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1 Introduction

Let Ω ⊆ RN be a bounded domain with a Lipschitz boundary ∂Ω. In this paper we study the
existence of a positive solution for the following nonlinear Dirichlet problem{

−∆a
pu(z)− ∆qu(z) = f (z, u(z), Du(z)) in Ω,

u|∂Ω = 0, u > 0, 1 < q < p < N.
(1.1)

Given a ∈ L∞(Ω) \ {0} with a(z) ≥ 0 for a.a. z ∈ Ω and r ∈ (1, ∞) by ∆a
r denotes the

weighted r-Laplace differential operator defined by

∆a
r u = div(a(z)|Du|r−2Du).

When a(·) ≡ 1, then we write ∆a
r = ∆r which is the standard r-Laplace differential operator.

In (1.1) the differential operator is not homogeneous and is related to two-phase integral
functional

u →
∫

Ω
[a(z)|Du|p + |Du|q] dz.
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The integrand of this functional is the function

E(z, t) = a(z)tp + tq ∀z ∈ Ω, ∀t ≥ 0.

We do not assume that the weight a(·) is bounded away from zero (that is, we do not
require that ess infΩ a > 0) and so E(t, ·) exhibits unbalanced growth, namely we have

tq ≤ E(z, t) ≤ c0[tp + tq] a.a. z ∈ Ω, all t ≥ 0, some c0 > 0.

Such integral functionals, were first examined by Marcellini [11] and Zhikov [18] in the
context of problems of the calculus of variations and of nonlinear elasticity theory. Until now
there is no global regularity theory for unbalanced growth (double phase) boundary value
problems analogous to the one for balanced growth problems developed by Lieberman [7].
Only local (interior) regularity results exist, produced primarily by Marcellini [12], Baroni–
Colombo–Mingione [1] and Ragusa–Tachikawa [17].

In the reaction (right hand side) of (1.1), we have a Carathéodory function f (z, x, y) (that
is, for all (x, y) ∈ R × RN , z → f (z, x, y) is measurable and for a.a. z ∈ Ω, (x, y) → f (z, x, y) is
continuous). Since the reaction (source) term is gradient dependent, problem (1.1) is nonvari-
ational. For this reason our approach is topological based on the theory of nonlinear operators
of monotone type.

Recently there have been existence and multiplicity results for double phase equations
with no gradient dependence (variational problems). We refer to the works of Gasiński–
Papageorgiou [3], Gasiński–Winkert [4], Liu–Dai [8], Papageorgiou–Rădulescu–Repovš [14],
Papageorgiou–Rădulescu–Zhang [15], Papageorgiou–Vetro–Vetro [16] and the references
therein. Double phase problems with gradient dependence (convection), were studied only
by Gasiński–Winkert [5] and Liu–Papageorgiou [9] using different conditions on the reaction
f (z, x, y).

2 Mathematical background

The unbalanced growth of E(z, ·) leads to a functional framework for problem (1.1) based
on generalized Orlicz spaces. A comprehensive account of the theory of these spaces can be
found in the book of Harjulehto–Hästö [6].

Let M(Ω) = {u : Ω → R measurable}. We identify two such functions which differ only
on a Lebesgue-null set. Also by C0,1(Ω) we denote the space of all functions u : Ω → R which
are Lipschitz continuous. For the moment we assume that

a ∈ C0,1(Ω), a(z) > 0 ∀z ∈ Ω, 1 < q < p < N,
p
q
< 1 +

1
N

. (2.1)

The last inequality in (2.1) implies that p < q∗ = Nq
N−q and this then leads to useful com-

pact embeddings for some relevant spaces (see Proposition 2.1 below). Also these conditions
guarantee the validity of the Poincaré inequality in the appropriate Sobolev–Orlicz space.

