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Abstract. Exact solution of the Susceptible-Infectious—-Recovered—-Deceased (SIRD) epi-
demic model is established, and various properties of solution are derived directly from
the exact solution. The exact solution of an initial value problem for SIRD epidemic
model is represented in an explicit form, and it is shown that the parametric form of
the exact solution is a solution of some linear differential system.
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1 Introduction

Recently there is an increasing requirement for mathematical approach to epidemic models. It
goes without saying that a vast literature and research papers, dealing with epidemic models
has been published so far (see, e.g., [2-4,7]). It seems that little is known about exact solutions
of epidemic models. Exact solutions of the Susceptible-Infectious-Recovered (SIR) epidemic
model were studied by Bohner, Streipert and Torres [1], Harko, Lobo and Mak [5], Shabbir,
Khan and Sadiq [9] and Yoshida [11]. However there appears to be no known results about
exact solutions of the Susceptible-Infectious—Recovered—Deceased (SIRD) epidemic models.
The objective of this paper is to obtain an exact solution of SIRD differential system, and to
derive various properties of the exact solution. Furthermore we show that the parametric
form of the exact solution satisfies some linear differential system.

The differential system called Susceptible-Infectious—Recovered—-Deceased (SIRD) epidem-
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ic model is the following:

dil(tt) — —BS(H)I(t) +VR(E),
‘i;(lf) = BS(O)I(t) —vI(t) — ul(t),
RO _ 1) - vR(e),
DU _ iy

(see, e.g., [8]). If v = 0, we obtain the simplified SIRD differential system
dil(tt) _ i), (11)
WO psoyi(t) — 1) — (), 2
”“ZY) e (1.3)
DO _ e .

for t > 0, where B,y and p are positive constants. We consider the following initial condition:

5(0)=3, 10)=1I  R(0)=R, D(0)=D, (1.5)
where S+ I+ R+ D = N (positive constant). Since

(S() + I(£) + R(t) + D(£)) = dsd(tt) + d;(:) + ””Zit) N "’[;Ef) o

2 a

by (1.1)—(1.4), it follows that
S(t)+ I(t)+R(t)+D(t) =k (t>0)
for some constant k. In view of the fact that
k=S5(0)+1(0)+R(0)+D(0)=S+I+R+D =N,

we conclude that

S(t)+I(t)+R(t)+D(t) =N (t>0).
It is assumed throughout this paper that:
(an) § > T2E,;
P
(An) I> 0;
(A3) R > 0 satisfies ]
N—D > Sel/VR L R (1.6)

(Ay) D>0.

In Section 2 we show that a positive solution of the SIRD differential system can be repre-
sented in a parametric form, and we derive an exact solution of the SIRD differential system
(1.1)—(1.4). Section 3 is devoted to the investigation of various properties of the exact solution.
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2 Exact solution of SIRD differential system

First we need the following important lemma.

Lemma 2.1. If S(t) > 0 for t > 0, then the following holds:

R'(t) = v <N ~D+ %R — GelBIMRe=(B/MR() _ <1 + ”) R(t)>

r
fort > 0.

Proof. From (1.1) and (1.3) we see that

R0 =100 =7 (5005 ) = = (ogS(1),

and integrating the above on [0, t| yields
R(t)— R = —g(log S(t) —log §).

Therefore we obtain
log S(t) = == (R(t) — R) + log S

<>

and hence

S(t) = exp (log§ - iR(t) + iﬁ) = SelP/MRe=(B/MR(),

and hence we get

D(t) = %R(t) +C

for some constant C. The initial condition (1.5) implies

Consequently we obtain

R'(t) = I(t)
= 7(N = S(t) = R(t) — D(t))

which is the desired identity (2.1).

(2.2)
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By a solution of the SIRD differential system (1.1)-(1.4) we mean a vector-valued function
(S(t),1(t),R(t),D(t)) of class C'(0,00) N C[0,0) which satisfies (1.1)~(1.4). Associated with
every continuous function f(t) on [0, o), we define

f(eo) := lim f(¢).

Lemma 2.2. Let (S(t),I(t), R(t), D(t)) be a solution of the SIRD differential system (1.1)—(1.4) such
that S(t) > 0 and I(t) > 0 for t > 0. Then there exist the limits S(o0), I(c0), R(o0) and D (o).

