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1. Introduction

In 1969, Nadler [16] proved a fixed point theorem for the set-valued contractions, which is of fun-
damental importance in nonlinear analysis. Inspired from the fixed point result of Nadler [16], the
fixed point theory of set-valued contraction was further developed in different directions by many
authors, in particular, by Reich [20, 21], Mizoguchi and Takahashi [15], Ciric [3], Kaneko [9], Lim
[13], Lami Dozo [14], Feng and Liu [5], Klim and Wardowski [10], Suzuki [22], Pathak and Shahzad
[17, 18] and many others. For details, see [19]. An interesting application of a consequence of
Nadler’s fixed point theorem was given in Cernea [2]. For other applications of the same result see,
for example, [4] [6], [7], [8], [12] and [19].

2. Preliminaries and Definitions

Let (X, d) be a metric space. Let CB(X) and C(X) denote the collection of all nonempty closed
and bounded subsets of X and the collection of all compact subsets of X, respectively.

For A,B ∈ CB(X), let

H(A,B) = max
{

ρ(A,B), ρ(B,A)
}

,
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H+(A,B) =
1

2

{

ρ(A,B) + ρ(B,A)
}

,

where ρ(A,B) = supx∈A d(x,B) and d(x,B) = infy∈B d(x, y). It is well known that H is a metric
on CB(X). Such a map H is called Pompeiu-Hausdorff metric induced by d.

A mapping T : X → CB(X) is said to be a

• multi-valued contraction mapping if there exists a fixed real number k, 0 < k < 1 such that

H(Tx, Ty) ≤ k d(x, y), (2.1)

for all x, y ∈ X.

• multi-valued weak contractive mapping if there exists a fixed real number k, 0 < k < 1 such
that

H(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/2}, (2.2)

for all x, y ∈ X.

• multi-valued quasi-contraction mapping if there exists a fixed real number k, 0 < k < 1 such
that

H(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (2.3)

for all x, y ∈ X.

Proposition 2.1([18]). H+ is a metric on CB(X).

Notice that the two metrics H and H+ are equivalent [11] since

1

2
H(A,B) ≤ H+(A,B) ≤ H(A,B).

In the light of this equivalence and referring to Kuratowski [11], we conclude that (CB(X),H+)
is complete whenever (X, d) is complete. Indeed, it is a simple consequence of the completeness of
the Hausdorff metric H. Moreover, C(X) is a closed subspace of (CB(X),H+).

Notice also that H+ : CB(X) × CB(X) → R is a continuous function. To see this, we observe that
the inequality

H+(A,B) ≤ H+(A,C) +H+(C,B)

holds for any A,B,C ∈ CB(X). Now pick any (A0, B0) ∈ CB(X)×CB(X). Then for a given ǫ > 0,
we can choose a positive number δ = ǫ

2 such that

|H+(A,B) −H+(A0, B0)| ≤ H+(A,A0) +H+(B0, B) < δ + δ = 2δ = ǫ

whenever H+(A,A0) < δ,H+(B0, B) < δ. This shows that H+ is continuous at (A0, B0).

In [16], S. B. Nadler proved the following result, which he announced earlier.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → CB(X) a multi-valued
contraction mapping. Then T has a fixed point.

In this paper, we intend to generalize this result by weakening the multi-valued contraction to an
H+-type multi-valued weak contractive mapping. Our main result is summarized in Section 3. In
Section 4, we consider a nonconvex Hammerstein type integral inclusion and prove an existence
theorem by using an H+-type multi-valued weak contractive mapping.
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3. Main results

We begin our discussion with the following definition.

Definition 3.1. Let (X, d) be a metric space. A multi-valued mapping T : X → CB(X) is called
H+-contraction if
(1) there exists a fixed real number k, 0 < k < 1 such that

H+(Tx, Ty) ≤ kd(x, y) for every x, y ∈ X,

(2) for every x in X, y in T (x) and ǫ > 0, there exists z in T (y) such that

d(y, z) ≤ H+(T (y), T (x)) + ǫ.

In [18], Pathak and Shahzad proved the following result.

Theorem 3.2. Every H+-type multi-valued contraction mapping T : X → CB(X) with Lips-
chitz constant 0 < k < 1 has a fixed point.

We now introduce the following definition.