Then the Lebesgue–Orlicz space LE (Ω) is defined by

LE (Ω) = {u ∈ M(Ω) : ρE (u) < ∞},

with ρE (·) being the modular function defined by
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ρE (u) =
∫

Ω
E(z, |u|) dz =

∫
Ω
[a(z)|u|p + |u|q]dz.

We equip this space with the so-called “Luxemburg norm” defined by

∥u∥E = inf
[
λ > 0 : ρE

(u
λ

)
≤ 1

]
.

Normed this way, LE (Ω) becomes a Banach space which is separable and reflexive (in fact
uniformly convex). Then using LE (Ω) we can define the corresponding Sobolev–Orlicz space
W1,E (Ω) by

W1,E (Ω) = {u ∈ LE (Ω) : |Du| ∈ LE (Ω)}.

Here Du denotes the weak gradient of u(·). This space is given the following norm

∥u∥1,E = ∥u∥E + ∥Du∥E for all u ∈ W1,E (Ω).

Here ∥Du∥E = ∥|Du|∥E . This too is a Banach space which separable and reflexive (in fact
uniformly convex). Also set

W1,E
0 (Ω) = C∞

c (Ω)
∥·∥1,E ,

with C∞
c (Ω) = {u ∈ C∞(Ω) with compact support}. Conditions (2.1) imply that the Poincaré

inequality is valid on W1,E
0 (Ω) and we can use the following equivalent norm on W1,E

0 (Ω).

∥u∥ = ∥Du∥E for all u ∈ W1,E
0 (Ω).

For these spaces we have the following useful embeddings.

Proposition 2.1.

(a) LE (Ω) ↪→ Lτ(Ω) and W1,E
0 (Ω) ↪→ W1,τ

0 (Ω) continuously for all τ ∈ [1, q].

(b) W1,E
0 (Ω) ↪→ Lτ(Ω) continuously for all τ ∈ [1, q∗] and compactly for all τ ∈ [1, q∗);

(c) Lp(Ω) ↪→ LE (Ω) continuously.

There is a close relation between the norm ∥ · ∥E and the modular function ρE (·) on the
space W1,E

0 (Ω).

Proposition 2.2.

(a) ∥u∥E = λ ⇔ ρE (
u
λ ) = 1;

(b) ∥u∥E < 1 (resp. = 1,> 1) ⇔ ρE (u) < 1 (resp. = 1,> 1);

(c) ∥u∥E ≤ 1 ⇒ ∥u∥p
E ≤ ρE (u) ≤ ∥u∥q

E ;

(d) ∥u∥E > 1 ⇒ ∥u∥q
E ≤ ρE (u) ≤ ∥u∥p

E ;

(e) ∥u∥E → 0 (resp. → +∞) ⇔ ρE (u) → 0q(resp. → +∞).

Let V : W1,E
0 (Ω) → W1,E

0 (Ω)∗ be the nonlinear operator defined by

⟨V(u), h⟩ =
∫

Ω
(a(z)|Du|p−2Du + |Du|p−2Du, Dh)RN dz, for all u, h ∈ W1,E

0 (Ω).

This operator has the following properties (see [8]).
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Proposition 2.3. The operator V(·) is bounded (maps bounded sets to bounded sets), continuous,
strictly monotone (thus maximal monotone too) and of type (S)+, that is, “if un

w−→ u in W1,E
0 (Ω)

and lim supn→∞⟨V(un), un − u⟩ ≤ 0, then un → u in W1,E
0 (Ω).′′

For x ∈ R, we set x+ = max{x, 0}, x− = max{−x, 0}. Then if u ∈ M(Ω), we define
u+(z) = u(z)+ and u−(z) = u(z)− for all z ∈ Ω. We know that u = u+ − u−,|u| = u+ + u−

and if u ∈ W1,E
0 (Ω), then u± ∈ W1,E

0 (Ω).

