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Abstract. In this paper we prove the following weighted Sobolev inequality in a
bounded domain Ω ⊂ Rn, n ≥ 1, of a homogeneous space (Rn, ρ, wdx), under suit-
able compatibility conditions on the positive weight functions (v, w, ω1, ω2, . . . , ωn) and
on the quasi-metric ρ,

( ∫
Ω
| f |qv wdz

) 1
q ≤ C

N

∑
i=1

( ∫
Ω
| fzi |

pωi MSw dz
) 1

p
, f ∈ Lip0(Ω),

where q ≥ p > 1 and MS denotes the strong maximal operator. Some corollaries on
non-uniformly degenerating gradient inequalities are derived.

Keywords: Sobolev’s inequality, homogeneous space, non-uniformly degenerating gra-
dient.
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1 Introduction

In this paper we aim to prove the following weighted Sobolev type inequality in a bounded
domain Ω ⊂ Rn, n ≥ 1, of a homogeneous space (Rn, ρ, wdx)( ∫

Ω
| f |qv wdz

) 1
q ≤ C

N

∑
i=1

( ∫
Ω
| fzi |pωi MSw dz

) 1
p
, f ∈ Lip0(Ω), (1.1)

where q ≥ p > 1 and MS denotes the strong maximal operator. This can be done under
suitable compatibility conditions on the positive weight functions (v, w, ω1, ω2, . . . , ωn) and
on the quasi-metric ρ.

We say that (1.1) is a non-uniform weighted Sobolev inequality since the functions ωiω
−1
j ,

i, j = 1, . . . , n, are not assumed to be neither bounded nor bounded away from zero in any
compact subset of Ω.
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Poincaré–Sobolev type inequalities are essential in many contexts of the theory of elliptic
and parabolic partial differential equations such as the Harnack’s inequality, the regularity
of solutions, the continuation of differential inequalities, the absence of positive eigenvalues,
the estimation of negative eigenvalues, the spectrum discreetness of Schrödinger operator etc.
(see, e.g., [1, 3, 5, 11, 12, 23–27, 30, 33, 36, 38, 40]).

The study of the above mentioned qualitative properties of second order elliptic equa-
tions in absence of uniform ellipticity condition and in lack of uniform degeneration relies
on Poincaré–Sobolev type weighted inequalities having non-uniformly degenerating gradi-
ent. Meanwhile, the theory has also been extended to more general contexts, such as that of
Carnot–Carathéodory metrics associated with families of vector fields (see, e.g., [8–10, 13]).

To deduce the inequality (1.1) one could first derive a suitable representation formula
in terms of integral operators of potential type, and then use some continuity results for
these operators in proper metric spaces, endowed with doubling measures (see, for example,
[18]). In this paper, we show a new different approach to obtain the inequality (1.1). The
arguments of our proofs are inspired by those of [31] (see, also the recent papers [29, 32]),
where the Euclidean metric was considered. However, the ideas of [31, 32] cannot be simply
adapted to homogeneous spaces and to non-uniformly degenerating gradients, since not all
the homogeneous spaces posses the Besicovitch covering property (see, e.g., [35]). To overcome
this difficulty, we use the ”5B” covering lemma that holds in any homogeneous space, see e.g.,
[7, 39]. We refer to [37], and to the references therein where the Euclidean metric and equal
weights ωi, , i = 1, . . . , n, are considered.

In general, when dealing with multi-weighted Sobolev inequalities the task is to find suf-
ficient (and hopefully necessary) conditions on the measures ωi(x)dx, i = 1, . . . , n, and v(x)dx
which give ( ∫

Ω
| f |qv dz

) 1
q ≤ C

N

∑
i=1

( ∫
Ω
| fzi |pωi dz

) 1
p
, f ∈ Lip0(Ω), (1.2)

where 1 ≤ p ≤ q < ∞ and the constant C does not depend on f and Ω. For equal weights ωi,
i = 1, . . . , n, sharp sufficient conditions can be found in [4, 15] and in the papers [20, 32, 34].
Though this subject has been extensively studied in the last years it is still far from its full
characterization (see, [6, 14–22]). Some progresses in deriving sufficient conditions for the
Sobolev–Poincaré type inequalities with Grushin type weights were made in the works [15,29].
In this article we give sufficient conditions for the inequality (1.2) to hold and we show some
generalizations.

2 Notation and main results

We say that (Rn, ρ) is a quasi-metric space if the function ρ : Rn ×Rn → (0, ∞) satisfies the
following properties:

1) ρ(x, y) ≥ 0 for all x, y ∈ Rn; ρ(x, y) = 0 if and only if x = y;

2) ρ(x, y) ≤ K0

(
ρ(x, z) + ρ(y, z)

)
for all x, y, z ∈ Rn, with K0 positive constant;

3) ρ(x, y) = ρ(y, x) for all x, y ∈ Rn.

A useful result by Macías and Segovia (see [28]) asserts that, every quasi-metric space is
metrizable, i.e. there exist a distance d and a positive number α > 0 such that ρα is equivalent
to d.
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Now, let us denote by B(x, r) = {y ∈ Rn : ρ(y, x) < r} the ρ-metric ball with center in
x ∈ Rn and radius r > 0, and let µ be a nonnegative Borel measure on Rn satisfying the
doubling condition. We say the measure µ is a doubling measure if there exists C1 such that

µ (B(x, 2r)) ≤ C1µ (B(x, r)) for all x ∈ Rn, r > 0.

The quasi-metric space (Rn, ρ) equipped with a doubling measure µ is called a homogeneous
space and it is denoted by (Rn, ρ, dµ) (see [7]). In Section 3 we will give an example of
homogeneous space.

In sequel, the notation Qn(x, r) ( or simply Q(x, r) ) denotes the n-dimensional Euclidean
ball Q(x, r) = {y ∈ Rn : |y − x| < r} centered in x and of radius r. For i = 1, . . . , n, we
denote by `i(B(x, r)) = sup

{
|zi − yi| : z = (z1, . . . , zn), y = (y1, . . . , yn) ∈ B(x, r)

}
and by

d(Ω) = sup {ρ(x, y) : x, y ∈ Ω} the ρ-diameter of the domain Ω. We also let Σ be the
collection of ρ-metric balls with center in Ω and radius less then d(Ω).

