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0. Introduction

We consider the following nonlinear system

abla(tun — Aug + fi(z,ug,u2) =0 in Q x (0,T)
(S) —ab26(tu2) — Aug + fa(z,ur,ue) =0  in Qx (0,7)
up =ug =0 in 90 % (0,7)

(b1 (u1(x,0), ba(uz(x,0)) = (b1(g(z)), ba(thp(x))) in Q
where € is a bounded open subset in RY | N > 1, with a smooth boundary
0. (S) is an example of nonlinear parabolic systems modelling a reaction dif-
fusion process for which many results on existence, uniqueness and regularity
have been obtained in the case where b;(s) = s ( see, for instance [6, 7, 18]).

The case of a single equation of the type (S) is studied in [1, 2, 3,4, 5,8,9,19].
The purpose of this paper is the natural extension to system (S) of the results
by [8], which concerns the single equation %(tu) —Au+ f(z,t,u) =0.

Actually, our work generalizes the question of existence and regularity of the
global attractor obtained therein.

In the first section of this paper, we give some assumptions and preliminaries
and in section 2, we prove the existence of absorbing sets and the existence of
the gobal attractor; while in section 3, we present the regularity of the attractor
and show stabilization property. Finally, section 4 is devoted to estimates of
the Haussdorf and fractal dimensions.

1. Preliminaries, Existence and Uniqueness

1.1 Notations and Assumptions
Let b;, (i = 1,2) be continuous functions with b;(0) = 0. We define for ¢t € R

U,(t) = fot bi(T)dr . Then the Legendre transform ¥* of ¥ is defined by

UH(r) = sup{7rs — U;(s)}. Q stands for a regular open bounded subset of
SER
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RY and for any T > 0, we set Q7 = Q x (0,T) and Sy = 9Q x (0,T), where
09 is the boundary of 2 . The norm in a space X will be denoted by : .|,
if X =L7(Q) forallr: 1<7 < +o0, ||.|[x otherwise and (.,.) x x, will denote

the duality product between X and its dual X .

We start by introducing our assumptions and making precise the meaning
of a solution of (S). Consider the system ( S) under the following assumptions:

(H1) (90,0) € L*() x L*(Q).

(H2) b; is an increasing continuous function from R into R , b;(0) = 0, and

there exists ¢;; > 0 such that : |b;(s)| < ¢i1 |s|+ ¢, foralls € R, i =1, 2.
(H3) f; € CY (2 x R x R).
(H4) Ve e Q, V€ € R,3c1 > 0,¢2 >0
{ SZgn(g)fl(zaéa 0) > —c
sign(€) fa(x,0,£) > —ca.
( H5) For any N > 0,3¢g > 0,¢4 > 0,¢5 >0
sign(€) fi(w, €, v) > es |6 — ca
1@, & )] < es(€7 7+ 1) p1 > 2
|f(z,u,v)| < a1(|u|), where a : Rt — R* is increasing
for any v : |v| < N.
( H6) For any M > 0,3¢g > 0,¢7 > 0,¢5 > 0:
sign(&) fa(w,u,€) > co [¢7* 7 —er
Folew ) <es(€™ +1)  pp>2
|fo(z,u,v)| < az(|v]), where as : Rt — R is increasing
for any w: |u| < M.

(H7) 0 < ~y; <Dj(s) for all s € R.

