u ∈ Eλ

such that un ⇀ u in Eλ, up to a subsequence if necessary. Then it is standard to check that for
any C∞

0
(
R3, C

)
⊂ Eλ,

Re
∫

R3
∇Aun∇A ϕdx → Re

∫
R3
∇Au∇A ϕdx,

Re
∫

R3
(λV(x) + 1)un ϕdx → Re

∫
R3
(λV(x) + 1)uϕdx,

and
Re
∫

R3
g
(

x, |un|2
)

un ϕdx → Re
∫

R3
g
(

x, |u|2
)

uϕdx. (3.7)

Form (3.7), the density of C∞
0
(
R3, C

)
in Eλ, and Φ′λ(un) → 0, we can obtain that the weak

limit u is a critical point of Φλ and so

‖u‖2
λ +

∫
R3

φ|u||u|2dx =
∫

R3
g(x, |u|2)|u|2dx. (3.8)

On the other hand, we know that < Φ′λ (un) , un >= on(1) which implies that

‖un‖2
λ +

∫
R3

φ|un||un|2dx =
∫

R3
g(x, |un|2)|un|2dx + on(1). (3.9)

Step 1: We show that for any given ζ > 0, there exists R > 0 large enough such that Ω′Γ ⊂
BR/2(0) and

lim sup
n

∫
Bc

R(0)
(|∇Aun|2 + (λV(x) + 1)|un|2)dx ≤ ζ. (3.10)

Now, we take R > 0 large such that Ω′Γ ⊂ B R
2
(0) and ηR ∈ C∞ (R3, R

)
satisfying

ηR = 0 x ∈ B R
2
(0), ηR = 1 x ∈ Bc

R(0), 0 ≤ ηR ≤ 1, and |∇ηR| ≤
C
R

,

where C > 0 is a constant independent of R.
By a direct computation, we have

on(1) = 〈Φ′λ (un) , unηR〉 =
∫

R3

(
|∇Aun|2 + (λV(x) + 1) |un|2

)
ηRdx

+
∫

R3
φ|un| (x) |un|2ηRdx + Re

(∫
R3

un∇Aun∇ηRdx
)

−
∫

R3
f̃
(
|un|2

)
|un|2 ηRdx.
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Notice that

|Re (un∇Aun)| = |Re ((∇un + iAun) un)| = |Re (un∇un)| = |un| |∇|un||.

Using the Hölder inequality and the above equality, we derive

lim sup
n→∞

∣∣∣∣Re
(∫

R3
un∇Aun∇ηRdx

)∣∣∣∣ ≤ C
R

.

So, we obtain ∫
R3

(
|∇Aun|2 + (λV(x) + 1) |un|2

)
ηRdx

≤
∫

R3
f̃
(
|un|2

)
|un|2 ηRdx +

C
R
+ on(1)

≤ν0

κ

∫
R3
|un|2 ηRdx +

C
R
+ on(1),

which implies that for any ζ > 0, choosing a R > 0 larger if necessary, we have

lim sup
n→∞

∫
Bc

R(0)

(
|∇Aun|2 + (λV(x) + 1) |un|2

)
dx ≤ ζ.

Step 2: We show that

lim
n

∫
R3

φ|un||un|2dx =
∫

R3
φ|u||u|2dx. (3.11)

By (3.10) and the Sobolev embedding, for any ζ > 0, there exists R > 0 such that for n large
enough and q ∈ [2, 6)

‖un − u‖Lq(R3) = ‖un − u‖Lq(BR(0)) + ‖un − u‖Lq(Bc
R(0))

≤ ‖un − u‖Lq(BR(0)) + ‖un‖Lq(Bc
R(0))

+ ‖u‖Lq(Bc
R(0))

≤ Cζ,

which implies
un → u in Lq(R3, C), ∀q ∈ [2, 6).

Since ||un| − |u|| ≤ |un − u|| and 12
5 ∈ (2, 6), one has

|un| → |u| in L12/5(R3, R). (3.12)

Let

D(u) =
∫

R3

∫
R3

|u (x)|2 |u (y)|2

|x− y| dxdy,

we have

|D(un)−D(u)| =
∣∣∣∣ ∫

R3

∫
R3

|un (x)|2 |un (y)|2

|x− y| dxdy−
∫

R3

∫
R3

|u (x)|2 |u (y)|2

|x− y| dxdy
∣∣∣∣

=

∣∣∣∣ ∫
R3

∫
R3

(|un (x)|2 − |u (x)|2)(|un (y)|2 + |u (y)|2)
|x− y| dxdy

∣∣∣∣
≤
∣∣∣∣ ∫

R3

∫
R3

| |un (x)|2 − |u (x)|2 |(|un (y)|2 + |u (y)|2)
|x− y| dxdy

∣∣∣∣
≤ C

√
D(||un|2 − |u|2|1/2)

√
D(||un|2 + |u|2|1/2)
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Then, by the Hardy–Littlewood–Sobolev inequality, the Hölder inequality and (3.12), it follows
that

|D(un)−D(u)|2 = C‖||un|2 − |u|2|1/2‖4
L12/5(R3)‖||un|2 + |u|2|1/2‖4

L12/5(R3)

≤ C‖||un|2 − |u|2|1/2‖4
L12/5(R3) → 0.

Step 3:

lim
n

∫
R3

g(x, |un|2)|un|2dx =
∫

R3
g(x, |u|2)|u|2dx. (3.13)

By (g3), ( f1) and ( f2), (3.10), for n large enough,∫
Bc

R(0)

∣∣∣g(x, |un|2) |un|2
∣∣∣ dx ≤ C1

∫
Bc

R(0)
(|un|2 + |un|q + |un|6)dx

≤ C2(ζ + ζ
q
2 + ζ3) (3.14)

On the other hand, choosing R > 0 large if necessary, we may assume that∫
Bc

R(0)

∣∣∣g(x, |u|2) |u|2
∣∣∣ dx ≤ ζ.