Definition 3.3. Let (X, d) be a metric space. A mapping T : X → CB(X) is called an H+-
type multi-valued weak contractive mapping if the condition (2) holds and there exists a fixed real
number k, 0 < k < 1 such that

H+(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/2}, (3.1)

for all x, y in X.

Now we state and prove our main result.

Theorem 3.4. Let (X, d) be a complete metric space and T : X → CB(X) an H+-type multi-
valued weak k-contractive mapping with 0 < k < 1. Then T has a fixed point.

Proof. Notice first that for each A,B ∈ CB(X), a ∈ A and α > 0 with H+(A,B) < α, there exists
b ∈ B such that max{d(a, b), d(a, Ta), d(b, T b), 1

2 [d(a, T b) + d(b, Ta)]} < α. Now, let L > 0 be such
that k < L < 1. Then

H+(Tx, Ty) < L max{d(x, y), d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/2}, (3.2)

for any x, y ∈ X,x 6= y.

Now we choose a sequence {xn} recursively in X in the following way. Let x0 ∈ X be arbitrary.
Fix an element x1 in Tx0. From (2) it follows that we can choose x2 ∈ Tx1 such that

d(x1, x2) ≤ H+(Tx0, Tx1) + ǫ (3.3)

In general, if xn be chosen, then we choose xn+1 ∈ Txn such that

d(xn, xn+1) ≤ H+(Txn−1, Txn) + ǫ. (3.4)
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Set ǫ = ( 1√
L
− 1)H+(Txn−1, Txn). Then from (3.4), it follows that

d(xn, xn+1) ≤ H+(Txn−1, Txn) + (
1√
L

− 1)H+(Txn−1, Txn) =
1√
L
H+(Txn−1, Txn).

Thus, we have √
Ld(xn, xn+1) ≤ H+(Txn−1, Txn) (3.5)

for each n ∈ N.
Thus, from (3.2) we have

√
Ld(xn, xn+1) < L max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

[d(xn−1, Txn) + d(xn, Txn−1)]/2}
≤ (

√
L)2 max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1)/2}

≤ (
√
L)2 max{d(xn, xn−1), d(xn, xn+1), [d(xn−1, xn) + d(xn, xn+1)]/2}

= (
√
L)2 max{d(xn, xn−1), d(xn, xn+1)}.

It follows that

d(xn, xn+1) <
√
L max{d(xn, xn−1), d(xn, xn+1)} (3.6)

for each n ∈ N. Note that if xn = xn+1 for some n ∈ N, then xn = xn+1 ∈ Txn, that is, xn is
a fixed point of T and we are finished. So, we may assume that d(xn+1, xn) > 0 for each n ∈ N.
Suppose that d(xn−1, xn) < d(xn, xn+1) for some n ∈ N, then inequality (3.6) gives

d(xn, xn+1) <
√
Ld(xn, xn+1),

a contradiction. So we must have d(xn−1, xn) ≥ d(xn, xn+1) for each n ∈ N. Hence, for all n ∈ N,
(3.6) yields

d(xn, xn+1) < cd(xn−1, xn), (3.7)

where c =
√
L. Repeating the same argument n-times as in (3.7), we obtain

d(xn, xn+1) < cn d(x0, x1). (3.8)

It is obvious that {xn} is bounded. Indeed, for any n ∈ N, we have

d(x0, xn) ≤
n−1
∑

i=0

d(xi, xi+1) < (1 + c+ c2 + · · · cn)d(x0, x1)

< (1 + c+ c2 + · · · )d(x0, x1) =
1

1 − c
d(x0, x1) <∞.

Further, by virtue of (3.8), one may observe that {xn} is a Cauchy sequence. Since X is complete,
there exists u ∈ X such that limn→∞ xn = u. Assume that u 6∈ Tu, that is, d(u, Tu) > 0. Now
using (3.2) we have

1

2

{

ρ(Txn, Tu) + ρ(Tu, Txn)
}

= H+(Txn, Tu)

< L max{d(xn, u), d(xn, Txn), d(u, Tu), [d(xn, Tu) + d(u, Txn)]/2}
≤ L max{d(xn, u), d(xn, xn+1), d(u, Tu), [d(xn, Tu) + d(u, xn+1)]/2},
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it follows that
1

2
lim inf
n→∞

{

ρ(Txn, Tu) + ρ(Tu, Txn)
}

≤ Ld(u, Tu).