3 Some auxiliary results

In this section we prove some auxiliary results concerning the weighted p-Laplacian ∆a
p, which

we will need in the analysis of problem (1.1)).
We strengthen the conditions on the weight a(·). By Ãp we denote the p-Muckenhoupt

class (see Harjulehto–Hästö [6, p. 114]). The stronger conditions on the weight a(·) are the
following:

H0: a ∈ C0,1(Ω) ∩ Ãp, a(z) > 0 for all z ∈ Ω, 1 < q < p < N, p
q < 1 + 1

N .

Let E0(z, t) = a(z)tp for all z ∈ Ω for all t ≥ 0. On account of hypotheses H0 above we
have that W1,E0

0 (Ω) ↪→ LE0(Ω) compactly (see Liu–Papageorgiou [10]). We will use this fact to
produce a smallest eigenvalue for (−∆a

p, W1,E0
0 (Ω)). So, we consider the following nonlinear

eigenvalue problem

−∆a
pu(z) = λ̂a(z)|u(z)|p−2u(z) in Ω, u|∂Ω = 0. (3.1)

We say that λ̂ ∈ R is an “eigenvalue”, if the above Dirichlet problem admits a nontrivial
solution û ∈ W1,E0

0 (Ω) known as an“eigenfunction” corresponding to λ̂.

Proposition 3.1. If hypotheses H0 hold, then problem (3.1) has a smallest eigenvalue λ̂a
1 = λ̂a

1(p) > 0
and every corresponding eigenfunction û ∈ W1,E0

0 (Ω) satisfies û(z) > 0 or û(z) < 0 a.a. in Ω (has
constant sign).

Proof. Let λ̂a
1 = inf

[ ρa(Du)
ρa(u)

: u ∈ W1,E0
0 (Ω), u ̸= 0

]
, where for every v ∈ LE0(Ω) we define

ρa(v) =
∫

Ω a(z)|v|pdz. The homogeneity of ρa(·) implies that

λ̂a
1 = inf

[
ρa(Du) : u ∈ W1,E0

0 (Ω), ρa(u) = 1
]
. (3.2)

Consider a sequence {un}n≥N ⊆ W1,E0
0 (Ω) such that

ρa(Dun) ↓ λ̂a
1 and ρa(un) = 1 for all n ∈ N. (3.3)

Evidently {un}n∈N ⊆ W1,E0
0 (Ω) is bounded. So, we may assume that

un
w−→ û in W1,E0

0 (Ω) and un → û in LE0(Ω). (3.4)

The function ρa(·) is continuous, convex, thus sequentially weakly lower semicontinuous. So,
from (3.4) we have

ρa(Dû) ≤ lim inf
n→+∞

ρa(Dun), ρa(un) → ρa(û),

⇒ ρa(Dû) ≤ λ̂a
1, ρa(û) = 1 (see (3.3)),

⇒ ρa(Dû) = λ̂a
1 > 0.
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From (3.2) and the Lagrange multiplier rule (see [13, p. 422]), we have

−∆a
pû = λ̂a

1a(z)|û|p−2û in Ω, û|∂Ω = 0. (3.5)

Suppose û+ ̸= 0, since û+ ∈ W1,E0
0 (Ω), acting on (3.4) with û+, we obtain

ρa(Dû+) = λ̂a
1ρa(û+),

⇒ û+ is an eigenfunction for λ̂a
1 > 0.

From Colasuonno–Squassina [2, Section 3.3], we have that

u+ ∈ W1,E0
0 (Ω) ∩ L∞(Ω).

Invoking Proposition 2.4 of Papageorgiou–Vetro–Vetro [16], we infer that

û+(z) > 0 for a.a. z ∈ Ω,

⇒ û = û+.

Similarly if u− ̸= 0.

This proposition leads to the following estimate which is useful in case we have nonuni-
form nonresonance.

Proposition 3.2. If hypotheses H0 hold, η ∈ L∞(Ω), η(z) ≤ λ̂a
1 for a.a. z ∈ Ω and

η ̸≡ λ̂a
1,

then there exists c1 > 0 such that

c1∥u∥p
1,E0

≤ ρa(Du)−
∫

Ω
η(z)a(z)|u|pdz for all u ∈ W1,E0

0 (Ω).