Given an integrable function f and a measurable set E ⊂ Rn we denote by f (E) =∫
E f (x)dx the weighted measure of E, while |E| denotes the Lebesgue measure of E. Denote

by p′ the conjugate number of 1 < p < ∞ such that 1
p +

1
p′ = 1

A measurable function taking a.e. finite positive values is called a weight. A weight
function f : Rn → (0, ∞) belongs to the Ap-Muckenhoupt weight class, 1 < p < ∞, with
respect to the quasi-metric ρ, if for any ρ-metric ball B = B(x, r) ⊂ Rn, one has(

1
|B|

∫
B

f (z)dz
)(

1
|B|

∫
B

f−
1

p−1 (z)dz
)p−1

≤ C, (2.1)

while it belongs to the A1-class if

1
|B|

∫
B

f (z)dz ≤ C inf
B

f (z),

where the constants C > 0 do not depend on x ∈ Rn and r > 0.
A weight function f : Rn → (0, ∞) belongs to the A∞-Muckenhoupt weight class A∞(dx)

if there exist two constants C, δ > 0 such that for any ρ-metric ball B = B(x, r) and any
measurable subset E ⊂ B it holds that

f (E)
f (B)

≤ C
(
|E|
|B|

)δ

. (2.2)

Let g : Rn → (0, ∞) be a weight function and µ be a doubling measure. We say g belongs
to the A∞(µ) weight class if there exist two constants C, δ > 0 such that for any ρ quasi-metric
ball B = B(x, r) and any measurable subset E ⊂ B one has∫

E gdµ∫
B gdµ

≤ C
(

µ(E)
µ(B)

)δ

, (2.3)

For the main properties of the Ap-Muckenhoupt’s weight classes, we refer the reader, for
instance, to [7]. It is well-known that Ap ⊂ A∞ for any fixed 1 ≤ p ≤ ∞ and moreover
A∞ = ∪1≤p<∞ Ap. Furthermore, Ap ⊂ Ap−ε, for some ε > 0 depending on the constant C in
the Ap class definition.

In the statement and proof of Theorem 2.5 below, we use the strong maximal function
MSw. For sake of completeness, let us recall its definition. Let R denote the collection of
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rectangles R in Rn with sides parallel to the coordinate axes, we define the strong maximal
function MS as

MS f (x) = sup
R3x

1
|R|

∫
R
| f (y)| dy, f ∈ L1, loc

In Theorem 2.6, we make use of the classical fractional maximal operatorMε defined as

Mε f (x) = sup
Q3x

1
|Q|(n−ε)/n

∫
Q
| f (y)|dy,

where the supremum is taken all over the Euclidean balls {Q} containing the point x.
In the proofs of our main results we avail ourselves of the so called ”5B” covering lemma

below. This lemma, unlike Besicovich covering property, is valid in any homogeneous space.

Lemma 2.1 ([1, Covering Lemma, p. 270]). Let (X, ρ, µ) be a homogeneous space. Let B =

{Bα = B(xα, rα) : α ∈ Γ} be a family of balls in X such that ∪α∈ΓBα is bounded. Then there ex-
ists a sequence of disjoint balls {B(xi, ri)}i∈N ⊂ B such that for every α ∈ Γ there exists i satisfying
rα ≤ 2ri and Bα ⊂ B(xi, 5K2

0ri).

Definition 2.2. Throughout this paper, we consider the quasi-metrics ρ satisfying the following
“S”-condition

|B#| ≤ C|B|, (2.4)

for all the ρ quasi-metric balls B (see next section for their definition). Here B# is the smallest
parallelepiped with edges parallel to coordinate axes containing the ρ quasi-metric ball B.

Definition 2.3. Moreover, we assume that there exists a constant c > 0 such that for every B
and every x, y ∈ B, t ∈ (0, 1) one has

x + t(y− x) ∈ cB. (2.5)

Now, we are ready to state our main results.

Theorem 2.4. Let q ≥ p ≥ 1, (Rn, ρ, dx) be a homogeneous space and Ω ⊂ RN be a bounded domain.
Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-condition (2.4) and (2.5). Let v ∈ A∞(dx)
and ω

1−p′

i , i = 1, 2, . . . , n, be doubling functions on Σ. If

(`i(B)/|B|)
( ∫

B∩Ω
v dx

) 1
q
( ∫

B∩Ω
ω

1−p′

i dx
) 1

p′ ≤ Ã, (2.6)

i = 1, 2, . . . , n, on any B ∈ Σ, then

( ∫
Ω
| f |qv dx

) 1
q ≤ C0Ã

n

∑
i=1

( ∫
Ω
| fzi |pωi dx

) 1
p
, (2.7)

for all Lipschitz continuous functions f : Ω→ R vanishing on ∂Ω, and with a constant C0 depending
only p, q, n and on C, δ in (2.2).

Theorem 2.4 is an easy consequence of the next assertion.

Theorem 2.5. Let q ≥ p ≥ 1, (Rn, ρ, dx) be a homogeneous space and Ω ⊂ RN be a bounded
domain. Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-condition (2.4) and (2.5). Let
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v : RN → (0, ∞) be an A∞(wdx) function and ω
1−p′

i MSw, i = 1, 2, . . . , n, be doubling functions on
Σ. If

`i(B)
(∫

B
vw dy

)1/q (∫
B

ω
1−p′

i MSw(y) dy
)1/p′

≤ A
∫

B
w(y) dy, (2.8)

i = 1, 2, . . . , n, on any B ∈ Σ, then

( ∫
Ω
| f |qv w(z) dz

) 1
q ≤ C0A

N

∑
i=1

( ∫
Ω
| fzi |pωi MSw(z) dz

) 1
p
, (2.9)

for all Lipschitz continuous functions f : Ω→ R vanishing on ∂Ω, and with a constant C0 depending
only on p, q, n and on C, δ in (2.3).

We remark that, in Theorem 2.5, the Sobolev type weight inequality (2.9) is proven with
different weights for the partial derivatives. This is due to the fact that the weights and the
metric must be in a balance with the geometry of the quasi-metric balls. Taking v ≡ ωi ≡ 1
in (2.9) we get the measure w(x)dx to be a doubling function on Σ, hence we obtain the
inequality ( ∫

Ω
| f |qw(x) dx

) 1
q ≤ C0

N

∑
i=1

( ∫
Ω
| fzi |p MSw(x)dx

) 1
p
.

Moreover, let us mention that the doubling condition on the weights ω
1−p′

i MSw in Theorem 2.5
is motivated by the use Lemma 4 of [39, Chapter 8].

In the next Theorem 2.6 we give a better estimate. In order to do that, the sufficiency
condition (2.8) needs to be suitably strengthened (see (2.11)). Theorem 2.6 below gives, locally,
a finer inequality since

d(Ω)ε sup
B∈Σ,B3x

w(B)/|B| ≥ sup
B∈Σ,B3x

w(B)/|B|1−ε/n.