Proof. Since S(t) > 0 and I(t) > 0, we see that S'(t) < 0, and therefore S(t) is decreasing on
[0, 00). It is trivial that S(f) is bounded from below because S(t) > 0. Hence, there exists the
limit S(c0). We observe that R(t) is increasing on [0, o) and bounded from above in view of
the fact that R'(t) = ¢I(t) > 0 and R(t) < N. Therefore there exists R(c0). Similarly there
exists D(o0). Since I(t) = N — S(t) — R(t) — D(t) and there exist S(o0), R(c0) and D(o0), it
follows that there exists (o). O

Theorem 2.3. Let (S(t),I(t), R(t), D(t)) be a solution of the initial value problem (1.1)—(1.5) such
that S(t) > 0and I(t) > 0 for t > 0. Then (S(t), I(t), R(t), D(t)) can be represented in the following
parametric form:

S(t) = S(p(u)) = SelP/MRy, (24)
I(t) = I(p(u)) = N— D + %R—S‘AWWRH 7? log u, 2.5)
R(t) = R(g(u)) = — ¢ log, (2.6)
D(t) = D(¢(u)) = —Elogu—kf)—%f{ 2.7)

for e= (B/MR(®) < 4 < e~ B/MR where t = @(u) is given in the proof.
Proof. Define the function u(t) by
u(t) := e (B/MRE),

We note that there exists the limit R(c0) by Lemma 2.2. Then u = u(t) is decreasing on [0, c0),
e~ (B/MR(®) <y < e=(B/MR and limy o0 u(t) = e~ (B/TR(®) gince R(t) is increasing on [0, %)
and R < R(t) < R(0). Itis clear that u(t) is of class C'(0, 00) in view of e~ (#/MR() ¢ C1(0, 00).
Therefore, there exists the inverse function ¢(u) of u = u(t) such that

t= g(u) (e—w/v)R(oo) <u< e—(ﬁ/v)ﬁ) )

o(u) € Cl(e*(ﬁ/v)R(w),e*(ﬁ/v)R)l

¢(u) is decreasing in (e_(ﬁ/V)R(“),e_(ﬁ/V)R],

¢(e_(ﬁ/7)R) — 0,

lim u) = oo.
u—)@*(ﬂ/'Y)R("O)J,-Oq)( )

Substituting t = ¢(u) into (2.1) in Lemma 2.1 yields

Ri(g(u)) = 7 (N ~ D+ LR = 8ol prRioto) <1 + ﬁ‘y) R(q)(u))) )
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for e~ (B/TR(®) <y < ¢~ (F/MR_ Differentiating both sides of u = e~ #/VR(@) with respect to
u, we get

1= _f R (1)) ' (1)~ B/ R9(0)
oo
and therefore 1
R(p(u)) = T (2.9)
(o) =~
It is obvious that
R(p(u)) = —Elogu (2.10)
in view of u = e~ (B/1)R(g(u)), Combining (2.8)—(2.10), we have
v 1 3 B SpB/NR,
—= = YN — D+ uR — ySe'P’ V" u + = (v + ) logu
B o/ () " g (v +1)log
and therefore
/() = 4 . . _ 1 _
Pu (vN — D+ puR — ySeB/VRy 4 (y/B) (7 + p) log u)
= — — ! — - . (2.11)
u (BN = D + (Bu/7)R — BSe®/VRu+ (7 + ) log )
Integrating (2.11) over [u, e~ (#/7)R] and taking account of ¢(e~(B/TR) = 0, we get
67(‘5/7)[{ d
o= k.,
u cp(¢)
where
$(&) = BN = D + EER— pSel? Ve + (3 + ) loge. 12)

It follows from (2.2), (2.3) and (2.10) that

Rm:wanz—p%w

D(t) = D(g(1)) = %R(go(u)) +D- %R - —Zlogu +D- %R,
I(t) = I(¢(u)) = N — S(¢(u)) — R(p(u)) — D(p(u))
3 G,(B/7R

:N—D~|—%R—Se(ﬁ/7) u—l—iylogu,

which is the desired solution (2.4)~(2.7). Since lim,,_, - (s/1r() o ¢(1) = 00, it is necessary that

i i 5 1 PER _ pgetbrnR
1 — 1 N — D+ EER — pgelb/n 1
§—>e7<ﬁ1/rvr>1z<<w>+olp(é) ;;_w—(ﬁl/rvrﬁe(oo)w <ﬁ pD + v pSe g+ (v+mp)logd
= lim B (N — D+ ER— GeB/ MR (B/1x _ Wx>
x—R(c0)—0 Y v
_ 8 (N ~ D+ LR Sep/ R R T :; VR(OO)>

=0,
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which implies

Rleo)= L N——T py P g T GeB/mRe=(B/MR(), (2.13)
TtH T+ H YU T H
We find that ¢/(&) = 0 for ¢ = ¢ = (('y—}-y) (ﬁS)) (B/TR and that e~ (F/1)R (°° <¢<
e~ B/MRGf (v 1) /B < S < ((y+p)/B)e (B/T(R(*)=R) Gince ¢/ (&) > 0 for e~ B/MR(®) < 7 < 7
and P'(8) <O0forf<i<e —(B/7R we observe that ¢() is increasing in (e~ (B/7R ( ),g) and is
decreasing in (E e~ (B/TR) In view of the fact that (e /MRy =B(N-S—R—-D)=pI>0
and lim;_, ,—(s/yr) o P(§) = 0, we see that