Definition By a weak solution of (S), we mean an element

u; € LP(0,T; LP(Q)) N L2(0, T; HE(Q)) N L= (to, T; L)), for all tg > 0
such that

Gbilui) ¢ Lpi(0,T; LPF () + L2(0, T; H-1(Q)) and Vo, € L2(0,T; H-(Q)) :

i <6b <ul>’¢> dt+f0 Jo VuiVodedt + [ [ fi(x, ur, uz)dwdt = 0,

“Vi

and if (¢,); € L*(0,T: L?(Q)) 6.(T ),0
f0T<ab o ’¢> Vi —Jy Jo — bi(ui(2,0)) (¢;)edxdt,

where V; = LPZ(Q) NHLQ), V) = LPi(Q) + H—l(Q), L+Ll=1i=12

1.2. Existence theorem.

Theorem 1 Let (H1) to ( H6) be satisfied. Then there exists a solution
(u1,us2) of problem (S) such that for i = 1,2 , we have

w; € LPi(0, T LPi(Q)) N L*(0,T; HJ(2)) N L (to, T; L>(Q)),Vto > 0

Proof: By theorem 3.2 in [8] ,we can choose u) € LPi(Qr)NL2(0,T; H(Q))N
Lo°(7,T; L>°(Q)), for any 7 > 0 such that :

@%ﬁ A+ fi(z,ud,0)=0  inQr
0 in ST
bl(u?)tzo = b1(pg) in Q
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0
ab%(tuﬁ — Aud + fo(z,0,ud) =0  in Qr

ug =0 in ST
b1 (ul)i=o = b1 () in Q
and we construct two sequences of functions (u}) and (u}), such that :
i) — A+ flw,uf,up ) =0 inQr  (1.1)
up =0 in Sy (1.2)
b1 (uf )i=0 = b1(¢pp) in O (1.3)
Gald) — pup + folwup hup) =0  inQr  (14)
up =0 in Sr (1.5
ba(u3)i=0 = ba(t) in Q (1.6)

We need lemma 1 and lemma 2 below to complete the proof of theorem 1.
From now on we denote by ¢; various positive constants independent of n.
Lemma 1

VT >0,3¢; >0 such that ||uj|lpe(r .0 (q)) < Cr- (1.7)

Proof : For n =0, (1.7) is proved in [7]. So, suppose (1.7) for (n —1).
Multiplying (1.1) by |by (u?)[* by (u?) and using (H2),(H5) , we obtain :

k+2/|b )|F+2 dz+09/|b1 k+p1dx<cw/|b1 )F da.

Setting yin(t) = [|b1(uy)|lprr2(q) and using Holder’s inequality on both
sides, we have the existence of two constants A > 0 and § > 0 such that

dyk,n( )

P11 <
ol gt <o

which implies from lemma 5.1([22]) that Vt > 7> 0

1

0,1
Yen(t) S ()77 4 ————
[A(pr — 2)t] 72
As k — oo, we obtain
[ut ()] < er Vi>T1>0.

The same holds also for v5.H
Lemma 2 V7 > 0,3¢; = ¢; (7, ¢0,%y) >0

IN

HU?HLZ(O,T;Hé(Q)) €11,

IN

i e (73 ()L () €12

2 T T
Z / / |V’U/’Z’l|2dl‘+013/ / |'LLZ7/|pZ d.r S C14.
1 1/0 Ja 0o Jo
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Proof of lemma 2 : Multiplying (1.1) by % and (1.4) by u%,and adding ,
we get :

2 2
[ vyt + 3 [ wurtas ey [ s < 09
Q =179 =19

But
b0l 2() + ol 20y < €= [ Vi(bi(e))da + Jo U3(b2())dz < c,

so we deduce that Z fo Jo |Vl de + 0172 fo Jo lu [P da < exs.
i=1 i=1

Whence lemma 2.

From lemma 2 and Lemma 1, there is a subsequence u}" (i = 1,2) with the
following properties:

u? — u; weakly in L?(0,T; H} ()N LPi(0,T; LPi(Q2))

bi(ul) — x;weakly in L2(0,T; L?(2))

bi(u?) — x,strongly in L?(7,T; H=1(Q)) ( by the compactness result of
Aubin ( see [22])). By lemma 7([9]), we have x; = b;(u;). Moreover,

f1(,ut, uh™h) converges to fi(.,u1,us) in L7(7,T; L7(Q)),Vr > 1,Vr > 1

and fo(.,u? ' ul) converges to fo(.,u1,uz) in L7 (7,T; L"(R)),Vr > 1;

taking the limit as n goes to co , we deduce that (w1, u9) is a weak solution
of (8).