Proof. We argue by contradiction. So, suppose that the conclusion of the proposition is not
true. We can find {un}n≥N ⊆ W1,E0

0 (Ω) such that

ρa(Dun)−
∫

Ω
η(z)a(z)|un|pdz <

1
n
∥un∥p

1,E0
for all n ∈ N.

Exploiting the p-homogeneity of this inequality, we can say thatρa(Dun)−
∫

Ω
η(z)a(z)|un|pdz <

1
n

,

∥un∥1,E0 = 1 for all n ∈ N.

 (3.6)

We may assume that

un
w−→ u in W1,E0

0 (Ω) and un → u in LE0(Ω). (3.7)

If u = 0, then

ρa(Dun) → 0,

⇒ un → 0 in W1,E0
0 (Ω) (see Proposition 2.2),

a contradiction, since ∥un∥1,E0 = 1, for all n ∈ N (see (3.6)).
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If u ̸= 0, then from (3.6) and (3.7)

ρa(Du) ≤
∫

Ω
η(z)a(z)|u|pdz, (3.8)

⇒ ρa(Du) = λ̂a
1ρa(u), (see (|3.1)),

⇒ |u(z)| > 0 for a.a. z ∈ Ω, (see Proposition 3.1),

⇒ ρa(Du) < λ̂a
1ρa(u) (see (3.8)),

which contradicts (3.1).
Therefore we conclude that there exists c1 > 0 such that

c1∥u∥p
1,E0

≤ ρa(Du)−
∫

Ω
η(z)a(z)|u|pdz for all u ∈ W1,E0

0 (Ω).

4 Positive solution

In this section, using the theory of pseudomonotone operators (see Papageorgiou–Rădulescu–
Repovš [13, Section 2.10]), we prove the existence of a positive solution for problem (1.1).

We impose the following conditions on the reaction f (z, x, y). In what follows, by λ̂1(q)>0,
we denote the principal eigenvalue of (−∆q, W1,q

0 (Ω)) (that is λ̂1(q) = λ̂a
1(q) with a ≡ 1).

H1: f : Ω × R × RN → R is a Carathéodory function such that

(i) | f (z, x, y)| ≤ â(z)[1 + |x|p−1] + µ|y|q−1 for a.a. z ∈ Ω, all x ∈ R, all y ∈ RN with
â ∈ L∞(Ω) and µ < λ̂1(q);

(ii) there exists a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂a
1 for a.a. z ∈ Ω, η ̸≡ λ̂a

1,

and for every ε > 0, there exists Mε > 0 such that

f (z, x, y) ≤ [η(z) + ε]a(z)xp−1 + µ|y|q for a.a. z ∈ Ω, all x ≥ Mε;

(iii) there exists ϑ ∈ L∞(Ω) and δ > 0 such that

ϑ(z) ≥ λ̂1(q) for a.a. z ∈ Ω, ϑ ̸≡ λ̂1(q),

f (z, x, y) ≥ ϑ(z)xq−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ, all y ∈ RN

f (z, x, y) ≥ −c2xr−1 for a.a. z ∈ Ω, all x ≥ δ, all y ∈ RN , some c2 > 0, p < r < p∗.

Remark 4.1. Hypothesis H1(ii) implies that

lim sup
n→+∞

f (z, x, y)
a(z)xp−1 ≤ η(z)

uniformly for a.a.z ∈ Ω and all y ∈ RN on a bounded set. Similarly, hypothesis H1(iii) implies
that

lim inf
x→0+

f (z, x, y)
xq−1 ≥ ϑ(z)

uniformly for a.a.z ∈ Ω and all y ∈ RN .
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Example 4.2. The following function satisfies all the above hypotheses

f (z, x, y) =

ϑ(x+)q−1 +
[
µ|y|q−1 + (ηa(z)− ϑ)

]
(x+)s−1, if x ≤ 1,

ηa(z)xp−1 + µ|y|q−1, if 1 < x,

with µ < λ̂1(q) < ϑ, η < λ̂a
1, 1 < q < s.