$(&) >0 in (e (B/MR(®) o=(B/1R]
under the condition (y +p)/p < S<((v+ u)/Be (B/7)(R(e0)—=R) Moreover, we get

lim PRIt '(t) = lim B ( -D+ %R — SelP/MRe=(B/MR() _ (1 + i) R(t))

t—o0 7y t—o00
—p (= D+ BR8P /e — (14 1) Rieo)

which implies I(o0) = 0 in light of (1.3). O
Lemma 2.4. Under the hypothesis (Az), the transcendental equation
_ : Y Ge(B/ MR, (B/ 1)
=F(N,D,R,v,u) — ——Se e
( L2 Ay

has a unique solution x = « such that
R<a <N,

where

5 v Y B g
F(N,D,R,, = N — D4+ R
( =N Pt

(cf. Figure 2.1).
Proof. First we note that

F(N,D,R,v,u) —

GeB/MR _ T (N—D+
T+H THu

in view of (1.6). We define the sequence {a,}:> ; by

a =i <0 <a<F(N,D,R,y,u)— 775}(/3/7)1%) ,

+u
fyi1 = E(N,D, R, 7, 1) — —L—GeB/MRe=(B/Mn (3 =1,2,...). (2.15)
T p
It is easily seen that
=q D, R T GeB/)
a1 =ad < F(N,D,R,7, S
1 ( )
< F(N,D,R, v, 1) — — L GelB/MRe=(B/7)
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Figure 2.1: Variation of F(N,D,R,, ) — (7/ (v + u))SeB/MRe=(B/1)x _ x for
N = 1000,5 = 995,R = 0,D = 0, = 0.15/1000, 7 = 0.05 and p = 0.01. In this
case we see that F(N,D,R,v,u) — (v/(v+u))S = (5/6)(N — S) = 25/6 and
0<a=74448.-. < 1000.

If a,.1 > a,, then

g — psq = —1—GelB/MR (e%ﬁ/v)an _ e%ﬁ/v)um)

THH
>0,

Therefore we find that a,.» > 4,41, and hence the sequence {a,} is nondecreasing by the
mathematical induction. We observe that the sequence {a,} is bounded because

-~ 0% - -
|au11) < F(N,D,R, v, 1) + mse(ﬁ/w)R.

Since {a,} is nondecreasing and bounded, there exists lim, .o 4, = a. Taking the limit as
n — oo in (2.15), we have

«=F(N,D,R,v,u) — T GelB/ MR B/ (2.16)
The straight line y=F(N, D, R, 7, t)—x and the exponential curve y= (y/(y+))Se(F/)Re=(B/7)x

has only one intersecting point in 0 < x < N by virtue of (2.14), and so the uniqueness of «
follows. We claim that R < a < N. Since

F(N,D,R,v,u) = N —

we obtain
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The inequality a > R follows from the following inequality

in view of (1.6). O
We assume that the following hypothesis

(As) § < 'Y?‘E(ﬂ/v)(vcf?)

holds in the rest of this paper. We note that (As) is equivalent to the following

T+u Ry _ 2tn
Al SN-D+H r—
(As) B v %

in view of SeB/MRe=(B/7)e = N — D + (u/7)R—=((vy+wu)/v)w

Theorem 2.5. The initial value problem (1.1)—(1.5) has the solution

S(t) = SelB/MRp=1(p), (2.17)
1@%:N—D+$R—§#”m¢%o+7;”bg@%ﬂf (2.18)
R(w::-—glog¢—1ay (2.19)
D(t) = —Glogg () +D- 'R, (2.20)

where ¢~ (t) denotes the inverse function of ¢ : (e~ (F/M%, e=(B/NR] 5 [0, 00) such that
—(B/7)
dg
t=o(u):= / ,
A T
where P(§) is given by (2.12).

Proof. We note that ¢(u) € Cl(e~ (/M e=(B/NRY (1) is decreasing in (e~ (B/7)x, ¢~ (B/T)R],
q;(g*(ﬁ/ W)R) = 0. We claim that lim,_,, (/9 (1) = co. A little calculation yields

lim (@)= lim (ﬁNE—ﬁD—kﬁVR ﬁ&ﬂ”7R€+(7—%u)bg§>
E—e=(B/7Mag0 E—e=(B/7MngQ Y
= lim B(N—D+ R GeB/MRe=(B/mx _ Wx)
x—a—0 0% Y
Y Y

_ (2.21)
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Figure 2.2: Variation of (&) = BN — BD + (Bu/7)R — BSelF/VRE 4 (y 4 ) log &
for N = 1000,§ = 995,] = 5,k = 0,D = 0,8 = 0.15/1000, 7 = 0.05 and
# = 0.01. In this case we observe that e~ (/7% = 0.10715..., e-(F/7R = 1,
(1) = BN — BS = BT = 0.00075, ¢/ (&) = 0 for & = 0.40201..., (7 + )/ B = 40,
((y +m)/B)e®/ M > 2000, and (v + p)/B < S < ((v+p)/B)eP/ M.

in view of (2.16). Taking account of the hypotheses (A1) and (As), we find that (&) > 0 in
(e=(B/7)a = (B/7R] by the same arguments as in the proof of Theorem 2.3. Since