Theorem 2.6. Let q ≥ p ≥ 1 and Ω ⊂ RN be a bounded domain. Let (RN , ρ, wdx) be a homogeneous
space and assume that there exists a positive constant C1 such that

C1|x− y| ≤ ρ(x, y) (2.10)

for all x, y ∈ Ω. Let v : RN → (0, ∞) be an A∞(wdx) weight function and ω
1−p′

i Mεw, i =

1, 2, . . . , n, be doubling functions on Σ. Assume that the ρ quasi-metric balls B ∈ Σ satisfy the S-
condition (2.4) and (2.5). If

`i(B)
(

r(B)n−ε

|B|

)(∫
B

vw dy
)1/q (∫

B
ω

1−p′

i Mεw dy
)1/p′

≤ Ā
∫

B
w(y) dy (2.11)

i = 1, 2, . . . , n, with ε ∈ [0, 1) uniformly with respect to B ∈ Σ, then

( ∫
Ω
| f |qv w(z) dz

) 1
q ≤ C0Ā

N

∑
i=1

( ∫
Ω
| fzi |pωiMεw(z) dz

) 1
p
, (2.12)

for all Lipschitz continuous functions f : Ω→ R vanishing on ∂Ω, and with a constant C0 depending
on p, q, n and on C, δ in (2.3).



6 F. Mamedov and S. Monsurrò

3 An example of homogeneous space

Let ω : Rn → (0, ∞) be a positive measurable function, such that σ(x) = 1
ω(x) is in the

Muckenhoupt A2-weight class all over the n-dimensional Euclidean balls. This condition used
in proofs of the corollaries below. Observe that this gives that also ω is in the Muckenhoupt’s
A2-class all over the n-dimensional Euclidean balls.

For x ∈ Rn, define a function hx : t ∈ [0, ∞)→ hx(t) ∈ [0, ∞) as

hx(t) = t
(

1
|Q(x, t)|

∫
Q(x,t)

σ(s) ds
) 1

2

, t > 0

and assume that hx(0) = 0, limt→+∞ hx(t) = +∞ for a fixed x ∈ Rn. Then we may consider
an inverse function h−1

x : s ∈ [0, ∞)→ h−1
x (s) ∈ [0, ∞) defined as

h−1
x (s) = inf

{
t > 0 : hx(t) ≥ s

}
, s > 0.

and h−1
x (0) = 0. We can define a quasi-metric ρ on RN = Rn ×Rm = {z = (x, y) |x ∈ Rn , y ∈

Rm} as follows: for any z1 = (x1, y1), z2 = (x2, y2) ∈ RN we put

ρ(z1, z2) = max
{
|x1 − x2|, h−1

x1
(|y2 − y1|), h−1

x2
(|y2 − y1|)

}
. (3.1)

The function ρ : RN ×RN → [0, ∞) is a quasi-metric satisfying the triangle inequality

ρ(z1, z2) ≤ K0

(
ρ(z1, z3) + ρ(z2, z3)

)
(3.2)

with a constant K0 ≥ 1 independent of z1, z2, z3 ∈ RN , (see, e.g., [1, 15]). Therefore, the above
defined quasi-metric space (RN , ρ) endowed with the Lebesgue measure is a homogeneous
space.

In general, the balls of a homogeneous space are not convex, therefore the conditions
(2.4), (2.5) may be failed. The condition (2.4) means that the Lebesgue measure of a metric
ball comparable with Lebesgue measure of its circumscribed parallelepiped. Also as we have
noted the balls of a metric space are not convex the line segment connecting any two points
of a ball may get out of that ball. The meaning of condition (2.5) is that, although the points
on a line segment get out of the ball its points are contained on the comparable ball. It easily
seen that the balls of metric (3.1) are convex and conditions (2.4), (2.5) are satisfied for that.

4 Applications

In this section, we give two examples of applications of Theorem 2.4. To this aim, let ρ be
the quasi-metric defined in (3.1). It is not difficult to see that the ball B(z0, R) with center in
z0 = (x0, y0) ∈ RN and radius R > 0 of this quasi-metric is given by

B(z0, R) =

{
z = (x, y) ∈ Rn ×Rm : |x− x0| < R,

|y− y0| < R
(

1
|Q(x0, R)|

∫
Q(x0,R)

σ(t)dt
) 1

2
}

(4.1)
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Let ω as in the beginning of Section 3 and f : (x, y) ∈ Rn × Rm → f (x, y) ∈ R be a
Lipschitz continuous function. The degenerated gradient of f is given by

|∇ω f |2 = ω(x)|∇x f |2 + |∇y f |2.

For m ≥ 2 we can prove the following result:

Corollary 4.1. Let n + m ≥ 3, q = 2(n+m)
n+m−2 , t = n

n+m−2 and let ω ∈ A2-Muckenhoupt class function
on Rn. Then, ( ∫

B(z0,R)
ωt | f |q dz

) 1
q ≤ C0

( ∫
B(z0,R)

|∇ω f |2 dz
) 1

2
(4.2)

for any function f , Lipschitz continuous in the ball B(z0, R) ⊂ RN , vanishing on ∂B(z0, R). The
positive constant C0 in (4.2) depends on n, m and on the constants in the A2-condition from (2.1).

For m = 1, we have:

Corollary 4.2. Let n > 1, q = 2(n+1)
n−1 , and let ω−1 be a classical A1+ 1

n′
-Muckenhoupt class function

on Rn. Then, ( ∫
B(z0,R)

ω
n

n−1 | f |qdz
) 1

q ≤ C0

( ∫
B(z0,R)

|∇ω f |2 dz
) 1

2
(4.3)

for any function f , Lipschitz continuous in the ball B(z0, R) ⊂ RN and vanishing on ∂B(z0, R). The
positive constant C0 in (4.2) depends on n and on the constants in the A1+ 1

n′
-condition from (2.1).

Corollary 4.3. Let q ∈ [2, 2N/(N − 2)] and let v, ω : Rn → (0, ∞) be functions of the variable x
only of classes A∞ and A2, respectively. Let

( r
R

)1− (N−n)(n+2)
2

(
1
2−

1
q

) (
v (Qx

r )

v (Qx
R)

) 1
q

≤ C
(

ω (Qx
r )

ω (Qx
R)

) 1
2−

N−n
2

(
1
2−

1
q

)
(4.4)

for any x ∈ Rn and r > 0. Then for all f ∈ Lip0 (Bz0
R )( ∫

B(z0,R)
v | f |q dz

)1/q
≤ C0A(x0, R) R

( ∫
B(z0,R)

|∇ω f |2 dz
)1/2

(4.5)

holds with
A(x0, R) = R−

(N−n)(n+2)
2

(
1
2−

1
q

)
v (Qx0

R )
1
q
/

ω (Qx0
R )

1
2−

N−n
2

(
1
2−

1
q

)
,

C0 depends on the A∞, A2 conditions for v, ω and n, q.