On account of hypotheses H1(i),(ii), we have

f (z, x, y) ≥ ϑ(z)xq−1 − c3xr−1 for a.a. z ∈ Ω, all x ≥ 0, all y ∈ RN , some c3 > 0. (4.1)

Based on this unilateral growth condition, we consider the following auxiliary double
phase Dirichlet problem{

− ∆a
pu(z)− ∆qu(z) = ϑ(z)u(z)p−1 − c3u(z)r−1 in Ω,

u|∂Ω = 0, u > 0, 1 < q < p < N, r > p.

}
(4.2)

From Liu–Papageorgiou [9, Proposition 3.1], we have the following result for problem (4.2).

Proposition 4.3. If hypotheses H0 hold, then problem (4.2) has a unique positive solution ū ∈
W1,E

0 (Ω) ∩ L∞(Ω) and ū(z) > 0 for a.a. z ∈ Ω.

Using the solution ū we introduce the Carathéodory function g : Ω×R×RN → R defined
by

g(z, x, y) =

{
f (z, ū(z), y), if x ≤ ū(z),

f (z, x, y), if ū(z) < x.
(4.3)

Let Ng(u)(·) = g(·, u(·), Du(·)) for all u ∈ W1,E
0 (Ω) (the Nemytski map corresponding

to g) and consider the nonlinear operator K : W1,E
0 (Ω) → W1,E

0 (Ω)∗ defined by

K(u) = V(u)− Ng(u) for all u ∈ W1,E
0 (Ω).

Proposition 4.4. If hypotheses H0, H1 hold, then the operator K(·) is pseudomonotone.

Proof. We consider a sequence {un}n≥N ⊆ W1,E
0 (Ω) such thatun

w−→ u in W1,E
0 (Ω) K(un)

w−→ u∗ in W1,E
0 (Ω)∗,

lim sup
n→∞

⟨K(un), un − u⟩ ≤ 0.

 (4.4)

Hypotheses H0 imply p < q∗ and so by Proposition 2.1, we have that

W1,E
0 (Ω) ↪→ Lp(Ω) compactly,

⇒ un → u in Lp(Ω) (see (4.4)). (4.5)

We have ∫
Ω

g(z, un, Dun)(un − u)dz =
∫
{un≤ū}

f (z, ū, Dun)(un − u)dz

+
∫
{ū<un}

f (z, un, Dun)(un − u)dz (see (4.4)). (4.6)
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On account of hypothesis H1(i), we have that

{ f (·, ū(·), Dun(·)}n≥N ⊆ Lp′(Ω)

{ f (·, un(·), Dun(·)}n≥N ⊆ Lp′(Ω),
(

1
p
+

1
p′

= 1
)

,

are both bounded (recall q < p). Therefore, from (4.5) we infer that∫
{un≤ū}

f (z, ū, Dun)(un − u)dz → 0,
∫
{ū<un}

f (z, un, Dun)(un − u)dz → 0 as n → ∞.

From (4.6) it follows that

lim
n→∞

∫
Ω

g(z, un, Dun)(un − u)dz = 0,

⇒ lim sup
n→∞

⟨V(un), un − u⟩ ≤ 0 (see (4.4)),

⇒ un → u in W1,E
0 (Ω) (see Proposition 2.3).

Exploiting the continuity of K(·), we have

K(un) → K(u) in W1,E
0 (Ω)∗,

⇒ u∗ = K(u) and ⟨K(un), un⟩ → ⟨K(u), u⟩ (see (4.4)),

⇒ K(·) is generalized pseudomonotone (see [13, p. 150]).