1.3. Uniqueness

Theorem 2.

Assume that f; and fy verify :

VM > 0,YVN > 0,dcpr > 0,ey >0

Vu, @, 0,7 : |u| + [g| < M and |v| + |[7] < N, we have
|f1(x,u,v) - fl(x,ﬂ,ﬁ)ﬁ + |f2(z,u,v) - f2(1'aﬂ75)|2 <
car (b1 (u) = b1(w))(u =) + en(ba(v) — b2(V)) (v — D).
Then (S) has a unique solutions (u,v) in Q.
Proof : Let (u,v) and ( @, v) be solutions of (S); then we have :

(H8)

A(bi(u) —b(u) Alu—7)

ot = fi(z,,7) - fi(z,u,v) (1.9)

and

6(b2(v) - bg(i)) —
5 " A(v — )

Multiplying (1 9) by w1 = (=A)"Y(b1(u) — b1(w)) and (1.10) by
we = (—=A)"L(ba(v) — b2(?)) and adding, we get
L4 (o1 () = b1 @3-y + 2(0) = bo (@) 52y +
(bl(u) —b1(W),u — )2 () + (b2(v) — b2(V),v — E)LQ(Q) <
I, 0,0) = F1(@ ) g 191 (0) — b3 (@) 71y +

= fo(z, @, ) — fa(z,u,v). (1.10)
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cllfale,u,v) = Fol@, D) | s g 2(0) = bo@)llgrory - (111)

From hypothesis (H8) we obtain

Hfl(x,u,v) - fl('rvuai)H?{*l(Q) + ||f2(x,u,v) - fQ(xvuaE)H?{*l(Q)
<c Hfl(l',’u,’()) - fl(zaﬂaﬁ)”iQ(Q) + ||f2(35,u,11) - fQ(IE,ﬂ,ﬁ)HiZ(Q)}

< CCM(bl(’u) — bl(ﬂ),u — ﬂ)Lz(Q) + CCN(bQ(’U) — bg(i), v — F)Lz(g) , (112)

where M = [[ull o (o,7; Low (0)) TN 1w (0,73 L= 0y A N = (V1] e (0,7, Lo 2)) F
ol e 0,752 () -

Therefore, using Schwartz inequality in (1.11), the fact that ( b;,i =1,2) is
increassing and (1.12), we deduce that

2 (11 (0) = b1 (@) -1 ) + 1b2(0) = ba (@)1 0y | <

ek [n(w) = b1 (@) 52 ) + b2(0) = b2(@)[y-1(0y | -
Thus, we deduce that bi(u) = by (w) and be(v) = ba(¥), hence u = w and
v =.
Remark 1. Theorem 1 establishes the existence of dynamical system
{S(t)},>0 which maps L*(9)x L*(Q2) into L*(Q)x L*(Q2) such that S(t)(vg, ) =
(u1(t), ua(t))-

2. Global attractor

Proposition 1 Assume that (H1)-( H8) hold; then the solution (u1,us) of
system (S) satisfies :

[ur(B)] oo () F [U2(t)] oo () S clbo)  VE=to (2.0)
and
2
Z/ |V, |* de < ¢ Vit>tyg+r (2.1)
i=1 /%

Proof : Reasoning as the proof of lemma 1, we also have(2.0).
Multiplying the first equation of (S) by u; and the second by ws, by (H2)
and (2.5), we get :
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dtz/ i(ui) dx—&—z /|VU1| de = Z/flxu)uzdx<c (2.2)