Hence, from the last inequality and (3.14), we have that

lim
n

∫
Bc

R(0)
g(x, |un|2) |un|2 dx =

∫
Bc

R(0)
g(x, |u|2) |u|2 dx. (3.15)

By the definition of g, one has

g(x, |un|2) |un|2 ≤ α f (|un|2) |un|2 + a3 +
ν0

κ
|un|2, for any x ∈ R3 \Ω′Γ.

Since the set BR(0)
⋂
(R3 \ Ω′Γ) is bounded, we can use the above estimates, ( f1), ( f2) and

Lebesgue dominated convergence theorem to obtain that

lim
n

∫
BR(0)

⋂
(R3\Ω′Γ)

g(x, |un|2) |un|2 dx =
∫

BR(0)
⋂
(R3\Ω′Γ)

g(x, |u|2) |u|2 dx. (3.16)

We show now

lim
n

∫
Ω′Γ
|un|6dx =

∫
Ω′Γ
|u|6dx. (3.17)

If (3.17) holds, by (g3), ( f1), ( f2) and Lebesgue dominated convergence theorem, we have

lim
n

∫
BR(0)∩Ω′Γ

g(x, |un|2) |un|2 dx =
∫

BR(0)∩Ω′Γ
g(x, |u|2) |u|2 dx. (3.18)

Hence, by (3.16) and (3.18), limn
∫

R3 g(x, |un|2)|un|2dx =
∫

R3 g(x, |u|2)|u|2dx. Using (3.10) and
the diamagnetic inequality (2.1), the sequence (|un|) is tight in, we may assume that

|∇|un||2 ⇀ µ and |un|6 ⇀ ν (3.19)

in the sense of measures. By the concentration-compactness principle in [37], we can find an
at most countable index I, sequences (xi) ⊂ R3, (µi), (νi) ⊂ (0, ∞) such that

µ ≥ |∇|u||2dx + ∑
i∈I

µiδxi ,

ν = |u|6 + ∑
i∈I

νiδxi and Sν1/3
i ≤ µi (3.20)
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for any i ∈ I, where δxi is the Dirac mass at the point xi. Let us show that (xi)i∈I ∩Ω′Γ =

∅. Assume, by contradiction, that xi ∈ Ω′Γ for some i ∈ I. For any ρ > 0, we define
ψρ(x) = ψ( x−xi

ρ ) where ψ ∈ C∞
0 (R3, [0, 1]) is such that ψ = 1 in B1, ψ = 0 in R3 \ B2 and

‖∇ψ‖L∞(R3,R) ≤ 2. We suppose that ρ > 0 is such that supp(ψρ) ⊂ Ω′Γ. Since (ψρun) is
bounded in Eλ, we can see that Φ′λ (un) [ψρun] = on(1), that is

∫
R3
|∇Aun|2ψρdx + Re

∫
R3

iun∇Aun∇ψρdx +
∫

R3
(λV(x) + 1)|un|2ψρdx

=
∫

R3
g(x, |un|2)|un|2ψρdx + on(1)

= α
∫

R3
f (|un|2)|un|2ψρdx +

∫
R3
|un|6ψρdx + on(1).

Using the diamagnetic inequality (2.1) again, it follows that

∫
R3
|∇|un||2ψρdx + Re

∫
R3

iun∇Aun∇ψρdx

≤ α
∫

R3
f (|un|2)|un|2ψρdx +

∫
R3
|un|6ψρdx + on(1). (3.21)

Due to the fact that f has the subcritical growth and ψρ has the compact support, we have that

lim
ρ→0

lim
n→∞

∫
R3

f (|un|2)|un|2ψρdx = lim
ρ→0

∫
R3

f (|u|2)|u|2ψρdx = 0. (3.22)

Now, we show that

lim
ρ→0

lim sup
n→∞

∣∣∣Re
∫

R3
iun∇Aun∇ψρdx

∣∣∣ = 0. (3.23)

Because of the boundedness of (un) in Eλ, using the Hölder inequality, the strong convergence
of (|un|) in L2

loc(R
3, R), |u| ∈ L6(R3, R), |∇ψρ| ≤ Cρ−1 and |B2ρ(xi)| ∼ ρ3, we have that

0 ≤ lim
ρ→0

lim sup
n→∞

∣∣∣Re
∫

R3
iun∇Aun∇ψρdx

∣∣∣
≤ lim

ρ→0
lim sup

n→∞

∫
R3
|un∇ψρ||∇Aun|dx

≤ lim
ρ→0

lim
n→∞

( ∫
B2ρ(xi)

|un∇ψρ|2dx
)1/2
‖un‖λ

≤ C lim
ρ→0

( ∫
B2ρ(xi)

|u|2dx
)1/2

= 0

which shows that (3.23) holds.
Then, taking into account (3.19), (3.21), (3.22) and (3.23), we can conclude that νi ≥ µi for

all i ∈ I. Together with the inequality Sν1/3
i ≤ µi in (3.20), we have

νi ≥ S
3
2 . (3.24)
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Now, from ( f3), (g4) and (g5), we have

c = Φλ (un)−
1
4
< Φ′λ (un) , un > +on(1)

=
1
4
‖un‖2

λ +
∫

R3

(1
4

g(x, |un|2)|un|2 −
1
2

G(x, |un|2)
)

dx + on(1)

≥ 1
4
‖un‖2

ε +
∫

R3\Ω′Γ

(1
4

g(x, |un|2)|un|2 −
1
2

G(x, |un|2)
)

dx

+
1

12

∫
Ω′Γ
|un|6dx + on(1)

≥ 1
4

( ∫
Ω′Γ

ψρ|∇|un||2dx +
∫

R3\Ω′Γ
(λV(x) + 1)|un|2

)
− 1

4

∫
R3\Ω′Γ

G(x, |un|2)dx

+
1

12

∫
Ω′Γ
|un|6dx + on(1)

≥ 1
4

∫
Λε

ψρ|∇|un||2dx + (
1
4
− 1

4κ
)
∫

R3\Ω′Γ
(λV(x) + 1)|un|2dx +

1
12

∫
Λε

ψρ|un|6dx + on(1)

≥ 1
4

∫
Ω′Γ

ψρ|∇|un||2dx +
1
12

∫
Ω′Γ

ψρ|un|6dx + on(1).