L B ogprr L1 —pSePR+ (y /8
cp(@)  rtu P(E)  rtp ¥(¢) '
we get
e~ (B/MR dg
W=/ H@ ~ |
_ B gpr [0 A1 TR
A etk ot

e (B/MR _
_ B g / a6 1 <1Og (e B/IRY log ¢(u))

T+u wo PG vt
B s, B/mR / et ag 1 :
= SelB/ —2_ 4+ — (log (BI) — log y(u)). (2.22
Therefore, we see from (2.21) and (2.22) that
e*(.B/'Y)R dé‘
I — i / 46 _
u%e—g}’}r)“JFO(P(u) u%e‘}g}*)”‘n%) u Clp(g) ®

Then we conclude that ¢~ 1(t) € C!(0,0), ¢~ '(#) is decreasing on [0, ), and that
9 (0) = e R,
lim ¢~ (t) = e~ (B/7)%,

t—o0

It is easily verified that

) 1 _
(q) (t)) @' (u) lu=gp1() up(u) u=¢~1(t)

=—¢ (e~ (t) = —BI(t)e (1), (2.23)
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in light of
Yo~ (1) = BI(H). (2.24)
We observe, using (2.17)—(2.20) and (2.23), that
/(1) = SelP MR (971(1)) = SelP/ R (~pI(t)p7 (1))
= —BSeP/ MR (1)1(t) = —BS(H)I(1),
1

B9 l(t)
= ~(=BSO1(0) + L (=p1(1)) = BS(O)1(E) ~71(5) — (),
i ale) oy _
i n(ei®)
D (t) :B (Pil(t) ’B( 181<t>) - }lI(t),

and consequently (2.17)—(2.20) satisfy (1.1)—(1.4), respectively. It is easy to check that
S(O) = ge(.B/'Y)R(P—l(O) — ge(ﬁ/’}’)Re—(ﬁ/')/)R _ S~/
R(0) = — L 1og ¢~ 1(0) = — L loge~(B/MR = R,

=
|
Un
.
=
~
2
=
= =
AN
—
o
N—
+
2
+
-
—
]
aQ
S
—
—~
o
N—

=
|
Un
+
<
™|+
/T
=R> ™™
=
N———

3 Various properties of the exact solution

We can derive various properties of solutions of SIRD epidemic model via the differential sys-
tem qualitatively, however we obtain more detailed properties directly from the exact solution
of the SIRD differential system.

Theorem 3.1. We observe that 1(o0) = 0 and I(t) >
H

0
max[(t)=N-D—-R—- 1~ 1+log5~—10gm
>0 p p

ST YTH ) g (Y TH
t_T'_(P<5§e(ﬂ/v)R>_S < B )

Furthermore, I(t) is increasing in [0, T) and is decreasing in (T, c0).

at
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Proof. Taking account of (2.16), we easily check that
I(c0) = lim I(t)

t—o0

=  lim <N Dy PR _geBimR, T TH log u)
u—se—(B/Ma4Q v :B
_TrE <F(N, D,R,v,u)— L{ge(ﬁ/ﬂﬁe(ﬁ/v)w _ IX)

Since e~ B/M% < o1(t) < e~ (B/NR for t > 0 and (&) > 0 for e~ B/M* < & < ¢~ (F/MR e
find that I(t) = (1/B8)¥ (¢~ (t)) > 0 on [0,00). Since e~ F/M* < o=1(t) < e=B/NR for t > 0
and (&) > 0 for e~ (B/1* < & < ¢=(B/TR e see that I(t) = (1/B)yp(¢~1(t)) given by (2.24)
is positive for ¢t > 0. Differentiating both sides of (2.24), we arrive at

;w(wt»(wm)’

_ 1 5 R, Y+H 1Y
=2 <_553(ﬁ/7)R + o L(t > (97'(1)
(o '(1)
(=BS(t) +7+n) WEIOR
(=BS(t) + v +u) (=BI(1))
= (BS(t) = (v +p))I(t) (3.1)
in view of (2.23). It is obvious that I'(t) = 0 holds if and only if

_ +
o) = ot

I'(t) =

~—

R ™= ™

a 'Bge(ﬁ/’Y)R
> Y+
S(t) = ——,
(t) 5
which yield

T Yt+Hu o1 [T TH
oo () =57 (75).

e B/ma o _YTH Y FH (/R _ (/R

,353(/3/7)1? ‘BS

We note that

in light of the hypotheses (A;) and (As). Since (go_l(t))/ < 0 and ¢~ !(t) is decreasing on
[0,00), we observe that I'(f) > 0 [resp. < 0] if and only if t < T [resp. > T|. Hence, I(t) is
increasing in [0, T) and is decreasing in (T, c0). We find that the maximum of I(¢) on [0, c0) is
given by