The given above corollaries generalize the two-weight Sobolev inequalities to the case of
non-uniformly degenerate gradient ∇ω f . Therefore, those inequalities are of the well-known
inequalities type by Chanillo–Wheeden, Fabes–Kenig–Serapioni with ω ≡ 1. Such inequalities
may be applied to the study of equations with Grushin type operator ∂xi

(
ω(x)∂xi

)
+ ∂2

yj
or

its generalizations ∂xi

(
ω(x)w∂xi

)
+ ∂yj

(
w∂yj

)
when w(x, y) is a function of two variables x, y

obligated to satisfy some conditions.
Note that, the condition (4.4) is a balance condition of Chanillo–Wheeden type [4] for the

case of non-uniformly degenerate gradient inequality of the Sobolev type. Note again, the
function v depends only the variable x while the function f is dependent of two variables
z = (x, y).
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5 Proofs of the main results

Let us start proving Theorem 2.5.

5.1 Proof of Theorem 2.5

Assume that f is not equal to zero almost everywhere in Ω, otherwise the result of Theorem
2.5 is trivial. For α > 0 set Ωα =

{
x ∈ Ω : | f (x)| > α

}
. Since f is continuous the set Ωα

is open. Let a fixed α be such that the set Ω3α is nonempty. Choose a countable covering of
Ωα made up of connected components Ωα,j ⊂ Ωα, j ∈ N. Denote the parts of Ω3α and Ω2α

contained in Ωα,j by Ω3α,j and Ω2α,j, respectively (note that the sets Ω3α,j and Ω2α,j need not to
be connected).

For the reader’s convenience, let us recall that the weight function w of the homogeneous
space (Rn, ρ, wdx) satisfies the doubling condition on the ρ quasi-metric balls. Let b ∈ Ω3α,j
be a fixed point. Let us show that there exists a ρ-quasi metric ball B = B (b, r(b)) such that

w
(

B \Ωα,j
)
= γ w(B), (5.1)

where γ is a small positive number that will be chosen later on. To this aim, let γ > 0 and
define the function

F(t) =
1
γ

w
(

B(b, t) \Ωα,j
)
− w (B(b, t)) ,

which is continuous and negative for sufficiently small t > 0 since b is an interior point of
Ω3α,j.

From the doubling property of w on the ρ-quasimetric balls it follows that there exists a
positive real number τ such that

w (B (b, d(Ω)) \Ω) ≥ τw (B (b, d(Ω))) .

Let us choose the constant γ > 0 so that the function F(t) is positive for t = d(Ω). Observe,
that is always possible since

F(d(Ω)) =
1
γ

w
(

B (b, d(Ω)) \Ωα,j
)
− w (B(b, d(Ω)))

≥ 1
γ

w (B (b, d(Ω)) \Ω)− w (B(b, d(Ω)))

≥
(

τ

γ
− 1
)

w (B (b, d(Ω))) ,

thus it suffices to choose γ such that τ
γ − 1 > 0 in order to get F(d(Ω)) ≥ 0. Hence, by the

Bolzano–Cauchy theorem for continuous functions we get that there exists a t∗ ∈ (0, d(Ω))

such that F(t∗) = 0. Therefore, if we take r(b) = t∗ we achieve equality (5.1).
Now, there are two possibilities:

Case 1)
w
(

B∗ ∩Ω3α,j
)
≤ γw(B∗), (5.2)

Case 2)
w
(

B∗ ∩Ω3α,j
)
> γw(B∗), (5.3)

where B∗ = B(b, 5K2
0r(b)).
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In case 1), denoted by λ = vw, using the doubling property of the function v ∈ A∞(wdx),
it follows

λ
(

B∗ ∩Ω3α,j
)
≤ Cγδλ(B∗) ≤ CC1γδλ(B). (5.4)

By (5.1) and since v ∈ A∞(wdx) we have again

λ(B) = λ
(

B ∩Ωα,j
)
+ λ

(
B \Ωα,j

)
≤ λ

(
B ∩Ωα,j

)
+ Cγδλ(B),

therefore, eventually reducing γ

λ(B) ≤ 1
1− Cγδ

λ
(

B ∩Ωα,j
)

.

Thus, by (5.4) we get

λ
(

B∗ ∩Ω3α,j
)
≤ CC1γδ

1− Cγδ
λ
(

B ∩Ωα,j
)

(5.5)

In case 2), we have two possibilities:

2a) ∣∣B∗ \Ω2α,j
∣∣ ≥ 1

2
|B∗| (5.6)

and
2b) ∣∣B∗ ∩Ω2α,j

∣∣ > 1
2
|B∗|. (5.7)

If 2a) takes place, let us show that

1 ≤ 2
γα

n

∑
i=1

`i(B∗)|(B∗)#|
|B∗|w(B∗)

∫
B∗∗∩(Ω2α,j\Ω3α,j)

| fxi(z)|MSw(z) dz, (5.8)

where MSw denotes the strong maximal function of w, B∗∗ is the ρ-metric ball B∗∗ = cB∗ and
(B∗)# denotes the smallest rectangular with edges parallel to coordinate axes containing B∗.

To prove inequality (5.8), we follow an idea of [31], formula (3.7). Denote Â = B∗ \Ω2α,j
and Z = B∗ ∩ Ω3α,j. Let the points x ∈ Â and y ∈ Z be arbitrary fixed. Since the quasi-
metric balls are not assumed to be convex, the line segment xy = {x + t(y− x) : t ∈ [0, 1]}
connecting x, y may get out of the ball B∗ as t varies in (0, 1). But, due to hypothesis (2.5) it
will stay in the congruent ball B∗∗ = cB∗.

Also, the line segment xy intersects the surfaces {z′ ∈ Ωα,j : | f (z′)| = α} and {z′′ ∈ Ωj
α :

| f (z′′)| = 2α} in some points z′ = x + t1(y− x) and z′′ = x + t2(y− x) where t1, t2 ∈ [0, 1],
with t2 > t1 depend on x, y. Here, t2 corresponds to the value of t for which xy meets for the
first time the surface ∂Ω2α,j after leaving ∂Ωα,j while t1 corresponds to the value of t when
xy intersects the surface ∂Ωα,j.