From the above arguments, (3.20) and (3.24), we have

c ≥ 1
4 ∑
{i∈I:xi∈Ω′Γ}

ψρ(xi)µi +
1
12 ∑
{i∈I:xi∈Ω′Γ}

ψρ(xi)νi

≥ 1
4 ∑
{i∈I:xi∈Ω′Γ}

ψρ(xi)Sν1/3
i +

1
12 ∑
{i∈I:xi∈Ω′Γ}

ψρ(xi)νi

≥ 1
4

S
3
2 +

1
12

S
3
2 =

1
3

S
3
2

which gives a contradiction. This means that (3.17) holds.
From (3.8), (3), (3.12) and (3.13), we may obtain that ‖un‖2

λ → ‖u‖
2
λ which means that

un → u in Eλ.

Next we study the behavior of a (PS)∞ sequence, that is, a sequence (un) ⊂ H1
A
(
R3, C

)
satisfying

un ∈ Eλn and λn → ∞,
Φλn (un)→ c,∥∥∥Φ′λn

(un)
∥∥∥

E∗λn

→ 0, as n→ ∞.

Proposition 3.5. Let (un) ⊂ H1
A
(
R3, C

)
be a (PS)∞ sequence with c ∈ (0, 1

3 S
3
2 ). Then, up to a

subsequence, there exists u ∈ H1
A
(
R3, C

)
such that un ⇀ u in H1

A
(
R3, C

)
. Moreover,

(i) u = 0 in R3 \ΩΓ, and for all j ∈ Γ, u |Ωj is a solution for{
−(∇+ iA(x))2u + u + φ|u|u = α f

(
|u|2

)
u + |u|4u, in Ωj,

u = 0, on ∂Ωj;
(3.25)

(ii) un → u in Eλn . Hence
un → u in H1

A
(
R3, C

)
; (3.26)
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(iii) λn
∫

R3 V(x) |un|2 dx → 0.

(iv) ‖un‖2
λn,Ω′j

→
∫

Ωj
(|∇Au|2 + |u|2)dx, for j ∈ Γ;

(v) ‖un‖2
λn,R3\ΩΓ

→ 0;

(vi) Φλn (un)→ 1
2

∫
ΩΓ

(
|∇Au|2 + |u|2

)
dx + 1

4

∫
ΩΓ

φ|u||u|2dx− α
∫

ΩΓ
F(|u|2)dx− 1

6

∫
ΩΓ
|u|6dx.

Proof. As in Lemma 3.1, we know that (un) is bounded in H1
A(R

3, C). Thus we may assume
that for some u ∈ H1

A(R
3, C), up to a subsequence, if necessary

un ⇀ u in H1
A
(
R3, C

)
,

un → u in Lr
loc
(
R3, C

)
, ∀r ≥ 1,

|un| → |u| a.e. in R3.

(i) We fix the set Cm =
{

x ∈ R3; V(x) ≥ 1
m

}
, for each m ∈N. Then, we have∫

Cm

|un|2 dx ≤ m
λn

∫
R3

λnV(x) |un|2 dx

≤ 2m
λn

∫
R3

(
|∇Aun|2 + (λnV(x) + 1) |un|2

)
dx

=
2m
λn
‖un‖2

λn
.

By the Fatou’s lemma, we derive ∫
Cm

|u|2 dx = 0.

So, u = 0 in ∪+∞
m=1Cm = R3 \Ω, from which we can assert that u|Ωj ∈ H0,1

A

(
Ωj, C

)
for any

j ∈ {1, 2, . . . , k} .
From ( f1), ( f2), for any ζ > 0, there exists Cζ > 0 such that

| f (t)| ≤ ζ |t|+ Cζ |t|
q−2

2 .

So, we derive∣∣∣∣Re
∫

R3
g
(

x, |un|2
)

unv̄dx
∣∣∣∣ ≤ ζα

∫
R3
|un|3 |v̄|dx + Cζα

∫
R3
|un|q−1 |v̄|dx +

∫
R3
|un|5 |v̄|dx.

Therefore,
Re
∫

R3
g
(

x, |un|2
)

unv̄dx → Re
∫

R3
g
(
x, |u|2

)
uv̄dx.

Since for each v ∈ C∞
0
(
Ωj, C

)
, Φ′λn

(un) v → 0 as n → ∞, from the above information and
the argument explored in Proposition 3.4, we have

Re
(∫

Ωj

(
∇Au∇Av + uv̄

)
dx +

∫
Ωj

φ|u|uvdx−
∫

Ωj

g
(
x, |u|2

)
uv̄dx

)
= 0,

which implies that u|Ωj is a solution of problem (3.25) for each j ∈ Γ.
On the other hand, if j ∈ {1, 2, . . . , k} \ Γ, setting v = u|Ωj ,∫

Ωj

(
|∇Au|2 + |u|2

)
dx +

∫
Ωj

φ|u| |u|
2 dx−

∫
Ωj

f̃
(
|u|2

)
|u|2 dx = 0.
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By Lemma 2.3 and the definition of f̃ , we have

0 ≤ δ0‖u‖2
λ,Ωj
≤ ‖u‖2

λ,Ωj
− ν0

k
‖u‖2

2,Ωj

≤
∫

Ωj

(
|∇Au|2 + |u|2

)
dx−

∫
Ωj

f̃
(
|u|2

)
|u|2dx ≤ 0.

