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Abstract. This paper is considered with a scalar delay Nicholson’s blowflies equation
in periodic environment. By taking advantage of some novel differential inequality
techniques and the fluctuation lemma, we set up the sharp condition to characterize
the global asymptotic stability of positive periodic solutions on the addressed equation.
The obtained results improve and supplement some existing ones in recent literature,
and then give a more perfect answer to an open problem proposed by Berezansky et al.
in [Appl. Math. Model. 34(2010), 1405-1417]. In particular, two numerical examples are
provided to verify the reliability and feasibility of the theoretical findings.
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1 Introduction
Classical population dynamics model
X' (1) = =6x(t) + Bx(t —T)e *=T), 58,1 € (0, +00), (1.1)

is known as Nicholson’s blowflies equation [1,8,14]. Here x(t) stands for the population of
blowflies at time t, § represents the average daily mortality of adult blowflies, B describes the
maximum average daily egg laying rate, and T denotes mature time delay. Over the past 40
years, plenty of research results have been obtained on the qualitative behaviour and stability
of (1.1) (see [1,3,4,10,11] and their references). In particular, it has been successively shown
in [3,4,10,11] that the zero equilibrium point of equation (1.1) possesses global asymptotic

stability when g < 1 and its positive equilibrium point has global asymptotic stability under

1< g < ¢2. Meanwhile, it was proved in [15] that the positive equilibrium point of (1.1)
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possesses global attractivity when the delay 7 is small and 1 < % Recently, references [2] and
[19] substantiate that the positive equilibrium point of (1.1) is globally asymptotically stable
when the condition

1< § <& (1.2)

holds. It is worth pointing out that Yang and So [18] demonstrate the instability of the positive
equilibrium and the existence of a Hopf bifurcation when g > ¢? and the delay 7 is large. This
implies that (1.2) is the sharp stability condition on the positive equilibrium points of the
autonomous delay Nicholson’s blowflies model (1.1).

In general, the external environment of actual organisms often vary periodically with
seasonal changes and climate. Therefore, (1.1) can be normally generalized to the following
non-autonomous equation:

X' (1) = =8(H)x(t) + B(t)x(t — T(t))e T, (1.3)

where t > to, 6(t) > 0, B(t) > 0 and 7(t) > 0 are continuous w-periodic functions (w > 0). As
we all know, the periodic population dynamics model often generates a globally stable positive
periodic solution. Based on this, the authors of [1] proposed an open problem: Establish
global asymptotic stability findings on positive periodic solutions of non-autonomous delay
Nicholson’s blowflies equation. Subsequently, the global attractivity of the positive periodic
solutions of (1.3) is established in [12] when the following condition

x =~ 0.7215355, 1= = 12 and ¢ < min & <  max & < é? (1.4)
e’ e telto, to+w] O(t) telto, to+w] O(t)
is obeyed, which gives an answer for the above open problem. Recently, [6] studied the
periodicity of the delay Nicholson’s blowflies system accompanying patch structure, where
the main results involving the periodic scalar Nicholson’s blowflies case can be described as
follows.

Theorem 1.1. Suppose m is a nonnegative integer, and

B(t) B(t)

t) = mw, d 1< i O O o
T(t) = mw, an te[tror,li&w] o(t) — fe[frg?;(*“’] a(t) ’ .

then the positive periodic solution of the scalar Nicholson's blowflies equation (1.3) is globally attractive.

As in [12], the author of [6] have neither analysed the local stability of positive periodic
solutions, nor have they given opinions about the sharp conditions which ensure the global
asymptotic stability of positive periodic solutions of (1.3). Therefore, a notable problem nat-
urally arises: What is the sharp condition guaranteeing the globally asymptotic stability of
the positive periodic solutions of (1.3)? Because (1.2) is the sharp stability condition on the
positive equilibrium points of the autonomous delay Nicholson’s blowflies model (1.1), it is
reasonable to assert:

(1 B _

1< min s < Y 1.6
telto, tore] O(E) — telto, foraw] O(F) (1.6)

is the sharp condition ensuring the globally asymptotic stability on the periodic solutions of
(1.3). To prove this assertion, the ultimate intention of this work is to develop a new strategy to
gain the existence and globally asymptotic stability of positive periodic solutions of equation
(1.3) under the assumption (1.6) without any other conditions. Meanwhile, we will establish
some completely new results on periodic stability of (1.3) without assuming T = mw, and
then a more complete answer is given to the open problem on the global periodic stability
conditions of Nicholson’s blowflies equation in [1].
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2 Some lemmas