Since limn→∞ d(xn+1, u) = 0 exists, and

d(u, Tu) =
1

2
[d(u, Tu) + d(Tu, u)] ≤ 1

2
[ρ(Txn, Tu) + ρ(Tu, Txn)] + d(xn+1, u),

it follows that

d(u, Tu) ≤ 1

2
lim inf
n→∞

[ρ(Txn, Tu) + ρ(Tu, Txn)] + lim inf
n→∞

d(xn+1, u)

≤ Ld(u, Tu) + lim
n→∞

d(xn+1, u) = Ld(u, Tu) < d(u, Tu),

a contradiction. This implies that d(u, Tu) = 0, and, since Tu is closed, it must be the case that
u ∈ Tu.

Notice that every multi-valued contraction mapping with respect to Pompeiu-Hausdorff metric H
is an H+-type multi-valued weak contractive mapping but the converse implication need not be
true. To see this, we have the following example:

Example 3.5. Let X = [−2, 2] and d : X ×X → R be a standard metric. Let T : X → CB(X)
be defined by Tx = {x4}, if x ∈ [−1, 2] and Tx = {2}, otherwise. It is clear that if x, y ∈ [−1, 2] or
x, y ∈ [−2,−1), then

H+(Tx, Ty) ≤ 1

4
d(x, y).

If x ∈ [−1, 2] and y ∈ [−2,−1), then we have

H+(Tx, Ty) =
1

2
[|2 − x

4
| + |2 − x

4
|] = |2 − x

4
| ≤ 2 +

1

4
=

3

4
· 3 ≤ 3

4
· max{d(y, Ty), d(x, Tx)}.

It follows that

H+(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/2}

for all x, y ∈ X and k ∈ [34 , 1). To check the condition (2), we consider the following cases:
Case 1. If x ∈ [−2,−1), then for any y ∈ Tx = {2}, there exists z ∈ Ty = {1

2} such that for any
ǫ > 0

d(y, z) =
3

2
≤ 3

2
+ ǫ = H+(Ty, Tx) + ǫ.

Case 2. If x ∈ [−1, 2], then for any y ∈ Tx = {x4}, there exists z ∈ Ty = { x
16} such that for any

ǫ > 0

d(y, z) =
3|x|
16

≤ 3|x|
16

+ ǫ = H+(Ty, Tx) + ǫ.

Thus all the conditions of Theorem 3.4 are satisfied. Moreover, 0 ∈ T0 = {0} is a fixed point of
T .
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Notice that the map T does not satisfy the assumptions of Theorem 2.2 and Theorem 3.2. Indeed,
for x = −1 and y → −1 from the left we have

H(T (−1), T (y)) = H+(T (−1), T (y)) = 2 +
1

4
> k d(−1, y),

for all k ∈ (0, 1).

We also notice that since

[d(x, Ty) + d(y, Tx)]/2 ≤ max{d(x, Ty), d(y, Tx}

for all x, y ∈ X, it follows that every weak contractive mapping is quasi-contraction.

Using the technique of the proof of Theorem 3.4, one can easily prove the following result.

Theorem 3.6. Let (X, d) be a complete metric space. Let T : X → CB(X) be a H+-type
k-multi-valued quasi-contraction mapping with 0 < k < 1

2 . Then, T has a fixed point.

Pathak and Shahzad [18] introduced the class of H+-type nonexpansive mappings

Definition 3.7. Let (X, ‖ · ‖) be a Banach space. A multi-valued map T : X → CB(X) is called
H+-nonexpansive if

(1′) H+(Tx, Ty) ≤ ‖x− y‖ for every x, y ∈ X,

(2′) for every x in X, y in T (x) and ǫ > 0, there exists z in T (y) such that

‖y − z‖ ≤ H+(T (y), T (x)) + ǫ.

Applying the main result of this section, we obtain the following result which plays a role in the
next section.

Proposition 3.8.([18]). Let (X, d) be a complete metric space. Suppose that Ti : X → CB(X), i =
1, 2, are two H+-type multi-valued contraction mappings with Lipschitz constant L < 1. Then if
Fix(T1) and Fix(T2) denote the respective fixed point sets of T1 and T2,

H+(Fix(T1), F ix(T2)) ≤
1

1 −
√
L

sup
x∈X

H+(T1x, T2y).