Thus u|Ωj = 0 for j ∈ {1, 2, . . . , k} \ Γ. This proves that u = 0 in R3 \ΩΓ.
(ii) From the similar arguments in the proof of Proposition 3.4,∫

R3
g
(

x, |un|2
)
|un|2 dx →

∫
R3

g
(
x, |u|2

)
|u|2dx

= α
∫

ΩΓ

f
(
|u|2

)
|u|2dx +

∫
ΩΓ

|u|6dx as n→ +∞.

By (i), we have

on(1) = Φ′λn
(un) (un)

= ‖un‖2
λn

+
∫

R3
φ|un| (x) |un|2dx−

∫
R3

g
(

x, |un|2
)
|un|2 dx

= ‖un‖2
λn
− ‖u‖2

λn
+ on(1),

which implies un → u in Eλn . Hence un → u in H1
A(R

3, C).
(iii) By (ii),

λn

∫
R3

V(x) |un|2 dx = λn

∫
R3

V(x) |un − u|2 dx

≤ C ‖un − u‖2
λn
→ 0 as n→ ∞.

(iv) Let j ∈ Γ. By (ii),

|un − u|22,Ω′j
→ 0, |∇Aun −∇Au|22,Ω′j

→ 0,

therefore, ∫
Ω′Γ

(
|∇Aun|2 − |∇Au|2

)
dx → 0 and

∫
Ω′Γ

(
|un|2 − |u|2

)
dx → 0.

Also, by (iii), ∫
Ω′Γ

λnV (x) |un|2 dx → 0.

Thus,
‖un‖2

λn,Ω′Γ
→
∫

ΩΓ

(
|∇Au|2 + u2

)
dx.

(v) By (ii), it is easy to obtain that

‖un‖2
λ,R3\ΩΓ

→ 0.

(vi) Since

Φλn (un) = ∑
j∈Γ

[
1
2

∫
Ω′j

(
|∇Aun|2 + (λnV(x) + 1) |un|2

)
dx +

1
4

∫
Ω′j

φ|un||un|2dx

]

+
1
2

∫
R3\Ω′Γ

(
|∇Aun|2 + (λnV(x) + 1) |un|2

)
dx +

1
4

∫
R3\Ω′Γ

φ|un||un|2dx

−
∫

R3
G (x, un) dx,
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by (i)–(v), we can derive

Φλn (un)→
1
2

∫
ΩΓ

(
|∇Au|2 + |u|2

)
dx +

1
4

∫
ΩΓ

φ|u|u
2dx− α

∫
ΩΓ

F(|u|2)dx− 1
6

∫
ΩΓ

|u|6dx.

Now, we study L∞ estimate of the solution of problem (3.3).

Proposition 3.6. Let (uλ) be a family of nontrivial solutions of (3.3). Then, there exists λ∗ > 0 such
that

‖uλ‖2
L∞(R3\Ω′Γ)

≤ a, ∀λ ≥ λ∗.

In particular, uλ is a solution of the original problem (1.4) for any λ ≥ λ∗.

Proof. We give notation Br(x) =
{

y ∈ R3 : |x− y| < r
}

. Since uλ ∈ Eλ is a critical point of
Φλ(u), that is, uλ satisfies the following equation

−∆Auλ + (λV(x) + 1)uλ + φ|uλ|uλ = g
(
x, |uλ|2

)
uλ, x ∈ R3.

By the Kato’s inequality

∆ |uλ| ≥ Re
(

uλ

|uλ|
(∇+ iA(x))2uλ(x)

)
,

there holds

∆ |uλ(x)| − (λV(x) + 1) |uλ(x)| − φ|uλ| |uλ(x)| − g(x, |uλ|2) |uλ(x)| ≥ 0, x ∈ R3,

since |uλ| ≥ 0, φ|uλ| ≥ 0 and (λV(x) + 1) ≥ M0 > 0 if λ ≥ 1, we have

∆ |uλ(x)| − g
(

x, |uλ|2
)
|uλ(x)| ≥ 0, x ∈ R3.

We use the subsolution estimate (see [16], Theorem 8.17) and obtain that there exists a constant
C(r) such that for 1 < q < 2

sup
y∈Br(x)

|uλ(y)| ≤ C(r)
( ∫

B2r(x)
|uλ|qdy

)1/q
.

By Proposition 3.5, for any sequence λn → ∞, we can extract a subsequence λni such that

uλni
→ u ∈ H0,1

A (ΩΓ, C) strongly in H1
A(R

N , C).

In particular,

uλni
→ 0 in L2(RN \ΩΓ, C).

Since λn → ∞ is arbitrary, we have

uλ → 0 in L2(RN \ΩΓ, C) as λ→ ∞.

Thus, choosing r ∈ (0, dist(ΩΓ, RN \Ω′Γ)), we have uniformly in x ∈ RN \Ω′Γ that

|uλ(y)| ≤ C(r)‖uλ‖Lq(B2r(x))

≤ C(r)|B2r(x)|
2−q
2q ‖uλ‖L2(RN\ΩΓ)

→ 0.

This finishes the proof.
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4 Existence of multi-bump solutions

In this section, we start to prove the existence of multi-bump solutions. First of all, for each
fixed j ∈ Γ, let us denote by cj the minimax level of the functional Ij : H0,1

A

(
Ωj, C

)
→ R given

by

Ij(u) =
1
2

∫
Ωj

(
|∇Au|2 + |u|2

)
dx +

1
4

∫
Ωj

φ|u||u|2dx− α

2

∫
Ωj

F(|u|2)dx− 1
6

∫
Ωj

|u|6dx,

and
cj = inf

γ∈Λj
max
t∈[0,1]

Ij(γ(t)),

where
Λj =

{
γ ∈ C([0, 1], H0,1

A

(
Ωj, C

)
) : γ(0) = 0, Ij(γ(1)) < 0

}
.