Lol y+e N Ny polg_g@mr YtE  7HH Y+u
gY <5§e<ﬁ/v>ﬁ>_N D RS e mmr ¥ g 198 | p3,pi
= Hs vtm 7+ﬂ( v+ u - /3~>
—N-D+ER- + lo —log §— PR
B B\ T8y
::N_D_R_WZV(1+mg§_mg7;”). 0
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Corollary 3.2. The function I(t) has the maximum at

e~ (B/MR
— Gp(B/MR dg
THp /(”r+14) /(BSelR) (&)
1 .o
+m(10g(ﬁ1)—10g(ﬁ (NS R,D,,B,’)/,y))),
and T satisfies the following inequality
1 <T<1,
where
(B/ (v + )5 ~1 )
= BH(N,3,R.D, B.7) + oSy (log (BI) —log (BH(N,S,R,D, B, v, 1))
and
S—1 5o
T = (ﬁ/(7+}~l)) + (log (BI) —log (BH(N,S,R,D, B, v, 1)))

Proof. It follows from (2.22) that

Y G
=9 ( 5ge<ﬂm>ﬁ>

__# Seo(B/7R e 4
Y+ u /(’Y+H) /(gsetenR) H(E)
1 o~ =
+m(log(ﬁ[) log (ﬁ (N S, R,D,ﬁ,'y,y)))

because of

R 5B A
() <W> = BH(N,S,R,D, B, v, 1).

From (2.12) we see that

¥(@) = —pSelb R T,

( )/(BSeB/DRY) = 0, (e B/DR) = BI, and ¢(¢) is decreasing on
SelP ) ~(B/7R]. Then we get

BI < ¢(&) < BH(N,S,R,D,B, v, 1),

and that ¢’
[(r+m)/ (B

and hence

1 1 i
,BH(N;§,R/D,,3,’)’;V) .
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Integrating the above inequality over [(7y + )/ (BSel?/ 1R ¢=(B/TR] and then multiplying by
(B/ (7 + 1))SelP/ MR we are led to

B/(r+m)S =1 _ B & pri /eus/wé s
BH(N,S,R,D,B,v,u) — v +# (y+1)/ (BSe®B/MR) P ()

< (B/(r+p)S-1

7

< B
which yields the desired inequality. O
Theorem 3.3. We find that R(o0) = «,

R(co) = N — D+ %R — GelBIMR=(B/1IR() _ %R(oo), (3.2)

and that R(t) is an increasing function on [0, c0) such that
R < R(t) < a = R(o).
Proof. It follows from (2.19) that

R(c0) = lim R(t) = lim —g log ¢~ (t)

t—o0 t—o00

= lim _ log u
u%e*(ﬁ/'Y)”U,»O ﬁ

= Q.

Since &« = R(0), the identity (3.2) follows from (2.16). Since e~ (B/M* < =1(t) < e~ (B/MNR e
obtain )
_Elog ef(ﬁ/W)R S R(t) < _glog e*(‘B/')‘)D(/

or
R < R(t) < a = R(c0).
It is obvious that R(t) is increasing on [0,c0) in view of the fact that ¢~!(t) is decreasing

[0, 00). O

Theorem 3.4. We see that )
S(OO) — ge(lg/’y)Ref(ﬁ/’)/)R(oo), (33)

and that S(t) is a decreasing function on [0, 00) such that
S > S(t) > SelP/ MR B/ — §(c0).
Proof. The identity (3.3) follows from

S(c0) = lim S(¢) = tlgg SNe(ﬁ/V)Rgo’l(t)

t—o0

= lim SelB/MRy,
u—e—(B/7) “+0

— ge(ﬁ/’y)ﬁef(ﬁ/’)/)‘x
— Gp(B/MR B/ R ()
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Since e~ (B/M% < o=1(t) < e~ (B/VR we have

Sye(lg/"’/)f{ef (.B/')/)“ < Swe(,B/’)/)Rqo*l (t) S ge(:B/'Y)Ref(.B/’Y)R

Hence we obtain

SelB/MR=(B/Me < 5(4) < 8.
Since ¢~1(t) is decreasing on [0, o), we deduce that S(t) is also decreasing on [0, o). O

Theorem 3.5. The following holds:

0o) = PR(c0) D — 5 .
D(e) = L R(w) + D~ TR, (3.4)

and D(t) is an increasing function on [0, 00) such that
D < D(t) < D(0).

Proof. Taking account of (2.20), we obtain

. T U 5 Hs
fim () = im (- log g™ (0)) + D~ IR
= lim <—logu> +D-ER
u—se—(B/1)a4(Q Y
ya—i—D PR
Y
= PR(eo) + D - R,
i Y

which is the desired identity (3.4). Since e~ (F/M* < ¢=1(t) < ¢~ (B/VR we get

P 1 B s
——a <lo t) < —LR,
. gy ()=~
and hence " " "
ZR<-L1o L) < Ba,
” gloge () <7
which implies
D<Dit) < at+D-ER="Reo)+ D ER
Y v Y v
We conclude that D(t) is increasing on [0, c0) since ¢ ~!(t) is decreasing on [0, o). O
Theorem 3.6. If
st 1y [ty g
<Xl 14+ /2 ), (3.5)
g2 ( \/ B
then there exists a number Ty (T < Ty) such that I(t) is concave in (0, Ty ), and is convex in (Ty,00).
If
THH r At g
S>> P (14 |2 T 2, (3.6)
g2 ( \/ B

then there exist two numbers T, and T3 (0 < T, < T < T3) such that I(t) is convex in (0,T;) U
(T3, 00), and is concave in (T, Ts) (cf. Figures 3.1, 3.2).
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800 1