4. Existence Theorem for Nonconvex Hammerstein Type Integral

Inclusions

Let 0 < T < ∞, I := [0, T ] and L(I) denote the σ-algebra of all Lebesgue measurable subsets of
I. Let E be a real separable Banach space with the norm ‖ · ‖. Let P(E) denote the family of all
nonempty subsets of E and B(E) the family of all Borel subsets of E.

In what follows, as usual, we denote by C(I,E) the Banach space of all continuous functions
x(·) : I → E endowed with the norm ‖x(·)‖C = supt∈I ‖x(t)‖. Consider the following integral
equation

x(t) = λ(t) +

∫ T

0
k(t, s) g(t, s, u(s)) ds on [0, T ]. (4.1)
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Here λ, k and g are given functions, where λ(·) : I → E is a function with Banach space value,
k : I × I → R+=[0,∞) is a positive real single-valued function, while g : I × I ×E → E is a map.
Let p ∈ [1,∞), q ∈ [1,∞), and let r ∈ [1,∞) be the conjugate exponent of q, that is 1/q+ 1/r = 1.

Let ‖ · ‖p denote the p-norm of the space Lp(I,E) and is defined by ‖u‖p = (
∫ T
0 ‖u(s)‖pds)1/p for

all u ∈ Lp(I,E). Consider the Nemitsky operator associated to g, p, q and G : Lp(I,E) → Lq(I,E)
given by

G(u) = g(t, s, u(s)) a.e. on I.

Consider the linear integral operator of kernel k, S : Lq(I,E) → Lp(I,E) given by

S(u) = λ(t) +

∫ T

0
k(t, s)u(s)ds a.e. on I.

Thus the Hammerstein type integral equation (4.1) is transformed into the form

x = SG(u), u ∈ Lp(I,E) a.e. on I (4.1′)

u(t) ∈ F (t, V (x)(t)) a.e. (I := [0, T ]), (4.2)

where V : C(I,E) → C(I,E) is a given mapping. In the sequel, we also use the following: For
any x ∈ E, λ ∈ C(I,E), σ ∈ Lp(I,E), we define the set-valued maps Mλ,σ(t) := F (t, V (xσ,λ)(t)),
t ∈ I, Tλ(σ) := {ψ(·) ∈ Lp(I,E) : ψ(t) ∈Mλ,σ(t) a.e. (I)}.

In order to study problem (4.1)-(4.2) we introduce the following assumption.

Hypothesis 4.1. Let F (·, ·) : I × E → P(E) be a set-valued map with nonempty closed values
satisfying:

(H1) The function k : I × I → R+ satisfies that k(t, ·) ∈ Lr(I), and t→ ‖k(t, ·)‖r ∈ Lp(I).
(H2) The set-valued map F (·, ·) is L(I) ⊗B(E) measurable.
(H3) There exists L(·) ∈ L1(I,R+) such that, for almost all t ∈ I, F (t, ·) is L(t)-Lipschitz
in the sense that

H+(F (t, x), F (t, y)) ≤ L(t) ‖x− y‖ (C1)

for all x, y in E, and for any x, y ∈ X, w ∈ F (t, x) and any ǫ > 0, there exists z ∈ F (t, y) such that

‖w − z‖p ≤ H+(F (t, x), F (t, y)) + ǫ (C2)

and Tλ(·) satisfies the condition: For any σ ∈ Lp(I,E), σ1 ∈ Tλ(σ) and any given ǫ > 0, there
exists σ2 ∈ Tλ(σ1) such that

‖σ1 − σ2‖p ≤ H+(Tλ(σ), Tλ(σ1)) + ǫ. (C3)

(H4) The mappings k : I × I → R+, g : I × I × E → E are continuous, V : C(I,E) → C(I,E)
and there exist constants M1,M2,M3 > 0 such that

‖g(t, s, u1) − g(t, s, u2)‖ ≤M1‖u1 − u2‖p, ∀u1, u2 ∈ E,

‖V (x1)(t) − V (x2)(t)‖ ≤M2‖x1(t) − x2(t)‖, ∀t ∈ I,∀x1, x2 ∈ C(I,E),

and |k(t, s)| ≤M3 ∀ t, s ∈ I.
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It is worth mentioning that the system (4.1)-(4.2) includes a large variety of differential inclusions
and control systems.