For each j ∈ Γ, we denote by Φλ,j : H1
A

(
Ω′j, C

)
→ R the functional given by

Φλ,j(u) =
1
2

∫
Ω′j

(
|∇Au|2 + (λV(x) + 1)|u|2

)
dx

+
1
4

∫
Ω′j

(
1

4π

∫
Ω′j

|ũ|2
|x− y|dy

)
u2dx− α

2

∫
Ω′j

F(|u|2)dx− 1
6

∫
Ω′j
|u|6dx,

and the above functional is associated to the following problem−∆Au + (λV(x) + 1)u +

(
1

4π

∫
Ω′j
|ũ|2
|x−y|dy

)
u = α f (|u|2)u + |u|4u, in Ω′j,

∂u
∂η = 0, on ∂Ω′j,

where

ũ(x) =

{
u(x), in Ω′j,

0, in R3 \Ω′j.

In what follows, we denote by cλ,j the minimax level of the above functional given by

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t)),

where
Λλ,j =

{
γ ∈ C

(
[0, 1], H1

A

(
Ω′j, C

))
: γ(0) = 0, Φλ,j(γ(1)) < 0

}
.

Repeating the same method used in the previous section, we are able to prove that there exist
ωj ∈ H0,1

A

(
Ωj, C

)
and ωλ,j ∈ H1

A

(
Ω′j, C

)
such that

Ij(ωj) = cj and I′j(ωj) = 0,

and
Φλ,j(ωλ,j) = cλ,j and Φ′λ,j(ωλ,j) = 0.

Furthermore, we have the following important lemma.
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Lemma 4.1. The following statements hold:

(i) 0 < cλ,j ≤ cj, for λ ≥ 1 and j ∈ Γ.

(ii) cj (cλ,j respectively) is a least energy level for Ij(u) (Φλ,j(u) respectively), that is

cj = inf
{

Ij(u) : u ∈ H0,1
A

(
Ωj, C

)
\ {0}, I′j(u)u = 0

}
,

and
cλ,j = inf

{
Φλ,j(u) : u ∈ H1

A

(
Ω′j, C

)
\ {0}, Φ′λ,j(u)u = 0

}
.

(iii) cλ,j → cj, as λ→ ∞ for any j ∈ Γ.

Proof. (i) From ( f3), we have cj > 0 and cλ,j > 0 for any j ∈ Γ and λ ≥ 1. For any u ∈
H0,1

A

(
Ωj, C

)
, we may extend u to û ∈ H1

A

(
Ω′j, C

)
by

û(x) =

{
u(x), in Ωj,

0, in Ω′j \Ωj.

Using the fact that H0,1
A

(
Ωj, C

)
⊂ H1

A

(
Ω′j, C

)
, we have

cλ,j = inf
γ∈Λλ,j

max
t∈[0,1]

Φλ,j(γ(t))

≤ inf
γ∈Λj

max
t∈[0,1]

Φλ,j(γ(t))

= inf
γ∈Λj

max
t∈[0,1]

Ij(γ(t)) = cj.

(ii) By the monotonicity of the term f (t) with respect to t for t > 0, we are able to prove
this.

(iii) Using Proposition 3.5, for sequences (λn) with λn → ∞, as n → ∞, there exists
ω ∈ H0,1

A (Ωj, C) is a solution of (3.25) such that

ωλn,j → ω in H1
A(Ω

′
j, C),

and
Φλn,j(ωλn,j)→ Ij(ω).

By the definition of cj, we have

lim sup
λ→∞

cλ,j = lim sup
λ→∞

Φλ,j
(
ωλ,j

)
≥ Ij (ω) ≥ cj.

Together with (i), we get the asserted result.

In what follows, we fix R > 1 verifying∣∣∣∣Ij

(
1
R

ωj

)∣∣∣∣ < 1
2

cj, ∀j ∈ Γ, (4.1)

and ∣∣Ij
(

Rωj
)
− cj

∣∣ ≥ 1, ∀j ∈ Γ. (4.2)
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By the definition of cj, we are able to obtain

max
sj∈[1/R2,1]

Ij
(
sjRωj

)
= cj, ∀j ∈ Γ.

Then, for Γ = {1, 2, . . . , l} (l ≤ k), we define

γ0(s)(x) = ∑l
j=1 sjRωj(x) ∀s = (s1, s2, . . . , sl) ∈

[
1/R2, l

]l ,

Λ∗ =
{

γ ∈ C
([

1/R2, 1
]l

, Eλ \ {0}
)

: γ = γ0 on ∂
([

1/R2, 1
]l
)}

,

and
bλ,Γ = inf

γ∈Λ∗
max

s∈[1/R2,1]l
Φλ (γ (s)) .

Next, let us denote by cΓ = ∑l
j=1 cj and cλ,Γ = ∑l

j=1 cλ,j. Moreover, from Remark 3.3, we

know that cΓ ∈ (0, 1
3 S

3
2 ). To prove an important relation among bλ,Γ, cΛ and cλ,Γ, we need to

the following lemma.

Lemma 4.2. For any γ ∈ Λ∗, there exists (t1, t2, . . . , tl) ∈
[
1/R2, 1

]l such that

Φ′λ,j (γ (t1, t2, . . . , tl)) (γ (t1, t2, . . . , tl)) = 0 for all j ∈ {1, 2, . . . , l}.

Proof. Given γ ∈ Λ∗, consider γ̃ :
[
1/R2, 1

]l → Cl defined by

γ̃ (s1, s2, . . . , sl) =
(
Φ′λ,1(γ)(γ), Φ′λ,2(γ)(γ), . . . , Φ′λ,l(γ)(γ)

)
,

where
Φ′λ,j(γ)(γ) = Φ′λ,j (γ (s1, s2, . . . , sl)) (γ (s1, s2, . . . , sl)) for all j ∈ Γ.