Having this in mind and using (5.1), (5.6) it follows that

1
2

γw(B∗)|B∗| ≤ 1
α

∫
Â

( ∫
Z
| f (z′′)− f (z′)|dy

)
w(x)dx. (5.9)

Whence,

1
2

γw(B∗)|B∗| ≤ 1
α

∫
Â

( ∫
Z

( ∫ t2(z,y)

t1(z,y)

∣∣∣∂ f
∂t
(
x + t(y− x)

)∣∣∣dt
)

dy
)

w(x)dx.
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By Fubini’s theorem,

1
2

γw(B∗)|B∗| ≤
n

∑
i=1

`i(B∗)
α

∫
Â

( ∫ 1

0

( ∫
{y∈B∗ : x+t(y−x)∈G}

∣∣∣ ∂ f
∂zi

(
x + t(y− x)

)∣∣∣dy
)

dt
)

w(x)dx,

where G = B∗∗ ∩ (Ω2α,j \Ω3α,j).
Let us now make the change of variable z = x + t(y− x) in the interior integral to pass

from y to z. Since dy = t−ndz, one has

1
2

γw(B∗)|B∗| ≤
n

∑
i=1

`i(B∗)
α

∫
Â

( ∫ 1

0

( ∫
{z∈G: z−x

t +x∈Z}

(∣∣∣ ∂ f
∂zi

(z)
∣∣∣dz
)dt

tn

)
w(x)dx. (5.10)

For t ∈ (0, 1) and z ∈ G it follows |xs − zs| < tls(B∗), s = 1, 2, . . . , n, therefore applying
Fubini’s formula again, we get

1
2

γw(B∗)|B∗| ≤
N

∑
i=1

`i(B∗)
α

∫ 1

0

( ∫
G

∣∣∣ ∂ f
∂zi

(z)
∣∣∣( ∫

{z: |zs−xs|<tls(B∗), s=1,2,...,N}
w(x)dx

)
dz
)dt

tn , (5.11)

where G = B∗∗ ∩
(
Ω2α,j \Ω3α,j

)
.

Then

1 ≤ 2
γα

n

∑
i=1

`i(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ω2α,j\Ω3α,j)

| fzi(z)|MSw(z) dz,

where MS is the strong maximal operator. Therefore,

λ
(
Ω3α,j ∩ B∗

)
≤ 2

γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ω2α,j\Ω3α,j)

| fzi(z)|MSw(z) dz. (5.12)

In the case 2b) we can argue as in case 2a) by putting Â = B∗ \Ωα,j and Z = Ω2α,j ∩ B∗.
Thus, we have

1
2

γw(B∗)|B∗| ≤ 1
α

∫
B∗\Ωα,j

( ∫
Ω2α,j∩B∗

| f (z′′)− f (z′)|dy
)

w(x)dx.

In this case the line segment xy intersects the surfaces {z′ ∈ Ωα,j : | f (z′)| = α} and {z′′ ∈ Ωj
α :

| f (z′′)| = 2α} in points that can be expressed as z′ = x + t1(y − x) and z′′ = x + t2(y − x)
where t1, t2 ∈ [0, 1], with t2 > t1 depend on x, y. Here, t2 corresponds to the value of t for
which xy meets for the first time the surface ∂Ω2α,j after leaving ∂Ωα,j while t1 corresponds
to the value of t when xy intersects the surface ∂Ωα,j.

In this case, in place of (5.11), we get the following inequality

1
2

γw(B∗)|B∗| ≤
N

∑
i=1

`i(B∗)
α

∫ 1

0

( ∫
G

∣∣∣ ∂ f
∂zi

(z)
∣∣∣( ∫{

z: |zs−xs|<tls(B), s=1,2,...,N}
w(x)dx

)
dz
)dt

tn ,

where G = B∗∗ ∩
(
Ωα,j \Ω2α,j

)
.

Therefore,

1 ≤ 2
γα

n

∑
i=1

`i(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ωα,j\Ω2α,j)

| fzi(z)|MSw(z) dz



Sobolev inequality with non-uniformly degenerating gradient 11

and then

λ
(
Ω2α,j ∩ B∗

)
≤ 2

γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ωα,j\Ω2α,j)

| fzi(z)|MSw(z) dz. (5.13)

Now, since Ω3α,j ⊂ Ω2α,j, combining (5.5), (5.12), and (5.13) we have

λ
(
Ω3α,j ∩ B∗

)
≤ CC1γδ

1− Cγδ
λ
(

B ∩Ωj
α

)
+

2
γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ω2α,j\Ω3α,j)

| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ωα,j\Ω2α,j)

| fzi(z)|MSw(z) dz.

(5.14)

Summing up over j = 1, 2, . . . , we obtain

λ (Ω3α ∩ B∗) ≤ CC1γδ

1− Cγδ
λ (B∗ ∩Ωα)

+
2

γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ω2α\Ω3α)

| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

`i(B∗)λ(B∗)| (B∗)# |
|B∗|w(B∗)

∫
B∗∗∩(Ωα\Ω2α)

| fzi(z)|MSw(z) dz.

(5.15)

Recall that the balls system
{

B∗ = B(b, 5K2
0r(b))

}
b∈Ω3α

covers Ω3α. Using Lemma 2.1, from
those balls one can choose a countable subcover

{
B∗m = B(xm, 5K2

0r(xm))
}

m∈N
such that

Ω3α ⊂
⋃
m

B∗m. (5.16)

Moreover, the balls
{

Bm = B(xm, r(xm))
}

m∈N
are disjoint, i.e.⋂

m
Bm = ∅. (5.17)

Writing (5.15) for the system of balls B∗m, we get

λ (Ω3α ∩ B∗m) ≤
CC1γδ

1− Cγδ
λ (Bm ∩Ωα)

+
2

γα

n

∑
i=1

`i(B∗m)λ(B∗m)| (B∗m)
# |

|B∗m|w(B∗m)

∫
B∗∗m ∩(Ω2α\Ω3α)

| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

`i(B∗m)λ(B∗m)| (B∗m)
# |

|B∗m|w(B∗m)

∫
B∗∗m ∩(Ωα\Ω2α)

| fzi(z)|MSw(z) dz.

(5.18)

Summing up over m = 1, 2, . . . , we get

λ (Ω3α) ≤
CC1γδ

1− Cγδ
λ (Ωα)

+
2

γα

n

∑
i=1

∑
m

`i(B∗m)λ(B∗m)| (B∗m)
# |

|B∗m|w(B∗m)

∫
Ω2α\Ω3α

χB∗∗m
(z) | fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

∑
m

`i(B∗m)λ(B∗m)| (B∗m)
# |

|B∗m|w(B∗m)

∫
Ωα\Ω2α

|χB∗∗m
(z) fzi(z)|MSw(z) dz.