700

600 1
€ 500 1 - St):Susceptible
= I(t):-Infectious
mn -4
::i - = R{t):Recovered
£ 300 D) D(t)-Deceased

200 1

100 A E I

01 1 :
0 20 40 &0 80 100
T T Time

Figure 3.1: Variation of S(t), I(t), R(t) and D(t) obtained by the numer-
ical integration of the initial value problem (1.1)-(1.5) for N = 1000,S =
800, = 200,R = D = 0,8 = 0.2/1000,7 = 0.07 and # = 0.03. In this
case S(= 800) > (v +u)/B(= 500) > S(c0)(= 144.57...), and the condi-
tion (3.5) is satisfied because (7y + p)/B = 500 and S(= 800) < (v +u)/B+

(1/2) <T+ J@aO /BT + T2> (= 931.66...).

Proof. First we note that the hypotheses (A1) and (Af) imply that

G IR N _pylR_TTE
B Y v
— N—R(co) — [PR(cc) D — P12
_ N R(w) <7R( )4+ D 7R)
— N — R(e0) — D(0) = S(e0)

in light of # = R(c0) and I(c0) = 0. Differentiating (3.1) with respect to ¢ and taking (1.1),
(1.2) into account, we obtain

1"(8) = (BS"() 1(£) + (BS(t) — (v +p)) I'(D)
=B(-p ()I(t))l(t) (BS(£) = (v + ) (BS(B)I(t) = vI(t) — pI(t))

= (— BS(O1() + BS(1 —26(y + WS(1) + (7 + ) 1(1)
= p <S(t)2—5(t)1(t) - Msa) n (7+ﬂ)2> 100)

p p?
_ 2yt (w1
_ B (S(t) I I(t)> S,

Now we investigate the sign of I”(t). We define

2
GlE) = S(t)_z(vﬁﬂt) n (7;2;!) S(lt) 1)



16 N. Yoshida

1000 1 —— S§(t):Susceptible
S(t) I(t) Infectious
800 - = R(t):Recovered
R(t) = Dit):Deceased
c 600 1
o
B
a
400 1
& D(t)
1
200 - |
:
01 | : !
T T T T T T
0 20 40 &0 a0 100

T2 T T3 Time

Figure 3.2: Variation of S(t), I(t), R(t) and D(t) obtained by the numerical
integration of the initial value problem (1.1)~(1.5) for N = 1000,S = 980, =
20,R =D = 0,8 = 04/1000,7 = 0.07 and # = 0.03. In this case S(= 980) >
(v+u)/B(= 250) > S(o0)(= 19.39...), and the condition (3.6) is satisfied be-

cause $(=980) > (v + 1) /B + (1/2) (T+ 1/ (4(y + ) /)T + I2) (= 33141...).

and differentiate both sides of the above with respect to t to obtain

G/(i’) — S/(t) . <’)/—|-“l/l>2 S/(t> . I/(t)

IO

sy - RSBS00

= —psy1(0+ L (psioy10) 1) - (o)
= —2ps(ti() + L sy

— 2 (s(7 - Tt - LEP) S

=25 (500~ 22 (st + L5E) )

Since S(t) + (7 +u)/(2B) > 0, it follows that G'(t) = 0 for t = T = S~ ((y+u)/B), and
that G'(t) < 0 [resp. > 0] if t < T [resp. > T|. Therefore, G(t) is decreasing in [0, T) and
increasing in (T, o0). It is readily seen that

G(O):§_2(7;V)+(’Y;2}4)Zé_f

_ (e (20Em) gy rrm)?
_ (s < ; +1>s+ /32>
(S—51)(S—s2),

U)z‘ — U
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where

Moreover we observe that

B g S(T)
Cytp 20+ | (r+w)?* B
R R R T T e
= —r¥1>aoxl(t) <0,

and that

2

If (3.5) is satisfied, then G(0) < 0, and therefore there exists a number T; > T such that
G(Ty) = 0, G(t) is negative in (0,T1), and G(t) is positive in (Ty,00). Since I"(t) =
B2G(t)S(t)I(t), we deduce that I(t) is concave in (0,Ty), and is convex in (Tj,o0). If (3.6)
is satisfied, then G(0) > 0, and hence there exist two numbers T, and T3 (0 < T, < T < T3)
such that G(T2) = G(T3) = 0, G(t) is positive in (0, Tp) U (T3,00), and G(t) is negative in
(T, T5). Consequently we conclude that I(f) is convex in (0, T») U (T3,00), and is concave in
(T, Ts). O

Theorem 3.7. The following identity holds:

v+
p

Proof. Since I(o0) = 0, we observe, using (3.4), that

5(c0).