By ( f4) and I′j(ωj) = 0, we have

I′j
(

Rωj
) (

Rωj
)
< 0 and I′j

(
1
R

ωj

)(
1
R

ωj

)
> 0.

For s ∈ ∂(
[
1/R2, 1

]l
), it holds γ(s) = γ0(s), and

Φ′λ,j (γ0 (s)) (γ0 (s)) = 0⇒ sj /∈
{

1/R2, 1
}

, ∀j ∈ Γ.

Thus,
(0, 0, . . . , 0) /∈ γ̃

(
∂
([

1/R2, 1
]l
))

.

Since
deg

(
γ̃,
(
1/R2, 1

)l
, (0, . . . , 0)

)
= deg

(
γ̃0,
(
1/R2, 1

)l
, (0, . . . , 0)

)
and, for s ∈

(
1/R2, 1

)l ,

γ̃0(s) = 0⇐⇒ s =

(
1
R

, . . . ,
1
R

)
,

we have
deg

(
γ̃,
(
1/R2, 1

)l
, (0, . . . , 0)

)
6= 0.

This shows what was stated.
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Proposition 4.3. The following facts hold:

(i) cλ,Γ ≤ bλ,Γ ≤ cΓ, ∀λ ≥ 1;

(ii) bλ,Γ → cΓ, as λ→ ∞;

(iii) Φλ(γ(s)) < cΓ, ∀λ ≥ 1, γ ∈ Λ∗ and s = (s1, . . . , tl) ∈ ∂(
[
1/R2, 1

]l
);

(iv) bλ,Γ is a critical point of Φλ for large λ.

Proof. (i) Since γ0 ∈ Λ∗,

bλ,Γ ≤ max
(s1,s2,...,sl)∈[1/R2,1]

Φλ (γ0 (s1, s2, . . . , sl))

= max
(s1,s2,...,sl)∈[1/R2,1]

l

∑
j=1

Ij
(
sjRωj

)
=

l

∑
j=1

cj = cΓ.

Fixing (t1, t2, . . . , tl) ∈
[
1/R2, 1

]l given in Lemma 4.2 and recalling that cλ,j can be character-
ized by

cλ,j = inf
{

Φλ,j(u) : u ∈ H1
A

(
Ω′j, C

)
\ {0}, Φ′λ,j(u)u = 0

}
,

it follows that
Φλ,j (γ (t1, t2, . . . , tl)) ≥ cλ,j ∀j ∈ Γ.

Since ∀u ∈ H1
A
(
R3 \Ω′Γ, C

)
, Φλ,R2\Ω′Γ(u) ≥ 0, we have

Φλ (γ (s1, s2, . . . , sl)) ≥
l

∑
j=1

Φλ,j (γ (s1, s2, . . . , sl)) .

Hence

max
(s1,s2,...,sl)∈[1/R2,1]l

Φλ (γ (s1, s2, . . . , sl)) ≥ Φλ (γ (t1, t2, . . . , tl)) ≥
l

∑
j=1

cλ,j

showing that

bλ,Γ ≥
l

∑
j=1

cλ,j = cλ,Γ.

(ii) Since cλ,j → cj, as λ→ ∞, by the previous item,

bλ,Γ → cΓ, as λ→ ∞.

(iii) For s ∈ ∂(
[
1/R2, 1

]l
), it holds γ(s) = γ0(s). Hence,

Φλ (γ0 (s1, s2, . . . , sl)) =
l

∑
j=1

Ij
(
sjRωj

)
.

From (4.1) and (4.2), we have

Φλ (γ0 (s1, s2, . . . , sl)) ≤ cΓ − ε.
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for some ε > 0, so (iii) holds.
(iv) By (ii), we can choose λ large enough such that bλ,Γ, cΓ ∈ (0, 1

3 S
3
2 ). From Proposition 3.4

and (3.6), we know that any (PS)bλ,Γ sequence of Φλ has a convergence subsequence in Eλ.
Moreover, from the deformation lemma, we can conclude that bλ,Γ is a critical level of Φλ for
λ large.

To prove Theorem 1.1, we need to find a nontrivial solution uλ for the large λ which
approaches a least energy solution in each Ωj (j ∈ Γ) and to 0 elsewhere as λ→ ∞. Therefore,
we shall show two propositions which imply together with the estimates made in the previous
section that Theorem 1.1 holds.

Henceforth, let
ΦcΓ

λ = {u ∈ Eλ : Φλ(u) ≤ cΓ} .

For small µ > 0, we denote by

Aλ
µ =

{
u ∈ Eλ : ‖u‖λ,R3\Ω′j ≤ µ,

∣∣Φλ,j(u)− cj
∣∣ ≤ µ, ∀j ∈ Γ

}
,

and observe that ω = ∑l
j=1 ωj ∈ Aλ

µ ∩ΦcΓ
λ , showing that Aλ

µ ∩ΦcΓ
λ 6= ∅. Fixing

0 < µ <
1
3

min
{

cj, j ∈ Γ
}

. (4.3)

We obtain the following uniform estimate of
∥∥Φ′λ(u)

∥∥
λ

on the annulus
(

Aλ
2µ \ Aλ

µ

)
∩ΦcΓ

λ .

Proposition 4.4. Let µ > 0 satisfying (4.3). Then there exist σ0 > 0 and λ∗ ≥ 1 independent of λ

such that ∥∥Φ′λ(u)
∥∥

λ
≥ σ0 for λ ≥ λ∗ for all u ∈

(
Aλ

2µ \ Aλ
µ

)
∩ΦcΓ

λ .

Proof. Arguing by contradiction, we assume that there exist λn → ∞ and un ∈
(

Aλn
2µ \ Aλn

µ

)
∩

ΦcΓ
λn

such that
∥∥Φ′λn

(u)
∥∥

λn
→ 0.