(5.19)
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Denote

cm =
`i(B∗m)λ(B∗m)| (B∗m)

# |
|B∗m|w(B∗m)

,

then

λ (Ω3α) ≤
CC1γδ

1− Cγδ
λ (Ωα) +

2
γα

n

∑
i=1

∫
Ω2α\Ω3α

(
∑
m

cmχB∗∗m
(z)

)
| fzi(z)|MSw(z) dz

+
2

γα

n

∑
i=1

∫
Ωα\Ω2α

(
∑
m

cmχB∗∗m
(z)

)
| fzi(z)|MSw(z) dz.

(5.20)

Using Hölder’s inequality, this implies

λ (Ω3α) ≤
CC1γδ

1− Cγδ
λ (Ωα) +

2
γα

n

∑
i=1

(∫
Ω2α\Ω3α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p

×

∫
Ω2α\Ω3α

(
∑
m

cmχB∗∗m
(z)

)p′

σi(z) MSw(z) dz

1/p′

+
2

γα

n

∑
i=1

(∫
Ωα\Ω2α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p

×

∫
Ωα\Ω2α

(
∑
m

cmχB∗∗m
(z)

)p′

σi(z) MSw(z) dz

1/p′

,

where σi = ω
1−p′

i . Now, using Lemma of 4 in [39, Chapter 8], we have

λ (Ω3α) ≤
CC1γδ

1− Cγδ
λ (Ωα) +

2C2

γα

n

∑
i=1

(∫
Ω2α\Ω3α

ωi(z) | fxi(z)|p MSw(z) dz
)1/p

×

∫
Ω2α\Ω3α

(
∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz

1/p′

+
2C2

γα

n

∑
i=1

(∫
Ωα\Ω2α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p

×

∫
Ωα\Ω2α

(
∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz

1/p′

.

(5.21)

By the property (5.17) of the covering {Bm} and by the doubling assumption on σi MSw on the
ρ quasi-metric balls, we get∫

Ω2α\Ω3α

(
∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz

1/p′

=

(
∑
m

cp′
m κi(Bm)

)1/p′

≤ CA

(
∑
m

λ(Bm)
p′/q′

)1/p′

,

(5.22)
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where κi = σi MSw. Note that in (5.22) we have used that the condition (2.4) and (2.8) and the
doubling assumption on the measures yield

cp′
m κi(Bm) ≤ C3Ap′ (λ(Bm))

p′/q′ .

Now, by (5.1) and since p′/q′ ≥ 1,

∫
Ω2α\Ω3α

(
∑
m

cmχBm(z)

)p′

σi(z) MSw(z) dz

1/p′

≤ C/(1− γ)1/q′A

(
∑
m

λ (Bm ∩Ωα)
p′/q′

)1/p′

≤ CA/(1− γ)1/q′λ(Ωα)
1/q′ .

(5.23)

Observe that the same inequality can be obtained also for integrals over the sets Ωα \ Ω2α.
Thus, by (5.21), we get

λ (Ω3α) ≤
CC1γδ

1− Cγδ
λ (Ωα)

+
2C3A

(1− γ)1/q′γα
λ(Ωα)

1/q′
n

∑
i=1

(∫
Ω2α\Ω3α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p

+
2C3A

(1− γ)1/q′γα
λ(Ωα)

1/q′
n

∑
i=1

(∫
Ωα\Ω2α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p

, α > 0

and∫ ∞

0
λ(Ω3α)dαq ≤ CC1γδ

1− Cγδ

∫ ∞

0
λ(Ωα)dαq

+
2C3q

(1− γ)1/q′γ

N

∑
j=1

A
∫ ∞

0
λ(Ωα)

1/q′
(∫

Ω2α\Ω3α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p αq−1dα

α

+
2C3q

(1− γ)1/q′γ

N

∑
j=1

A
∫ ∞

0
λ(Ωα)

1/q′
(∫

Ωα\Ω2α

ωi(z) | fzi(z)|p MSw(z) dz
)1/p αq−1dα

α
.

(5.24)

Notice that∫ ∞

0
λ(Ω3α)dαq =

1
3q

∫
Ω
| f |q v wdx and

∫ ∞

0
λ(Ωα)dαq =

∫
Ω
| f |qv wdx. (5.25)

Therefore, from (5.25) and Hölder’s inequality, we get

1
3q

∫
Ω
| f |q v wdx ≤ CC1γδ

1− Cγδ

∫
Ω
| f |qv wdx

+
2C3q

(1− γ)1/q′γ

n

∑
i=1

A
(∫ ∞

0

(∫
Ω2α\Ω3α

ωi(z) | fzi(z)|p MSw(z) dz
)

dα

α

)1/p

×
(∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

+
2C3q

(1− γ)1/q′γ

n

∑
i=1

A
(∫ ∞

0

(∫
Ωα\Ω2α

ωi(z) | fzi(z)|p MSw(z) dz
)

dα

α

)1/p

×
(∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

.

(5.26)
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Now, by Fubini’s theorem,(∫ ∞

0

(∫
Ω2α\Ω3α

ωi(z) | fzi(z)|p MSw(z) dz
)

dα

α

)1/p

=

(
ln

3
2

)1/p

‖ fzi(·)‖p, ωi MSw, Ω ,

(∫ ∞

0

(∫
Ω2α\Ω3α

ωi(z) | fzi(z)|pωi MSw(z) dz
)

dα

α

)1/p

= (ln 2)1/p ‖ fzi(·)‖p, ωi MSw, Ω .

On the other hand, Minkowski’s inequality gives(∫ ∞

0
λ(Ωα)

p′/q′α(q−1)p′−1dα

)1/p′

≤
(

1
(q− 1)p′

)1/p′
∥∥∥∥∥
∫

Ω(·)
v wdx

∥∥∥∥∥
1/q′

p′/q′,dα(q−1)p′

≤
(

1
(q− 1)p′

)1/p′

‖ f ‖1/q′

q,vw,Ω .

Using the last inequalities and choosing

1
3q −

CC1γδ

1− Cγδ
> 0, (5.27)

from (5.26) we get

‖ f ‖q,vw,Ω ≤
(

1
(q− 1)p′

)1/p′ 2C3q21/p′(ln 3)1/p

(1− γ)1/q′γ
A

n

∑
i=1
‖ fzi(·)‖p, ωi MSw, Ω . (5.28)

This completes the proof of Theorem 2.5

5.2 Proof of Theorem 2.6

To prove Theorem 2.6 we may argue following along the lines the proof of Theorem 2.5 until
formula (5.10). Then, from hypothesis (2.10), for t ∈ (0, 1) and z = x + t(y− x) ∈ G, using the
condition (2.10) it follows

|x− z| < t|x− y| ≤ ρ(x, y) ≤ 2K0r(B∗) t,

therefore applying Fubini’s formula again,

1
2

γw(B∗)|B∗|

≤
N

∑
i=1

`i(B∗)
α

∫
G

∣∣∣∣ ∂ f
∂xi

(z)
∣∣∣∣
(∫ 1

0

(
1

tn−ε

∫{
x∈B: |z−x|<2K0r(B∗) t}

w(x)dx

)
dt
tε

)
dz.