For convenience, denote

T= max T(t), B =C([-1,0], R), By ={¢ € Blp(0) >0,V0 € [—7, 0]},

te€lty, tot+w]
and let x;(to, ¢)(x(t; to, ¢)) be the solution of (1.3) satisfying the admissible initial conditions:
Xty = @, ¢ € By with ¢(0) > 0. (2.1)
According to the conclusions of Example 2.8 in [7], we have
Lemma 2.1. If 1 < minyey 440 %t)), then x(t;ty, @) exists and possesses uniqueness on [ty, +00).

Moreover, x(t; to, @) has positiveness and persistence.

Lemma 2.2 ([5, Lemma 2.3]). Assume a € (0,2], then

‘be’b —ae™"*

<e *lb—al forall b>0andb # a.

Lemma 2.3 ([6, Corollary 3.1]). If 1 < minc(y,, 1)+ % , then equation (1.3) has a positive w-

periodic solution x*(t).

Lemma 2.4. Suppose that (1.6) holds, and equation (1.3) has a positive w-periodic solution x*(t)
satisfying maxe|y, 1o+e0] X* () < 2, then x*(t) is globally asymptotically stable.

Proof. Obviously,

0<k:= min x"(f)< max x*(t) <2 (2.2)
telto, to+w] te(to, to+w]

For all t € [tg — T, +00), let us introduce the notations

x(t) = x(t;to,¢) and w(t) =

Then, for all t > £,

x* ()
F [ (¢ = T(O) @( — 7)) + 1o (OO
—x(t— T(E))e ¥ (7T } (2.3)
Now, we prove the local stability of x*(¢).
For arbitrary ¢ > 0, let H = £¢ and ||¢ — x*|| < H with || - || denoting the supremum

norm, we shall reveal |x(t) — x*(t)| < ¢ for all t € [tp — T, +00). Noting that

p(t) —x*(t) H _H . _
— - f _
lw(t)] ‘ (0 P or arbitrary t € [to — T, to],
we assert that
lw(t)| < for arbitrary t > t. (2.4)

k*
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Otherwise, there exists S; > ty such that either

w(S1) = kﬁ* and |w(t)| < kﬁ* for arbitrary t € [tp — T, S1) (2.5)
or
H H . -
w(S1) = e and |w(t)| < o for arbitrary t € [tp — T, S1) (2.6)
holds.

Assuming that (2.5) holds, from Lemma 2.2, we acquire that for w(S; — 7(51)) # 0,
0< w’(51)

[i((?) { _ X*(Sl N T(Sl))e—x*(Sl—T(Sl))w(Sl) + |x*(51 — T(Sl))(ZU(S1 — T(Sl)) + 1)
x*(S1)

IN

w e~ X (51=7(51))(w(S1=7(S1))+1) _ x*(S1 _ T(Sl))e_X*(Sl_T(Sl)”}

< B(51) { — Xt (S — T(Sl))e—x*(sl—T(Sl))E

e TS =T(51)) [w(S1 = 7(51))] e—x*<Sl—T(sl)>}

= ﬁk((ssll))x*(sl . T(Sl))efx*(srr(sl)) _kﬂ* + |w(Sy — T<51))|}

<0,
which is an obvious contradiction. Similarly, one can derive a contradiction from the situation

(2.6). Moreover, when w(S; — 7(S1)) = 0, one can also derive the above contradiction. Thus,
the assertion (2.4) is true and

() — ()] < % (1) 1

o <e forall t € [ty, +0o0),

which follows that x*(t) is locally stable.
Next, we demonstrate the global attractivity of x*(t). Let

p=limsupw(t) and A =liminfw(t).