S(e0) =S+1+ ‘ulog 3

— N —R(w0) - “R(e0) — D + R

v v
:N—D—R+<1+” R—<1+”>R(oo)

v v

:§+T+<1+V>7<ﬁﬁ—ﬁR(oo)>

v B\ 7

p

:S~+I~+7—gylog5(?o)

by virtue of (3.3). O
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Theorem 3.8. It follows that
§'(00) = I'(e0) = R'(00) = D'(c0) = 0.
Proof. Since I(o0) = 0, we conclude that

(o0 )——ﬁS( )I() =0,

I'(c0) = BS(00)I(c0) — yI(e0) — pl(e0) =0,
R'(c0) = ( )= )
D'(e0) = puI(c0) =

by taking account of (1.1)—(1.4).

O

Theorem 3.9. Let (S(t),I(t), R(t), D(t)) be the exact solution (2.17)—(2.20) of the initial value prob-

lem (1.1)—(1.5), and let

(S(u), I(u), R(u), D(u)) == (S(g(u)), I(g(u)), R(p(u)), D(g(u))).

A

Then (S(u), [(u), R(u), D(u)) is a solution of the initial value problem for the linear differential system

dS(u)  S(u)
du — u’
df(u) Su) 41 puil
T B u + Bu’
dR(u) 71
du — Bu
dD(u) ul
du B u
for u € (e~ B/ o= (B/VR) with the initial condition
f(e*(ﬁ/"r)R) -1
R (e—(ﬁ/wR) —R
D (e—(/&/vﬂ?) - D.
Proof. First we remark that
R 1
[(u) = I(g(u)) = Blﬁ(u)

in light of (2.24). Noting

we are led to

= @ =500 (- )
= (=800100) (=) = BS00) (i)
S(u)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
(3.12)
(3.13)
(3.14)

(3.15)
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in view of (3.15). Similarly we obtain

dR(u) dR(t)‘
du — dt t=g(u)

and

It is clear that

Hence, (S(u), [(u), R(u), D(u)) is a solution of the initial value problem (3.7)~(3.14). O

Theorem 3.10. Solving the initial value problem (3.7)—(3.14), we obtain the solution (2.4)—(2.7) for
ue (e_(ﬁ/')’)“/ e_(ﬁ/'Y)R]

Proof. Since (3.7) is equivalent to

we derive
S(u) = ku

for some constant k. It follows from (3.11) that

Il
Un

é (e*(ﬁ/v)fi) — je—(B/MR
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and hence .
k = GelB/MR

which yields i
S(u) = SelP/MRy

Solving (3.9) yields

R(u) = —glogu—kk

for some constant k. The initial condition (3.13) implies

R (e*(ﬁ”)’?) = —Tioge B/MR Lk =R+ k=R
p

and hence k = 0. Consequently we have

5 T

R(u) = log u.

B g
We solve (3.10) to obtain
D(u) = Z logu +k
for some constant k. The initial condition (3.14) implies
S (e B/MRY = _F oo BMR L PR k= D
D (e ) 5lose +k="Rtk=D
and hence k = D — (u/)R. Consequently we have
K 5 _Hp
D(u) = —=logu+D — =R.
() = —glog o

Since .

S() _ g /1R

u
we obtain .
di(w) _ _gpmr, 1 Bl
du ﬁ u ﬁ u

Hence we get

N

T(u) = —Ge/MRy glogu + Zlogu +k

for some constant k. From the initial condition (3.12) it follows that

I <e_(ﬁ/7)R> =-S5+ gloge_(ﬁmm + Zloge_(ﬁ/"Y)R +k=-S—-R-

which implies

<=
=
Il
zZ
|
w)}
+

<=
'%z

Therefore we deduce that

a

I(u) = —SelP/MRy 4 ’Y—gylogu +N-D+ER

2

==

=

1

~
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§=995 —> 1000 —— S(t):Susceptible
I(t)-Infectious
800 = R(t):Recovered R(Y)
== Di{t):Deceased <— R(e0) =a =74448 ---
»
a
(y+)/p=400 — @ WOTT—T—1T—1 \
max I(t) =23548 ... —> 00 -1~
~—— D(o0) =148.89---
4 5(c0)=106.63"--
0 1

T T T T T T T
0 20 40 60 80 100 120 140 160
Time

T=63.03---

Figure 3.3: Variation of S(t),I(t), R(t) and D(t) obtained by the numerical in-
tegration of the initial value problem (1.1)~(1.5) for N = 1000,S = 995, =
5R = = 0, = 0.15/1000, v = 0.05 and ¢ = 0.01. In this case we
obtain R(co) = a = 74448..., I(c0) = 0, D(c0) = 148.89..., S(c0) =
N — R(o0) — D(00) = 106.63..., (7 + u)/B = 400, S(= 995) > (v + u)/p(=
400) > S(o0)(=106.63...), max;>o I(t) = 235.48... and T = 63.03..., where T
is calculated by

i 1
T=o((y+n)/(BS)) = Aoo/%sg’jg@

1 e

= =63.03...
400/995 ¢(0.15 — (0.15/1000) x 995¢& + 0.06log &)

Remark 3.11. The hypothesis (A3) is satisfied if R = 0, since N > S + D.
Remark 3.12. The right differential coefficient I, (0) is positive because
= Jim (BS(01(6) —71(t) — pI(1))
=BSI—yI—ul=(BS—y—w)I>0

IL.(0) = Jim I'(1)

in view of the hypotheses (A1) and (A»).