(5.29)

Now, by the definition of the fractional order Hardy–Littlewood maximal operator over
Euclidean balls and since B(x, 2K0r(B∗)t) 3 z it follows∫{

x∈B: |z−x|<2K0r(B∗) t}
w(x)dx ≤ Mεw(z) (2K0r(B∗) t)n−ε .

By (5.29), one has

1 ≤
2n+1−εKn−ε

0
(1− ε)γα

n

∑
i=1

`i(B∗)r(B∗)n−ε

|B∗|w(B∗)

∫
B∗∗∩(Ω2α,j\Ω3α,j)

| fzi(z)|Mεw(z) dz.

Arguing further as in Theorem 2.5 we obtain estimate (5.28) with Ā in place of A. The
proof of Theorem 2.6 is then complete.
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5.3 Proof of Theorem 2.4

Theorem 2.4 is a corollary of Theorem 2.5 for w ≡ 1.

5.4 Proof of Corollary 4.1

The result follows from Theorem 2.4. It is enough to choose (x, y) ∈ RN , with N = n + m,
v(x, y) = ω(x)t, t = n

n+m−2 , and ω1 = · · · = ωn = ω(x), ωi ≡ 1, i = n + 1, n + 2, . . . , n + m
in the statement of Theorem 2.4. Observe that the A∞-condition on the ρ-quasimetric balls on
ω(x)

n
n+m−2 as well as the A2-condition on the ρ-quasimetric balls for ω are satisfied, in view

of (3.1) and (4.1). Indeed, it is well-known that the Ap condition for some p ≥ 1 implies the
A∞ condition. Therefore, in order to show that ωt belongs to A∞ let us show that it belongs
to Ap, for some p ≥ 1. To this aim, observe that, by our assumptions, σ ∈ A2 hence

σ(Q)
∫

Q
ω dx ≤ C|Q|2. (5.30)

Using the Hölder inequality with powers n+m−2
n and n+m−2

m−2 ,

∫
Q

ω
n

n+m−2 dx ≤
(∫

Q
ω dx

) n
n+m−2

|Q| m−2
n+m−2 ,

thus, by (5.30), we get

σ(Q)

(∫
Q

ω
n

n+m−2 dx
) n+m−2

n

≤ C|Q|2+m−2
n .

The last inequality implies ωt ∈ Ap with p = 1 + n
n+m−2 .

For what concerns hypothesis (2.6), by the definition of the quasimetric ρ given in Section 3,
in this case it can be derived by the following inequality

Cr|B(z, r)|−(
1
2−

1
q )
(

1
|Q(x, r)|

∫
Q(x,r)

ωt ds
) 1

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2

≤ A, (5.31)

where B(z, r) is a ρ-quasimetric ball of center z and radius r, 0 < r < R, while Q(x, r) is the
projection of B(z, r) on Rn. Thus, in order to satisfy condition (2.6) we need to estimate the
left hand side of (5.31) from above. To this aim, observe that

r|B(z, r)|−(
1
2−

1
q )
(

1
|Q(x, r)|

∫
Q(x,r)

ωt ds
) 1

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2

≤
(

1
|Q(x, r)|

∫
Q(x,r)

ω(s)tds
) 1

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2−
m
2

(
1
2−

1
q

)
r1−(n+m)

(
1
2−

1
q

)

= C
(

1
|Q(x, r)|

∫
Q(x,r)

ω(s)tds
) 1

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2−
m
2

(
1
2−

1
q

)

≤ C1

(
1

|Q(x, r)|

∫
Q(x,r)

ω(s)ds
) t

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2−
m
2

(
1
2−

1
q

)
,

where we used the fact that q = 2(n+m)
n+m−2 gives 1− (n + m)

( 1
2 −

1
q

)
= 0 and Hölder’s inequality.
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Now, since t
q = 1

2 −
m
2

( 1
2 −

1
q

)
= n

2(n+m)
, taking into account assumption ω ∈ A2 we get

C1

(
1

|Q(x, r)|

∫
Q(x,r)

ω(s)ds
) t

q
(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
) 1

2−
m
2

(
1
2−

1
q

)

= C1

[(
1

|Q(x, r)|

∫
Q(x,r)

ω(s)ds
)(

1
|Q(x, r)|

∫
Q(x,r)

σ(s)ds
)] n

2(n+m)

≤ C2

Hence condition (2.6) of Theorem 2.4 satisfied. This completes the proof of Corollary 4.1.

5.5 Proof of Corollary 4.2

To prove this result, one can follow along the lines the proof of Corollary 4.1, for t = n
n−1 , with

suitable modifications.

5.6 Proof of Corollary 4.3

The proof of Corollary 4.3 is obtained from Theorem 2.4 similarly to that of Corollary 4.1, so
we leave the proof to the Reader.

Acknowledgements

The authors wish to express their gratitude to the referee for the careful reading of the
manuscript and for the very valuable comments which allowed us to improve the preced-
ing version of this paper.

References

[1] H. Aimar, Elliptic and parabolic BMO and Harnack’s inequality, Trans. Amer. Math. Soc.
306(1988), No. 1, 265–276. https://doi.org/10.1006/jmaa.1993.1212; MR927690

[2] H. Aimar, R. A. Macias, Weighted norm inequalities for the Hardy–Littlewood maximal
operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91(1984), No. 2, 213-216.
https://doi.org/10.2307/2000837; MR740173

[3] R. Amanov, F. Mamedov, On the regularity of solutions of degenerate elliptic equa-
tions in divergence form, Mat. Zametki 83(2008), No. 1, 3–13. https://doi.org/10.1134/
S000143460801001X; MR2399992

[4] S. Chanillo, R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates
for weighted Peano maximal functions, Amer. J. Math. 107(1985), 1191–1226. https://
doi.org/10.2307/2374351; MR805809

[5] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving crit-
ical Sobolev exponents, Comm. Pure Appl. Math. 36(1983), 437–478. https://doi.org/10.
1002/cpa.3160360405; MR709644

[6] F. Chiarenza, A. Rustichini, R. Serapioni, De Giorgi–Moser theorem for a class of
degenerate non-uniformly elliptic equations, Comm. Partial Differential Equations 14(1989),
635–662. https://doi.org/10.1080/03605308908820623; MR993823

https://doi.org/10.1006/jmaa.1993.1212
https://www.ams.org/mathscinet-getitem?mr=927690
https://doi.org/10.2307/2000837
https://www.ams.org/mathscinet-getitem?mr=740173
https://doi.org/10.1134/S000143460801001X
https://doi.org/10.1134/S000143460801001X
https://www.ams.org/mathscinet-getitem?mr=2399992
https://doi.org/10.2307/2374351
https://doi.org/10.2307/2374351
https://www.ams.org/mathscinet-getitem?mr=805809
https://doi.org/10.1002/cpa.3160360405
https://doi.org/10.1002/cpa.3160360405
https://www.ams.org/mathscinet-getitem?mr=709644
https://doi.org/10.1080/03605308908820623
https://www.ams.org/mathscinet-getitem?mr=993823


Sobolev inequality with non-uniformly degenerating gradient 17

[7] R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes.
Étude de certaines intégrales singulières, Lecture Notes in Mathematics, Vol. 242, Springer-
Verlag, Berlin, 1971.