4o t—+o00

Clearly, the global attractivity of x*(t) is equivalent to show max{|y|,|A|} = 0. In or-

der to obtain a contradiction, we just assume max {|u|,|A|} = pu > 0 (the situation of
max {|p|,|A|} = —A > 0 is similar). According to the fluctuation lemma [16, Lemma A.1.],
one can find a sequence {s;};-"] obeying

lim s; = 400, lim w(s;) = u, d 1 ! =0.

k— o0 k + k— 400 ( k> # an k—1>r-ir-100w (Sk)

Without any loss of generality, we may also assume that limy_, o B(sk), limg_, o d(Sk),
limy 4o w(sk — T(Sk)), img_y 400 x*(5x — T(sk)) and limy_, o x*(s¢) exist. It follows from (2.3)
and Lemma 2.2 that for limy_, o w(sx — T(sx)) # 0,

= 1 /
0 k—1>I—iI-100w <Sk)

_ im0 B(sk) {
limy_s ;oo X*(Sk)

+ [ lim x*(sp — T(s5¢))(14+ Lim w(sk_T(Sk>))eflimk~>+ooX*(ska(sk))(l‘i’hmkﬂJroow(ska(Sk)))
k—+o00 k—r+oc0

_ —limk‘)+w X*(Sk—’((sk)) 1 * . 1
e X (S
Jm 1" (s — T(se)) Lim w(sy)

RRT * _ —limyg oo X* (sg—7(sk))
Jm (s — T(sk) e : }}
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e e ¥ (k=T(0) Iim x* (s — T(s¢)) Lim w(sg)
k—+o00 k—+o0

liInk—>—|—oo ﬁ(sk>
= limy_, oo X* (5¢) {

—limy oo X*(sp—T(5¢)) li * - li .
+e Jim ¥ (s = t(s) im[w(se - ()] |

<0,

which leads to a contradiction. Especially, if limy_, ;o w(sx — T(sx)) = 0, the above contradic-
tion is obvious. This yields max {|u|, |A|} = 0, and the proof of Lemma 2.4 is finished. O

3 Globally asymptotic stability of positive periodic solutions

Theorem 3.1. Let (1.6) be satisfied, and m be a nonnegative integer obeying T(t) = mw. Then,
equation (1.3) possesses a globally asymptotically stable positive periodic solution.

Proof. On account of Lemma 2.3, one can discover that equation (1.3) possesses a positive w-
periodic solution x*(t). In view of Lemma 2.4, to finish the proof of Theorem 3.1, we only
need to reveal that max;c(, 1)4.] X*(t) < 2. For this purpose, let

€(0,1), ce =22 and np=sup{p|B(t)e >6(t), te[0,w], p>0}. (31
We claim that
k™ :=min{o,n} < x*(t) <2 for arbitrary t € R.
In fact, let t1, £ € [w,2w] such that

* _ * * . *
x*(t) = maxx (1) and x*(f) = minx (1),

then
0= —3(t)x" () +B(t)x (t)e VM) (i=1,2),

Hence, from (1.6) and (3.1), we acquire

e () = B(t) <e¢* with x*() <2, and

(S(tZ) -F (tz) eix*(h) with x*(tz) >n > K,
which finishes the proof. ]

Remark 3.2. Evidently, Theorem 1.1 as a main conclusion in [6] is a direct corollary of Theo-
rem 3.1 in this present paper, and the proof of our conclusion is only established under sharp
condition (1.6). Meanwhile, we present a detailed proof of the local stability of positive peri-
odic solutions, which is not involved in the existing literature [6,12]. Therefore, the conclusion
of this paper improves and generalizes the corresponding ones of the above literature, which
provides a more perfect answer to the open problem in [1] which has been mentioned in the
Introduction section of this article.

Theorem 3.3. Assume B = max,cy,, 11w B(t) and

B(t) Bt

. B(t) 2
1 A U < e“°. 33
<@$ﬁﬂaw—fﬁﬁwao X S — TR = (33)

Then, equation (1.3) possesses a globally asymptotically stable positive periodic solution.

\/
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Proof. As is seen from Lemma 2.3 and Lemma 2.4, we only need to verify that the positive
w-periodic solution x*(¢) of (1.3) satisfies max;c(s, 4+ **(t) < 2. In order to do this, denote
x(t) = x(t; to, @) for arbitrary t € [tp — T, +o0), and

L = limsup x(t), I = liminfx(t). (34)

f—s 400 t—+00

Apparently, Lemma 2.1 yields [ > 0. Now, we verify L < 2. Again from the fluctuation lemma
[16, Lemma A.1.], one can pick {t;};] such that

lim t = +oo, lim x'(t) =0, lim x(t) = L. (3.5)

k=40 k—+o0 k—+c0

Also, we suppose that limy_, o I (), limy_, oo B(tx) and limg_, o T(#;) exist.
For any & > 0, it is easy to find N > 0 satisfying that x(f) < L + ¢ for arbitrary ¢t > N, and
hence for arbitrary t € (N + T, +o0),
—S(H)(L+e) < =8()x(t) + B()x(t — T(£))e T < B(£) (L +¢).