For fixed r > 0 and 7 > 0, integrate (2.2) on |¢t,t + r|

2 t4r
Vi>71>0 Z/ / |V, |* deds < c(T). (2.3)
= Ji Q

Multiplying the first equation of (S) by (u1): and the second by (uz):, we get

1
§di Z/ |V |* da) —i—Z/ (b5 (s ) ( aul )2dx = (2.4)

iz;/ﬂﬁ'(aﬁ,tt)(uZ < Z Z/Q (0 (s <9uz

By (H7) and the properties of functions f; , we obtain:

Q

% lz /Q |Vui|2dz] < ¢(7). (2.5)

From the uniform Gronwall’s lemma see [22], we get (2.1).H

Remark 2. By propositionl we deduce that there exist absorbing sets
in L1 () x L71(Q) for any 0; : 1 < 0; < +00 and absorbing sets in H}(Q) x
H}(2); then assumptions (1.1) ,(1.4) and (1.12) in theorem 1.1 [22, p.23] are
satisfied with U = [L? (Q)]2 , so we have the following :

Theorem 2. Assume that (H1) - (H7) are satisfied. Then the semi-group
S(t) associated with the boundary value problem (S) possesses a maximal
attractor A, which is bounded in [Hg(€2) N L>(Q)] x [H§(2) N L>®(Q)] , com-

pact and connected in [L? (Q)]2 . Its domain of attraction is the whole space

[22()’

3. A regularity property of the attractor

In this section we shall show supplementary regularity estimates on the so-
lution of problem (S) and by use of them, we shall obtain more regularity on
the attractor obtained in section 3. We shall assume that

(H9) {N < 3 and b; is of class C*.
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Hereafter, we shall assume that there exist positive constants §; > 0 and a
function ® from RV*2 to R such that :

filw,u) = filu) = hi(x) = 6; 5
(H10) { fi satistying (H3) to (H6) and h; €6L°°(Q).
2 2
We shall denote : r(t) = > [, b} (u;) (u;) dz.
i=1

Theorem 3 Let f; and b; satisfies hypothesis (H1) to (H10). Then the
solution ( wi,us) of problem (S) satisfies the following regularity estimates:

abTE) € L?(tg, +o0; L*(2) ), (3.0)
aavt“i € L2(ty, +00; L2(Q)), (3.1)

and
u; € H*(Q). (3.2)

To prove this theorem, we need the following lemmas:
Lemma 3 Under the assumptions of theorem 3, there exist constants C' =
C(pgs¥g), such that for any T'> 0 :

lwill oo (0,7, 13 () < € < 0 (3.3)
and
Ou;
H - <0< . (3.4)
Ot llL2@n)

Proof of lemma 3 : Multiplying the equation 2% (“1) —div [Vu;]+0; gf’ =0

by 2 5 (u;), and adding the two equations, we obtaln :

2

1 /
ZE/Q v ( )2da dt+z /|vuz T do =
i=1 T

1
| @) ua(0) + 0o vl do = 5= [ (90l dot = [ (900 do.

® being continuous and (u1, u2) bounded, we then obtain:

Z%/ Guz )2dx dt+z25 /|Vuz T)? dz < Clpg, o) (3.6)
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whence (3.3) and (3.4).1
Proof of theorem 3 : Differentiating equation ‘%ia—(t“i) — div[Vu;] +
fi(u1,uz) = h; we obtain

afi(“)u} =0. (3.7)

bl (wi )l + bl (ug) (uf)? — div (Vug))' + o g

Jj=1

Now multiplying (3.7) by u;, and integrating over ) gives

2 2
L O fi(u
+ EZ/QbQ/(ui)(u’i)%x + Z [ +/ ZZ " ; uhdr = 0.
=1 J

=1 1=17=1

The L estimate and hypothesis ( H9) imply successively :

2
/ Zzaﬁ w; | upde < MZ /Q (u;)2 dx, (3.9)
i=1

1=1j5=1

2
2
vz/ 2a<rt) < MY a0 (3.10)

i=1
and

2

1
—52/ b (u) (uh) da < Z Sl - (3.11)
=1

Q

Since for N < 3, H} () is continuously imbedded in L5(€2), we then obtain
by Young’s inequality that :

|ui’ |L3(Q < cly; |L2(Q) |ug |L3(Q < clu; |L2(Q) +5 ||ul ||H1(Q (3.12)