Assume that U is an open bounded subset of Rn (or Y , a subset of E homeomorphic to Rn) and
UT = (0, T ]×U for some fixed T > 0. We say that the partial differential operator ∂

∂t+L is parabolic
if there exists a constant θ > 0 such that

∑n
i,j=1 a

ij(t, x)ξiξj ≥ θ|ξ|2 for all (t, x) ∈ UT , ξ ∈ Rn.
The letter L denotes for each time t a second order partial differential operator, having either
the divergence form Lu = −∑n

i,j=1(a
ij(t, x)uxi

)xj
+

∑n
i=1 b

i(t, x)uxi
+ c(t, x)u or else the non-

divergence form Lu = −∑n
i,j=1 a

ij(t, x)uxixj
+

∑n
i=1 b

i(t, x)uxi
+ c(t, x)u, for given coefficients

aij , bi, c (i, j = 1, 2, . . . , n).

A family{G(t) : t ∈ R+} of bounded linear operators from X into E is a C0-semigroup (also called
linear semigroup of class (C0)) on X if
(i) G(0) = the identity operator, and G(t+ s) = G(t)G(s) ∀ t, s ≥ 0;
(ii) G(·) is strongly continuous in t ∈ R+;
(iii) ‖G(t)‖ ≤Meωt for some M > 0, real ω and t ∈ R+.

Example 4.2. Set k(t, τ)g(t, τ, u) = G(t − τ)u,Φ(x) = x, λ(t) = G(t)x0, where {G(t)}t≥0 is a
C0-semigroup with an infinitesimal generator A. Then a solution of system (4.1)-(4.2) represents a
mild solution of

x′(t) ∈ Ax(t) + F (t, x(t)), x(0) = x0. (4.3)

In particular, this problem includes control systems governed by parabolic partial differential equa-
tions as a special case. When A = 0, the relation (4.3) reduces to

x′(t) ∈ F (t, x(t)), x(0) = x0. (5.4)

Denote

Φ(u)(t) =

∫ T

0
k(t, τ)g(t, τ, u(τ)) dτ, t ∈ I. (4.5)

Then the integral inclusion system (4.1)-(4.2) reduces to the form

x(t) = λ(t) + Φ(u)(t) a.e. (I), (S)

which may be written in more “compact” form as

u(t) ∈ F (t, V (λ+ Φ(u))(t)) a.e. (I).

Now we recall the following:

Definition 4.3. A pair of functions (x, u) is called a solution pair of integral inclusion system
(S), if x(·) ∈ C(I,E), u(·) ∈ Lp(I,E) and satisfy relation (S).

For our further discussion, we denote by S(λ) the solution set of (4.1) − (4.2).

For given α ∈ R we denote by Lp(I,E) the Banach space of all Bochner integrable functions
u(·) : I → E endowed with the norm

‖u(·)‖p =
(

∫ T

0
e−αM1M2M3m(t)‖u(t)‖p dt

)
1

p
,
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where m(t) =
∫ t
0 L(s) ds, t ∈ I. For our further discussion, we denote L = m(T ).

Theorem 4.4. Let Hypothesis 4.1 be satisfied, let λ(·), µ(·) ∈ C(I,E) and let v(·) ∈ Lp(I,E) be
such that

d(v(t), F (t, V (y)(t))) ≤ p(t) a.e. (I),

where p(·) ∈ Lp(I,R+) and y(t) = µ(t) + Φ(v)(t), ∀t ∈ I.
Then for every α > 1, there exists x(·) ∈ S(λ) such that for every t ∈ I

‖x(t) − y(t)‖ ≤ ‖λ− µ‖C +M1M3e
αM1M2M3L

[ 1

α
1

2p (α
1

2p − 1)M
1

p

1 M
1

p

3

‖λ− µ‖C

+
α

1

2p

α
1

2p − 1

(

∫ T

0
e−αM1M2M3m(t)p(t)dt

)
1

p
]p
.

Proof. For λ ∈ C(I,E) and u ∈ Lp(I,E), define

xu,λ(t) = λ(t) +

∫ T

0
k(t, s) g(t, s, u(s)) ds, t ∈ I.