Since un ∈ Aλn
2µ, we can obtain that

{
‖un‖λn

}
is a bounded in Eλn

(
R3, C

)
and H1

A
(
R3, C

)
,

and {Φλn (un)} is also bounded. Thus, passing a subsequence if necessary, we may assume
that

Φλn (un)→ c ∈ (−∞, cΓ] .

From Proposition 3.5, there exists u ∈ H0,1
A (ΩΓ, C) such that u is a solution of (3.25),

un → u in H1
A(R

3, C),

lim
n→∞

Φλn (un) =
l

∑
j=1

Ij(u) ≤ cΓ,

‖un‖2
λn,Ω′j

→
∫

Ωj

(
|∇Au|2 + |u|2

)
dx, ∀j ∈ Γ,

λn

∫
R3

V(x) |un|2 dx → 0,

‖un‖2
λn,R3\ΩΓ

→ 0.

Since cΓ = ∑l
j=1 cj and cj is the least energy level for Ij, we have two possibilities:

(i) Ij(u|Ωj) = cj ∀j ∈ Γ;
(ii) Ij0(u|Ωj0

) = 0, that is u|Ωj0
≡ 0 for some j0 ∈ Γ.
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If (i) occurs, we have

1
2

∫
Ωj

(
|∇Au|2 + |u|2

)
dx +

1
4

∫
Ωj

φ|u| |u|
2 dx− α

2

∫
Ωj

F(|u|2)dx− 1
6

∫
Ωj

|u|6dx = cj, ∀j ∈ Γ.

Thus,
∣∣Φλ,j(u)− cj

∣∣ ≤ µ, ∀j ∈ Γ, that is, un ∈ Aλn
µ for large n, which is a contradiction to the

assumption un ∈ Aλn
2µ \ Aλn

µ .
If (ii) occurs, we have ∣∣Φλn,j0 (un)− cj0

∣∣→ cj0 ≥ 3µ,

which is a contradiction with the fact that un ∈ Aλn
2µ \ Aλn

µ . Thus neither (i) nor (ii) can hold,
and the proof is completed.

Proposition 4.5. Let µ > 0 satisfying (4.3) and λ∗ ≥ 0 be a constant given in Proposition 4.4. Then,
for any λ ≥ λ∗, there exists a nontrivial solution uλ of (3.3) satisfying uλ ∈ Aλ

µ ∩ΦcΓ
λ .

Proof. Arguing by contradiction, we assume that there are no critical points in Aλ
µ ∩ΦcΓ

λ . Since

Φλ verifies the (PS) condition in the level (0, 1
3 S

3
2 ), there exists a constant dλ > 0 such that∥∥Φ′λ(u)

∥∥ ≥ dλ for all u ∈ Aλ
µ ∩ΦcΓ

λ .

From Proposition 4.4, we have∥∥Φ′λ(u)
∥∥ ≥ σ0 for all u ∈

(
Aλ

2µ \ Aλ
µ

)
∩ΦcΓ

λ ,

where σ0 > 0 does not depend on λ. In what follows, Ψ : Eλ → R is a continuous functional
verifying

Ψ(u) = 1 for u ∈ Aλ
3µ/2,

Ψ(u) = 0 for u /∈ Aλ
2µ,

0 ≤ Ψ(u) ≤ 1 for u ∈ Eλ

(
R3, C

)
.

We consider H : ΦcΓ
λ → Eλ given by

H(u) =

−Ψ(u) Φ′λ(u)

‖Φ′λ(u)‖λ

, u ∈ Aλ
2µ,

0, u /∈ Aλ
2µ.

Hence, we have the inequality

‖H(u)‖λ ≤ 1 ∀λ ≥ Λ∗ and u ∈ ΦcΓ
λ .

Considering the deformation flow η : [0, ∞)×ΦcΓ
λ → ΦcΓ

λ defined by

dη

dt
= H(η) and η(0, u) = u ∈ ΦcΓ

λ .

Thus η has the following properties

d
dt

Φλ(η(t, u)) = −Ψ(η(t, u))
∥∥Φ′λ(η(t, u))

∥∥
λ
≤ 0, (4.4)

η(t, u) = u for all t ≥ 0 and u ∈ ΦcΓ
λ \ Aλ

2µ, (4.5)
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∥∥∥∥dη

dt

∥∥∥∥
λ

≤ 1 for all t, u. (4.6)

Now let γ0(s) ∈ Λ∗ and we consider η(t, γ0(s)) for large t. If µ satisfies (4.3), we have that

γ0(s) /∈ Aλ
2µ, ∀s ∈ ∂

([
1/R2, 1

]l
)

.

Since
Φλ (γ0(s)) < cΓ, ∀s ∈ ∂

([
1/R2, 1

]l
)

,

from (4.5), it follows that

η (t, γ0(s)) = γ0(s), ∀s ∈ ∂
([

1/R2, 1
]l
)

.

So, η (t, γ0(s)) ∈ Λ∗, for each t ≥ 0.
On the other hand, suppγ0(s)(x) ⊂ ΩΓ for all s ∈ ∂(

[
1/R2, 1

]l
), then Φλ(γ0(s)) does not

depend on λ ≥ 0. Moreover,

Φλ (γ0(s)) ≤ cΓ, ∀s ∈
[
1/R2, 1

]l

and Φλ (γ0(s)) = cΓ if and only if sj =
1
R , ∀j ∈ Γ.

Therefore, we have that

m0 = max
{

Φλ(u) : u ∈ γ0(
[
1/R2, 1

]l
) \ Aλ

µ

}
is independent of λ and m0 ≤ cΓ. From (4.6), it is easy to see that for any t > 0,

‖η (0, γ0 (s1, s2, . . . , sl))− η (t, γ0 (s1, s2, . . . , sl))‖λ ≤ t.