By (3.9),(3.10),(3.11) and (3.12), (3.7) becomes :
12
2 9
+3 E i 573 ) +er(t) < er(t)s +er(t) < er(t)? +c. (3.13)

On the other hand, using (2.4) we obtain :

Z/ / bi (w;) dadt < c,, for any 7 > to . (3.14)
Q
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Estimates (3.13) and (3.14) and the use of the uniform Gronwall’ lemma
thus gives

r(t) < c(tp), for any Yt > to. (3.15)

Now, by (3.15) and hypothesis (H1) , we get :

g /Q (abg(:»

Then (3.0) is satisfied. Now, as we have :

—Au; = —fi(x,u) - bi(ui)t S Loo(to, +00; L? (Q)),

then by (S) w;(.,t) is in bounded subset of H?(Q). Hence estimate (3.2)
follows.H

2
) de < Mr(t) <c(to) for any t >ty .

For a solution (u1,us) of (S), we define the w — limit set by :
(g, ) = w = (w1, wz) € (HF(Q) X L () N (Hg () x LOO'(Q)) } .
’ I, — +oo  ur(.,tn) — wy in L2(Q), ua(.,t,) — wy in L2(Q)

Corollary 1. Under the assumptions (H1) to (H10), we have w(pg, 1q) # 0
and any (wi,wz) € w(py, ) is a bounded weak solution of the stationary
problem

—Au; + fi(l’,ul,UQ) =0 in®
u; =0 on oN

Proof : From (3.3) we obtain w(gg,v,) # 0. Setting w; = Lim u;(.,t,)
and w = (w1, w2) € w(py,Yy), we get that w = (wy,ws) is a solution of the

Dirichlet problem for elliptic system. The proof is analogous to El Ouardi and
de Thélin [12] and is omitted here.

Corollary 2. Under the assumptions (H1) to (H10), we have
Ac(W25(Q))* it N =3

and )
AcC(W2(Q))” for all r < 0o if N < 2.

Proof: Taking the inner product of (4.7) with u!, we get

2 2 2
d / 2 ’ 4 / 2
dt (7,; ”uZ”H&(Q)) S C(Z; |u7,|H&(Q) =+ 7,; |uz|L2(Q))'
2

HY (@)

<c, Vt>T.

2
By uniform Gronwall’s lemma, we get > ||uf|

i=1

2
Then 3 ||| <e¢Vt>T forallt > 7and a; =6if N = 3 or
=1

LY (Q) —

iz
1<aq;<o0if N <2.

4. Dimension of the attractor 4
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4.1 Linearized problem

Let (¢g,%o) € A; then by theorem3, u(t) = (u1(t),u2(t)) belongs to a
bounded subset of [H? (Q)]2 This fact allows us to linearize the system ( S)
along u(t). Formally, the candidate for the linearized problem is

U=(U,Us) € [L2(0 T; HH ()]
(Sr) & (i(wiUi) = AU; + Z Sy =0

U(0) = (U1(0). U (0 )) Uo
The existence and uniqueness of solution can be deduced from (4.0) below

U; € L>=(0,T; L*(2)) N L*(0,T; Hy (). (4.0)

To deduce (4.0), Multiply the equation in (Sz) by b;(u;)U;, we obtain

2
1d
3% ZW ui)Us |L2(Q )+ Y (Vui, V(O (u)Ui) 120

i=1
2
=3 Z LU, bl (us) Ui) 20 (4.1)
i=1 1 U
By the hypothesis on b;, we have
V (b;(ui)U;) = bi(ui) VU; + b (ui) V. Ui, (4.2)
(VU;, b (ui) Vu;.U )Lz(Q) <c |VU1|L4(Q) |Us |L4(Q) IVU; |L2(Q) ) (4.3)
and

2 8f 2 2 2
Z zUJ’b;(uZ Wi) 2 < MZZ|UjUi|L1(Q) = Z L2<m (44)

i=1 j=1 i=1j=1 i=1

From (4.2) to (4.4), (4.1) becomes

2 2

d 2 2

—t<2|b'<uz>v|mz) > U UREINS DN TS S AU L A
i=1 i=1

i=1 i=1

N =
S

By standard application of Gronwall’s inequality, we get (4.0).