Let us consider that λ ∈ C(I,E), σ ∈ Lp(I,E) and define the set-valued maps

Mλ,σ(t) := F (t, V (xσ,λ)(t)), t ∈ I, (4.6)

Tλ(σ) := {ψ(·) ∈ Lp(I,E) : ψ(t) ∈Mλ,σ(t) a.e. (I)}. (4.7)

Further, in view of condition (C3) of Hypothesis 4.1(H3), Tλ(·) satisfies the condition: For any
σ ∈ Lp(I,E), σ1 ∈ Tλ(σ) and any given ǫ > 0 there exists σ2 ∈ Tλ(σ1) such that

‖σ1 − σ2‖p ≤ H+(Tλ(σ), Tλ(σ1)) + ǫ. (4.8)

Now we claim that Tλ(σ) is nonempty, bounded and closed for every σ ∈ Lp(I,E).

It is well known that the set-valued map Mλ,σ(·) is measurable. For example the map t→Mλ,σ(t)
can be approximated by step functions and so we can apply Theorem III. 40 in [1]. As the values
of F are closed, with the measurable selection theorem we infer that Mλ,σ(·) is nonempty.

Further, we note that the set Tλ(σ) is bounded and closed. Indeed, if ψn ∈ Tλ(·) and ‖ψn−ψ‖p → 0,
then there exists a subsequence ψnk

such that ψnk
(t) → ψ(t) for a.e. t ∈ I and we find that

ψ ∈ Tλ(σ).

Let σ1, σ2 ∈ Lp(I,E) be given. Let ψ1 ∈ Tλ(σ1) and let δ > 0. Consider the following set-valued
map:

G(t) := Mλ,σ2
(t) ∩

{

z ∈ E : ‖ψ1(t) − z‖p ≤M1M2M3L(t)

∫ T

0
‖σ1(s) − σ2(s)‖p ds+ δ

}

.
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By (C2), it follows that

dp(ψ1(t),Mλ,σ2
(t)) ≤ H+

(

F (t, V (xσ1,λ)(t)), F (t, V (xσ2,λ)(t))
)

+ ǫ

≤ L(t)‖V (xσ1,λ)(t)) − V (xσ2,λ)(t))‖ + ǫ

≤M2L(t)‖xσ1,λ(t) − xσ2,λ(t)‖ + ǫ

≤M2M3L(t)

∫ T

0
‖g(t, s, σ1(s)) − g(t, s, σ2(s))‖ ds + ǫ

≤M1M2M3L(t)

∫ T

0
‖σ1(s) − σ2(s)‖pds+ ǫ.

Since ǫ is arbitrary, letting ǫ→ 0, we deduce that G(·) is nonempty bounded and has closed values.
Further, according to Proposition III.4 in [1], G(·) is measurable.
Let ψ2(·) be a measurable selector of G(·). It follows that ψ2 ∈ Tλ(σ2) and

‖ψ1 − ψ2‖pp =

∫ T

0
e−αM1M2M3m(t)‖ψ1(t) − ψ2(t)‖pdt

≤
∫ T

0
e−αM1M2M3m(t)(M1M2M3L(t)

∫ T

0
‖σ1(s) − σ2(s)‖pds)dt

+ δ

∫ T

0
e−αM1M2M3m(t)dt

≤ 1

α
‖σ1 − σ2‖pp + δ

∫ T

0
e−αM1M2M3m(t)dt.

Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

‖ψ1 − ψ2‖pp ≤
1

α
‖σ1 − σ2‖pp

i.e.,

‖ψ1 − ψ2‖p ≤
1

α
1

p

‖σ1 − σ2‖p.

This yields

d(ψ1, Tλ(σ2)) ≤
1

α
1

p

‖σ1 − σ2‖p.