Invoking Proposition 2.10.3, p. 51, of Papageorgiou–Rădulescu–Repovš [13], we conclude that
K(·) is pseudomonotone.

Next we show that K(·) is strongly coercive, that is,

⟨K(u), u⟩
∥u∥ → +∞ as ∥u∥ → ∞.

Proposition 4.5. If hypotheses H0, H1 hold, then the operator K(·) is strongly coercive.

Proof. For every u ∈ W1,E
0 (Ω) with ∥u∥ ≥ 1, ∥u∥1,E0 ≥ 1, we have

⟨K(u), u⟩ = ⟨V(u), u⟩ −
∫

Ω
g(z, u, Du)udz

= ρE (Du)−
∫
{u≤ū}

f (z, ū, Du)udz −
∫
{ū<u}

f (z, u, Du)udz (see (4.3)). (4.7)

We have∫
{u≤ū}

f (z, ū, Du)udz ≤ c4∥u∥+
∫
{u≤ū}

µ|Du|q−1udz (4.8)

for some c4 > 0 (see hypothesis H1(i))∫
{ū<u}

f (z, u, Du)udz ≤ c5 +
∫

Ω
[η(z) + ε]a(z)updz +

∫
{ū<u}

µ|Du|q−1udz (4.9)

for some c5 = c5(ε) > 0 (see H1(ii)).

From (4.8) and (4.9) it follows that∫
Ω

g(z, u, Du)udz ≤ c5 + c4∥u∥+ µ

λ̂1(q)
∥Du∥q

q +
∫

Ω
η(z)a(z)updz + ερa(u) (4.10)

(here we have used Hölder’s inequality) .
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We return to (4.7) and use (4.10). We obtain

⟨K(u), u⟩ ≥ ρa(Du)−
∫

Ω
η(z)a(z)|u|pdz − ε

λ̂a
1

∥u∥p
1,E0

+
(

1 − µ

λ̂1(q)

)
∥Du∥q

q − c4∥u∥ − c5

(recall that ∥u∥1,E0 ≥ 1 and see Proposition 2.2)

≥
[
c1 −

ε

λ̂a
1

]
∥u∥p

1,E0
+ c6∥Du∥q

q − c4∥u∥ − c5

with c6 = 1 − µ

λ̂1(q)
> 0 (see Proposition 3.2).

Choosing ε ∈ (0, c1λ̂a
1), we see that

⟨K(u), u⟩ ≥ c7ρE (Du)− c4∥u∥ − c5

≥ c7∥u∥q − c4∥u∥ − c5 for some c7 > 0 (recall ∥u∥ ≥ 1 and see Proposition 2.2)

⇒ K(·) is strongly coercive.

Now we are ready to prove the existence of a bounded positive solution for problem (1.1).

Theorem 4.6. If hypotheses H0, H1 hold, then problem (1.1) admits a positive solution

û ∈ W1,E
0 (Ω) ∩ L∞(Ω).

such that û(z) > 0 for a.a. z ∈ Ω.

Proof. From Propositions 4.4 and 4.5 we have that the operator K(·) is pseudomonotone and
strongly coercive. So, by Theorem 2.10.10, p. 156, of Papageorgiou–Rădulescu–Repovš [13],
K(·) is surjective. Hence we can find û ∈ W1,E

0 (Ω) such that

K(û) = 0 in W1,E
0 (Ω)∗,

⇒ ⟨K(û), (ū − û)+⟩ = 0 (since (ū − û)+ in W1,E
0 (Ω))

⇒ ⟨V(û), (ū − û)+⟩ =
∫

Ω
g(z, û, Dû)(ū − û)+dz

=
∫

Ω
f (z, û, Dû)(ū − û)+dz (see (4.3))

≥
∫

Ω
[ϑ(z)ūq−1 − c8ūr−1](ū − û)+dz (see (4.1))

= ⟨V(ū), (ū − û)+⟩ (see Proposition 4.3)

⇒ ū ≤ û (see Proposition 2.3).