Furthermore,
X'(t)] < B(t)(L+e), te(N+T, +oo),

X (1) = —=0(t)x(te) + B(ke)x(tr)e M) + Bt [x (b — T(ty))e T — x()e=*(10)]

< =0t )x(t) + Blt)x(r)e )+ B8] (1= 8)e*x(t) — x(t — (1)
< —0(t)x(t) + Blr)x()e " ) [ I o)l
< —o(t)x(t) + B(t)x(t)e ™ + BTp(T(H)(L+e),  h>N+T,  (36)

where 6 is the mean value in the Differential Mean Value Theorem. From (3.5), taking the
limits on both sides of (3.6) leads to

li t
BL k—EPOOﬁ( k)
kl_i)ffoofs(fk) - Jm B B(t) (k) =
Let ¢ — 0, from (3.3), we derive
el < lim Blt) <  max B(t) and L <2.

T koo 0(t) — BTB(B)T(EK) T telty, totw] O(t) — T(H)B(E)BT

Thus, the positive w-periodic solution x*(t) of system (1.3) obeys max;c(y,, t,+w) X*(£) < 2. The
verification of Theorem 3.3 is completed. O

Remark 3.4. Theorem 3.3 is established without the assumption of 7(f) = mw, and it is easy to
verify the feasibility of the conditions (3.3) when the delay is small. Meanwhile, the condition
(3.3) is equivalent to the sharp condition (1.6) when the delay vanishes to zero.
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4 Numerical simulations
Regard the following scalar delay Nicholson’s blowflies equation:

X' () = —(1+ | sint])x(t) + (1 + | sint])(1.01 + (€2 — 1.01)| cos ¢|)x(t — 2m)e *(=27), (4.1)
and

t——1r|cost|)

x'(t) = —(1+|sint])x(t) + (1 +[sin¢])(1.05+ (¢* — 1.1)| cos #|)x (¢ — z3| cost|)efx( T ,

4.2)
where t > tg = 0. It is easy to verify that (4.1) and (4.2) satisfy
_ . B) (t) _ »
t) =2rm, 1.01 = < — =5, 4.3
Tlt) = 2m telto torn] O(F) — telio toin] 6() *3)
and
1.05= min & < max @ < max B(t) ~ > —0.02, (4.4)

telto, to+m] 5(8) — T(£)B(1)BF

respectively. Therefore, from Theorems 3.1 and 3.3, we know that the above two scalar Nichol-
son’s blowflies models possess global asymptotic stable positive 7t-periodic solutions. The
numerical simulation results of the two examples are shown in Figures 4.1-4.2, and the trajec-
tories of the solutions strongly confirm the correctness and validity of the results in this paper.

telty, to+m] 0(F) ~ tefto, to+n] O(F)

3.5

2.5 *

05 b

0 5 10 15 20 25 30 35 40 45 50

Figure 4.1: Numerical state trajectories of model (4.1) involving the initial val-
ues: 1,2, 7, respectively.

Remark 4.1. Nicholson’s blowflies equation (4.1) does not satisfy the condition (1.4), equation
(4.2) does not obey the conditions (1.4) and (1.5), which have been adopted as fundamental
assumptions for the considered periodicity of (1.3) in [6,12]. Consequently, the conclusions
in [6,12] can not be directly employed to illustrate the globally asymptotic stability of the
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t

Figure 4.2: Numerical state trajectories of model (4.2) involving the initial val-
ues: 2,5,7, respectively.

positive periodic solutions for (4.1) and (4.2), which indicates that the results of this paper
improve and extend the corresponding ones of [6,9,12,13,17] and the references cited therein.
It is noteworthy that, the method presented in this article can be used to explore the sharp
condition of the existence and global asymptotic stability of positive periodic solutions to the
scalar Nicholson’s blowflies models involving multiple time-varying delays in [12] and the
delay Nicholson’s blowflies systems accompanying patch structure in [6].
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