4.2 Differentiability of the Semigroup

We assume that f; € C2(R x R) (Vi = 1,2). Let ug =(pg, %), vo =(@g, Vo),
S(t) be the solution of (S) and S’(t, ug) the solution of (Sy). The results of [6]
imply the following proposition :
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Proposition 3.
Assume (H1) to (H10), then for any (ug,v) € [L>(€2) x HQ(Q)]Q, we have
[S(#)vg — S(t)ug — S’ (t, uo)(vo — uo)] < ¢(t)o(|vg — o]

(L2@)? — (L2())2

We need the lemma 3 for the proof of proposition 3:

Let (u1,u2) and (v1,v2) be two solutions of (S) in A with (u1(0),u2(0)) =
(0, ¥g) and (v1(0),v2(0)) =(¢py, ;). Setting wy = ug—v; and we = ug—v2, we
have

Lemme 3 Assume (H1) to (H10). For all T' > 0, there exists ¢(7) > 0 such
that for all ¢ € 0,77,

2 2
S lwi®) gy < TS i (0) 2 (4.7)
=1 =1
2 2
2 2
03 wi(0) 2 @y < el [wi(0) 22 gy (48)
=1 =1

and

le |L2(0TL2(2)) lez |H1(Q (4.9)

Proof : We have

9ouli) Ay + fiw,u) =0 %) Avy+ filz,v) =0
u(0) = (u1(0),u2(0)) = (¢0,¢0) v(0) = (v1(0),v2(0)) = (p1,91) -
Thus, the difference w; — u; — v; satisfies
by (ui)wi — Aw; = [V (vi) — bj(ug)] v + fi(v) — fi(u). (4.10)

Setting

= fol g_ull(z,u1+9(u27u1),u2)d9,F21 =/, 85 (z, ul,u2+9(u2—u1))d9,

Fio = fol g—iﬁ(ac,ul + 9(U2 — ul),ug)de and Fyy = fO 6—@ x,ul,uQ + 9(U2 —
Ul))d07
(4.10) becomes

b, (us)w!, — Aw; = [b(v;) — b (u;)] v} + ZFijwj. (4.11)
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We multiply (4.11) by ﬁ;l)

thz |wz|L2(Q) + Z Vw;, V / )))LZ(Q) =

= i) —biw) “\ w;
Z(W%,wi)m(ﬂ) + ZZ(Fijwja T)L?(Q) (4.12)
=1 i 13 - — 1 13

And parallel to lemma 16 in [8], it is easy to see that (4.7), (4.8) and (4.9)
hold.

Proof of proposition 3 : It is similar to the proof for the lemma 15 in
[8, p.125] and is omited.

4.3 Dimension Estimates
Consider the linearized problem

Ul =F/(u;(7))U; inQxRT

(SL) U; =0 on 00 x R
Ui(0) = &;
2
o (VT 1 ), ) or.
where Fi(ui(m)Ui = 5y AU = ¥t i ~ wam 2, ou, Ui

This problem can be rewritten as

U’ = F'(u(r))U
L) { U=0
U(0)

§

where U = ( g; ) F'(u(r)) = ( F{(“(;(T)) 0 ) .