Thus, we have

ρ(Tλ(σ1), Tλ(σ2)) = sup
ψ1∈Tλ(σ1)

d(ψ1, Tλ(σ2)) ≤
1

α
1

p

‖σ1 − σ2‖p. (4.9)

Now replacing σ1(·) with σ2(·) and arguing as above, we obtain

ρ(Tλ(σ2), Tλ(σ1)) ≤
1

α
1

p

‖σ1 − σ2‖p. (4.10)

Now adding (4.9) and (4.10) and dividing by 2, we obtain

H+(Tλ(σ1), Tλ(σ2)) ≤
1

α
1

p

‖σ1 − σ2‖p

≤ 1

α
1

p

max{‖σ1 − σ2‖p, d(σ1, Tλ(σ1)), d(σ2, Tλ(σ2)),

[d(σ1, Tλ(σ2)) + d(σ2, Tλ(σ1))]/2}.
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Hence we conclude that Tλ(·) is an H+-type multi-valued weak contractive mapping on Lp(I,E).
Next, we consider the following set-valued maps

F̃ (t, x) := F (t, x) + p(t),

M̃λ,σ(t) := F̃ (t, V (xσ,λ)(t)), t ∈ I,

T̃λ(σ) := {ψ(·) ∈ Lp(I,E) : ψ(t) ∈ M̃λ,σ(t) a.e. (I)}.

It is obvious that F̃ (·, ·) satisfies Hypothesis 4.1.
Let φ ∈ Tλ(σ), δ > 0 and define

G1(t) := M̃λ,σ(t) ∩
{

z ∈ X : ‖φ(t) − z‖p ≤M2L(t)‖λ− µ‖pC + p(t) + δ
}

.

Using the same argument as used for the set valued map G(·), we deduce that G1(·) is measurable
with nonempty closed values.

Next, we prove the following estimate:

H+(Tλ(σ), T̃µ(σ)) ≤ 1

α
1

pM
1

p

1 M
1

p

3

‖λ− µ‖C +
(

∫ T

0
e−αM1M2M3m(t)p(t)dt

)
1

p
. (4.11)

Let ψ(·) ∈ T̃µ(σ). Then

‖φ− ψ‖pp =

∫ T

0
e−αM1M2M3m(t)‖φ(t) − ψ(t)‖pdt

≤
∫ T

0
e−αM1M2M3m(t)[M2L(t)‖λ− µ‖pC + p(t) + δ]dt

≤ ‖λ− µ‖pC
∫ T

0
e−αM1M2M3m(t)M2L(t)dt

+

∫ T

0
e−αM1M2M3m(t)p(t)dt+ δ

∫ T

0
e−αM1M2M3m(t)dt

≤ 1

αM1M3
‖λ− µ‖pC +

∫ T

0
e−αM1M2M3m(t)p(t)dt

+ δ

∫ T

0
e−αM1M2M3m(t)dt.

Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

‖φ− ψ‖pp ≤
1

αM1M3
‖λ− µ‖pC +

∫ T

0
e−αM1M2M3m(t)p(t)dt.

Thus, by taking 1
pth power on both sides of the above inequality breaking the right hand side, one

obtains (4.11).

Now applying Proposition 3.8 we obtain

H+(Fix(Tλ), F ix(T̃µ)) ≤
1

α
1

2p (α
1

2p − 1)M
1

p

1 M
1

p

3

‖λ− µ‖C

+
α

1

2p

α
1

2p − 1

(

∫ T

0
e−αM1M2M3m(t)p(t)dt

)
1

p
.
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Since v(·) ∈ Fix(T̃µ), it follows that there exists u(·) ∈ Fix(Tλ) such that

‖v − u‖p ≤
1

α
1

2p (α
1

2p − 1)M
1

p

1 M
1

p

3

‖λ− µ‖C +
α

1

2p

α
1

2p − 1

(

∫ T

0
e−αM1M2M3m(t)p(t)dt

)
1

p
. (4.12)

We define

x(t) = λ(t) +

∫ T

0
k(t, s) g(t, s, u(s)) ds.

Then one has the following inequality:

‖x(t) − y(t)‖ ≤ ‖λ(t) − µ(t)‖ +M1M3

∫ T

0
‖u(s) − v(s)‖p ds

≤ ‖λ− µ‖C +M1M3e
αM1M2M3L‖u− v‖pp.

Combining the last inequality with (4.12) we obtain

‖x(t) − y(t)‖ ≤ ‖λ− µ‖C +M1M3e
αM1M2M3L

[ 1

α
1

2p (α
1

2p − 1)M
1

p

1 M
1

p

3

‖λ− µ‖C

+
α

1

2p

α
1

2p − 1

(

∫ T

0
e−αM1M2M3m(t)p(t)dt

)
1

p
]p
.

This completes the proof.
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