Since Φλ,j(u) ∈ C1(Eλ, R) for all j = 1, 2, . . . , l, and the assumptions ( f1)− ( f4), it is easy to
see that for large number T > 0, there exists a positive number ρ0 > 0 which is independent
of λ such that for all j = 1, 2, . . . , l and t ∈ [0, T],∥∥∥Φ′λ,j(η(t, γ0(s1, s2, . . . , sl)))

∥∥∥
λ
≤ ρ0. (4.7)

We claim that for large T,

max
s∈[1/R2,1]l

Φλ (η (T, γ0(s))) ≤ max
{

m0, cΓ −
1
2

τ0µ

}
,

where τ0 = max
{

σ0, σ0
ρ0

}
.

In fact, if γ0(s) /∈ Aλ
µ, from (4.4),

Φλ(η(t, s)) ≤ Φλ(s) ≤ m0, ∀t ≥ 0.

If γ0(s) ∈ Aλ
µ, we set

η̃(t) = η(t, s), d̃λ = min {dλ, σ0} and T =
σ0µ

2d̃λ

.

Next we differentiate two cases:
(1) η̃(t) ∈ Aλ

3µ/2 for all t ∈ [0, T].
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(2) η̃ (t0) ∈ ∂Aλ
3µ/2 for some t0 ∈ [0, T].

If (1) holds, we have Ψ(η̃(t)) ≡ 1 and
∥∥Φ′λ(η̃(t))

∥∥
λ
≥ d̃λ for all t ∈ [0, T]. Hence, from (4.4),

we get

Φλ(η̃(T)) = Φλ (γ0(s)) +
∫ T

0

d
ds

Φλ(η̃(s))ds

= Φλ (γ0(s))−
∫ T

0
Ψ(η̃(s))

∥∥Φ′λ(η̃(s))
∥∥

λ
ds

≤ cΓ −
∫ T

0
d̃λds

= cΓ − d̃λT

= cΓ −
1
2

σ0µ

≤ cΓ −
1
2

τ0µ.

If (2) holds, there exists 0 ≤ t1 ≤ t2 ≤ T such that

η̃ (t1) ∈ ∂Aλ
u , (4.8)

η̃ (t2) ∈ ∂Aλ
3µ/2, (4.9)

η̃(t) ∈ Aλ
3µ/2 \ Aλ

u , for all t ∈ [t1, t2] .

It follows from (4.9)

‖η̃ (t2)‖λ,R3\Ω′Γ
=

3µ

2
,

or ∣∣∣Φλ,Ω′j0
(η̃ (t2))− cj0

∣∣∣ = 3µ

2
,

for some j0 ∈ Γ.
Now we consider the later case, the former case can be obtained in a similar way. By (4.8),∣∣∣Φλ,Ω′j0

(η̃ (t1))− cj0

∣∣∣ ≤ µ,

thus, we obtain∣∣∣Φλ,Ω′j0
(η̃(t2))−Φλ,Ω′j0

(η̃(t1))
∣∣∣ ≥ ∣∣∣Φλ,Ω′j0

(η̃ (t2))− cj0

∣∣∣− ∣∣∣Φλ,Ω′j0
(η̃ (t1))− cj0

∣∣∣ ≥ 1
2

µ.

On the other hand, by the mean value theorem, there exists t3 ∈ (t1, t2) such that

∣∣∣Φλ,Ω′j0
(η̃(t2))−Φλ,Ω′j0

(η̃(t1))
∣∣∣ = ∣∣∣∣Φ′λ,Ω′j0

· dη̃

dt
(t3)

∣∣∣∣ (t2 − t1).

Moreover, from (4.6) and (4.7), we have

t2 − t1 ≥
µ

2ρ0
.
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Hence, we obtain

Φλ(η̃(T)) = Φλ (γ0(s)) +
∫ T

0

d
ds

Φλ(η̃(s))ds

= Φλ (γ0(s))−
∫ T

0
Ψ(η̃(s))

∥∥Φ′λ(η̃(s))
∥∥

λ
ds

≤ cΓ −
∫ t2

t1

Ψ(η̃(s))
∥∥Φ′λ(η̃(s))

∥∥
λ

ds

= cΓ − σ0(t2 − t1)

≤ cΓ −
1
2

τ0µ,

and so (4.7) is proved. Now we recall that η̃(T) = η(T, γ0(0)) ∈ Λ∗, thus

bλ,Γ ≤ Φλ(η̃(T)) ≤ max
{

m0, cΓ −
1
2

τ0µ

}
,

which contradicts the fact that bλ,Γ → cΓ as λ→ ∞.

Proof of Theorem 1.1. From Proposition 4.5, there exists a nontrivial solutions uλ to problem
(3.3) such that uλ ∈ Aλ

µ ∩ΦcΓ
λ , for all λ ≥ λ∗. So, using the proof of Proposition 3.6, we can

derive that
‖uλ‖2

L∞(R3\Ω′Γ)
≤ a, ∀λ ≥ λ∗,

which shows that uλ is a nontrivial solution to the original problem (1.4).
Moreover, for any given sequence (λn) with λn → +∞, up to a subsequence if necessary,

it is easy to show that (uλn) is a (PS)∞ sequence. Hence, by Proposition 3.5, we obtain

uλn → u in H1
A
(
R3, C

)
with u ∈ H0,1

A (ΩΓ, C) , u ≡ 0 in R3 \ΩΓ,

and the restriction u |Ωj is a least energy solution of−(∇+ iA(x))2u + u +
(

1
4π

∫
Ωj

|u(y)|2
|x−y| dy

)
u = α f (|u|2)u + |u|4u, x ∈ Ωj,

u ∈ H0,1
A

(
Ωj
)

,

where j ∈ Γ. We complete the proof of Theorem 1.1.
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