Remark 3.13. In the case where (S(c0) <)S < (y+p)/p (e, I'(0) < 0) we deduce that
(&) is increasing in (e~ (F/7)% e~ (B/71R], Hmz s/ 4o P(E) = 0 and (e~ (/MR) = BI. Since
¢~ 1(t) is decreasing on [0,00), ¢~ 1(0) = e~ (F/NR and lim; ,o, ¢ 1(t) = e (/12 it follows
that I(t) = (1/B)y(¢1(t)) is decreasing on [0, ), and that I(0) = (1/B)¢(¢'(0)) = I and
I(00) = limy 00 I(t) = limy_,,—s/10o(1/B)9(&) = O (cf. Figure 3.4).

Remark 3.14. The constant H(N, S, R, D, B, v, 1) defined in Corollary 3.2 is equal to max;>¢ I (#)
given in Theorem 3.1.

Remark 3.15. It follows from Theorems 3.1, 3.3-3.5 that S(f) > 0,I(t) > 0 for t > 0 and
R(t) > 0,D(t) > 0 for t > 0.
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1000
(y+w/B=900 ———  p-te-ccpemmefm e

— §(t):Susceptible
lit)-Infectious

800 —— R(t):Recovered
$S=700 —— = D|(t):Deceased
g 600 St
B
=
2 a0 RV

Il
w
o
o

200

O 20 40 6 80 100 120 140 160

Figure 3.4: Variation of S(t),I(t),R(t),D(t) obtained by the numerical inte-

gration of the initial value problem (1.1)-(1.5) for N = 1000,5 = 700,I =

300,R = D = 0,8 = 0.2/1000, v = 0.1 and = 0.08. In this case we see

that (v + u)/B(= 900) > S(= 700), I(c0) = 0 and I(#) is decreasing on [0, ).
Remark 3.16. Under the hypothesis

(A}) D > 0 satisfies

the transcendental equation

y=-t N- P ry T p_ F GB/mDy=(B/ny (3.16)
TR TE o A TR A

has a unique solution y = &, such that
D<a,<N

by the same arguments as in Lemma 2.4. Since the equation (3.16) reduces to the transcen-
dental equation in Lemma 2.4 by the transformation y = D — (u/7)(R — x), we see that
a, =D — (u/7)(R — a). We define

- e~ (B/u)D d(?
r©=] HE

for e~ (B/mar < o < e*(ﬂ/ﬂ)b, where
0.(2) = N = pR-+ E1D — p3elP0% + (1 +-)log .
It follows from the transformation
&= e*(ﬁ/H)De(ﬁ/Wﬁﬂ
that

—(B/7)R
e d
q)*(w):/(ﬁ/ D o—(B/7)R 5 !
elB/WDe=B/MRy P(17)
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where e~ (B/1¢ < o(B/1De=(B/T)Ry; < ¢=(B/TR_ Then there exist the inverse functions ¢; ()
and ¢~1(t) of the functions

t= g (w), t= (P(g(ﬁ/ﬂ)f)e—(ﬁ/y)ﬁw)/
respectively, and the following hold:
w = (p,jl(t), o(B/1)D p=(B/ 1Ry, — qo‘l(t) (0<t< o)

Hence we obtain . _
97 (1) = e BDLEMRGA (1) (0 < ¢ < o0).

Let (S«(t), L (t), R«(t), D«(t)) be the exact solution of the initial value problem (1.1)-(1.5) by
starting our arguments utilizing (1.4) instead of (1.3). Then we observe that

SelP/mPg. (1
= GelB/mDe=(B/mDo(B/ 1R =1 (4)

FIRe=H(e) = s(1),

S..(t)

— _Z log(e_(ﬁ/y)be(ﬁ/')/)ﬁq)_l(t))

for 0 <t < co. Consequently we conclude that
(S«(t), L(t), Ri(t), Di(t)) = (S(t),I(t),R(t),D(t)) on [0,00).

Remark 3.17. In this paper we derived the explicit formula for the exact solution of the SIRD
epidemic model, and obtained various properties of the exact solution including the maximum
of I(t), the concavity and convexity of I(t), time T which attains max;>o I(¢) and the linear
differential system which is satisfied by the parametric form of the exact solution. If 4 = 0
and D(t) = 0, then the SIRD epidemic model reduces to the SIR epidemic model. We note
that our results can be applied to the SIR epidemic model if we set 4 = 0 and D(t) = 0.
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