Therefore û ∈ W1,E
0 (Ω) is a positive solution for problem (1.1). From Theorem 3.1 of Gasiński–

Winkert [4], we have that û ∈ W1,E
0 (Ω) ∩ L∞(Ω). Finally Proposition 2.4 of Papageorgiou–

Vetro–Vetro [16] implies that û(z) > 0 for a.a. z ∈ Ω.

Let S+ ⊆ W1,E
0 (Ω) denote the set of positive solutions of problem (1.1). From Theorem 4.6

we have

∅ ̸= S+ ⊆ W1,E
0 (Ω) ∩ L∞(Ω). (4.11)
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Proposition 4.7. If hypotheses H0, H1 hold, then S+ ⊆ W1,E
0 (Ω) is nonempty, compact.

Proof. We already know that S+ ̸= ∅ (see Theorem 4.6 and (4.11)). Clearly S+ ⊆ W1,E
0 (Ω) is

closed. Let {un}n≥N ⊆ S+. We have

⟨V(un), h⟩ =
∫

Ω
f (z, un, Dun)hdz for all h ∈ W1,E

0 (Ω) all n ∈ N. (4.12)

On account of hypotheses H1(i)(ii), we have

f (z, x, y)x ≤ [η(z) + ε]a(z)|x|p + c8 + µ|y|q−1 for a.a. z ∈ Ω, all x ∈ R, some c8 > 0. (4.13)

In (4.12) we use h = un ∈ W1,E
0 (Ω). Using (4.13) we obtain

ρa(Dun)−
∫

Ω
η(z)a(z)|un|pdz − ε

λ̂a
1

∥un∥p
1,E0

+ ∥Dun∥q
q − µ∥un∥q

q ≤ c8 for all n ∈ N,

⇒
[
c1 −

ε

λ̂a
1

]
∥un∥p

1,E0
+

[
1 − µ

λ̂1(q)

]
∥Du∥q

q ≤ c8,

⇒ ∥un∥p ≤ c9 for some c9 > 0, all n ∈ N

(choose ε ∈ (0, c1λ̂a
1) and recall that µ < λ̂1(q))

⇒ {un}n≥N ⊆ W1,E
0 (Ω) is bounded.

So, we may assume that

un
w−→ u in W1,E

0 (Ω) and un → u in Lp(Ω) (4.14)

(recall that p < q∗ and see Proposition 2.1).

Then (4.14) and hypothesis H1(i) imply that∫
Ω

f (z, un, Dun)(un − u)dz → 0,

⇒ lim
n→∞

⟨V(un), un − u⟩ = 0 (see (4.12) with h = un − u)

⇒ un → u in W1,E
0 (Ω) (see Proposition 4.4)

Since S+ is closed, we conclude that it is compact in W1,E
0 (Ω).

Acknowledgements

The work was supported by NNSF of China Grant No. 12071413.

References

[1] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double
phase, Calc. Var. Partial Differential Equations 57(2019), Art. No. 62, 48 pp. https://doi.
org/10.1007/s00526-018-1332-z; MR3775180; Zbl 1394.49034

[2] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, An-
nali Mat. Pura Appl. (4) 195(2016), 1917–1956. https://doi.org/10.1007/s10231-015-
0542-7; MR3558314,Zbl 1364.35226

https://doi.org/10.1007/s00526-018-1332-z
https://doi.org/10.1007/s00526-018-1332-z
https://www.ams.org/mathscinet-getitem?mr=3775180
https://zbmath.org/?q=an:1394.49034
https://doi.org/10.1007/s10231-015-0542-7
https://doi.org/10.1007/s10231-015-0542-7
https://www.ams.org/mathscinet-getitem?mr=3558314
https://zbmath.org/?q=an:1364.35226


Dirichlet problems with unbalanced growth and convection 11
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