Fi(ua (7))
Let Uy, ....... ,Um be m solutions of (L) corresponding to the initial data
£y ,&,, and Q,,(7) be the orthogonal projector in H = L2(£2) x L?(Q2) such

that Q,H C V = HJ(Q) x H{(Q).If {W* = (wf,wh}]"  is an orthonormal
basis of Q,,(7)H; then

T (u(r)oQn(r) = 35 (F wr) W wh = 3 55

k=1

Il MS

(F (ui ()W}, WF) 2 (0
and

(F7 (ui(r
(b’(ul(‘r ;
Since u = (ul,ug) (L>°(0, +00, L>(2)))?, we have b;(u;), b} (u;),

b (wi(r) s
W)y = (D, gy — (et ut

NW,

)LZ(Q) -

wh
)L2<n)‘
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2 5 i )
wy 2
S F ()W W a0y < DBk, ) gy + €3 / ) [ do +
= 2 () 2 J,
2 2
ZZL(%U) wiwy)da. (4.13)
Ou,; I
Qi—1j=1 J
Now, we have
2 o 5 .
k % k
2, ey o = m 2 i g +7

where

2 2
7= 3 [ 190k k19l o3 [y )

[N

2
}: k|2 1
A dx)?2
(/Qi_l‘wz‘ z)

2 2
< 52 [ *C(/QZ k| d) (4.14)
=1 i=1

and

2

g 0i(w) S
/Q Zza—u]wfwf)dx < c(/Q ; ]wﬂ dx). (4.15)

i=1j=1
According to (4.14) and (4.15), relation (4.13) becomes

2 2 2
Z(Fz/(uz(T))Wik, Wik)LQ(Q) < *CZ ||wi€||§{&(g) + 62 ||wai]&(Q) +

i=1 i=1

c(/Q Zl }wﬂQ dz) + czl/Q || }wf}Q dx (4.16)

Which leads to

2 m 2 m
T () 0 Qnr) < ~es 33 [ gy + <33 e g +

i=1k=1 i=1k=1

c(/Q ZZ ‘wﬂQdm) —i—CZZ/Q ] ’wﬂQdJc. (4.17)

i=1k=1 i=1k=1
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Weset p(a) = 35 [wh(o)|* = 3= $% fut (@) and 1 (1) = max(u 0] 0]

0(t) = fgz'y(t)%dx. So, we get

S / i [k [ da < / A(t)p(a)de < o [ / V(t)%dm]% [ / p%dx}

i=1k=1
(4.18)
Therefore by theorem 4.1 in [22], there exists ¢ > 0 such that :
5 u k 2
/ psdx < c’lz |w (x)HHé(Q) : (4.19)
Q k=1
So, we get
2 m 5 c m 9
/ k 2 k
D) D RTAITH R [FTORERE-H Y AT 0] A
i=1k=1"% Q k=1
From (4.18) to (4.19), (4.16) becomes
m 112 5
THE ) o Qntr) < o3 [y [ e [ 20 Fa
and as in [22], we obtain :
Tr(F'(u(r)) 0 Qm (1) < —em™ % + ¢m + 0(t). (4.20)
Setting  gm(t) = sup sup {% fg Tr(F'(S(7)up)) o Qm(T)dT}
uo€A  §E€H, |§]<1
1=1,...., m

and
Gm = Lim sup g (t).

Then, by lemma 15 in [8, p.119], we have [ 6dr < c(n) and u} € L>(n, +o00, L°°(£2)).
Thus, g, (t) < @ —emM R 4 ¢m+¢(n) and ¢y, < —em™ R 4+ m+ ¢ ()

and for all integers j > 0, we get pq + fo.eoneen. +p; <gq < 7Cj1+% +
dj+c(n).
Hence
He F g +u,, <0 forany m<c". (4.21)

This shows that the fractal dimension of the attractor A is finite and arguing
as for theorem V3.3 in [22], we conclude to the following :

Theorem 4. Assume (H1) to (H10) and let m be an integer satisfying
(4.21). Then
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( i ) dimFractale(A) < 2m

(ii) dimg (A) < m.
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