[8] D. Danielly, N. Garofallo, D. M. Nhieu, Trace inequalities for Carnot–Caratheodory
spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27(1998), No. 2, 195–252.
MR1664688; Zbl 0938.46036

[9] L. D’Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer.
Math. Soc. 132(2004), No. 3, 725–734. https://doi.org/10.1090/S0002-9939-03-07232-
0; MR2019949

[10] L. D’Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi op-
erators, J. Differential Equations, 193(2003), No. 2, 511–541. https://doi.org/10.1016/
S0022-0396(03)00138-4; MR1998967

[11] B. Devyver, M. Fraas, Y. Pinchover, Optimal Hardy weight for second-order elliptic
operator: an answer to a problem of Agmon, J. Funct. Anal. 266(2014), No. 7, 4422–4489.
https://doi.org/10.1016/j.jfa.2014.01.017; MR3170212

[12] E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate ellip-
tic equations, Comm. Partial Differential Equations 7(1982), 77–116. https://doi.org/10.
1080/03605308208820218; MR643158

[13] G. Di Fazio, C. E. Gutierrez, E. Lanconelli, Covering theorems, inequalities on metric
spaces and applications to PDE’s, Math. Ann. 341(2008), 255–291. https://doi.org/10.
1007/s00208-007-0188-x; MR2385658

[14] B. Franchi, Weighted Sobolev–Poincaré inequalities and pointwise estimates for a class
of degenerate elliptic equations, Trans. Amer. Math. Soc. 327(1991), No. 1, 125–158. https:
//doi.org/10.2307/2001837; MR1040042

[15] B. Franchi, C. Gutierrez, R. L. Wheeden, Weighted Sobolev–Poincaré inequalities for
Grushin type operators, Comm. Partial Differential Equations 19(1994), 523–604. https:
//doi.org/10.1080/03605309408821025; MR1265808

[16] B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly
elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
10(1983), No. 4, 523–541. MR753153; Zbl 0552.35032

[17] B. Franchi, E. Lanconelli, An embedding theorem for Sobolev spaces related to non-
smooth vector fields and Harnack inequality, Comm. Partial Differential Equations 9(1984),
1237–1264. https://doi.org/10.1080/03605308408820362; MR764663

[18] B. Franchi, G. Lu, R. L. Wheeden, A relationship between Poincaré-type inequalities
and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices
1996, No. 1, 1–14. https://doi.org/10.1155/S1073792896000013; MR1383947

[19] B. Franchi, G. Lu, R. L. Wheeden, Weighted Poincaré inequalities for Hörmander vec-
tor fields and local regularity for a class of degenerate elliptic equations, Potential Anal.
4(1995), No. 4, 361–375. https://doi.org/10.1007/BF01053453; MR1354890

https://www.ams.org/mathscinet-getitem?mr=1664688
https://zbmath.org/?q=an:0938.46036
https://doi.org/10.1090/S0002-9939-03-07232-0
https://doi.org/10.1090/S0002-9939-03-07232-0
https://www.ams.org/mathscinet-getitem?mr=2019949
https://doi.org/10.1016/S0022-0396(03)00138-4
https://doi.org/10.1016/S0022-0396(03)00138-4
https://www.ams.org/mathscinet-getitem?mr=1998967
https://doi.org/10.1016/j.jfa.2014.01.017
https://www.ams.org/mathscinet-getitem?mr=3170212
https://doi.org/10.1080/03605308208820218
https://doi.org/10.1080/03605308208820218
https://www.ams.org/mathscinet-getitem?mr=643158
https://doi.org/10.1007/s00208-007-0188-x
https://doi.org/10.1007/s00208-007-0188-x
https://www.ams.org/mathscinet-getitem?mr=2385658
https://doi.org/10.2307/2001837
https://doi.org/10.2307/2001837
https://www.ams.org/mathscinet-getitem?mr=1040042
https://doi.org/10.1080/03605309408821025
https://doi.org/10.1080/03605309408821025
https://www.ams.org/mathscinet-getitem?mr=1265808
https://www.ams.org/mathscinet-getitem?mr=753153
https://zbmath.org/?q=an:0552.35032
https://doi.org/10.1080/03605308408820362
https://www.ams.org/mathscinet-getitem?mr=764663
https://doi.org/10.1155/S1073792896000013
https://www.ams.org/mathscinet-getitem?mr=1383947
https://doi.org/10.1007/BF01053453
https://www.ams.org/mathscinet-getitem?mr=1354890


18 F. Mamedov and S. Monsurrò

[20] B. Franchi, C. Pérez, R. L. Wheeden, Sharp geometric Poincaré inequalities for vector
fields and non-doubling measures, Proc. London Math. Soc. (3) 80(2000), No. 3, 665–689.
https://doi.org/10.1112/S0024611500012375; MR1744780

[21] B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degerate elliptic
operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(1987), No. 4,
527–568. MR963489; Zbl 0685.35046

[22] B. Franchi, M. C. Testi, A finite element approximation for a class of degenerated ellip-
tic equations, Math. Comp. 69(1999), No. 229, 41–63. https://doi.org/10.1090/S0025-
5718-99-01075-3; MR1642821

[23] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-
Verlag, 1977. https://doi.org/10.1007/978-3-642-96379-7; MR0473443

[24] G. R. Goldstein, J. Goldstein, A. Rhandi, Weighted Hardy’s inequality and the Kol-
mogorov equation perturbed by an inverse-square potential, Appl Anal. 91(2012), No. 11,
2057–2071. https://doi.org/10.1080/00036811.2011.587809; MR2984000

[25] C. E. Kenig, Carleman estimates, uniform Sobolev inequalities for second-order differ-
ential operators, and unique continuation theorems, in: Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence,
RI, 1987, pp. 948–960. MR934297

[26] R. Kerman, E. T. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger
operators, Ann. Inst. Fourier (Grenoble) 36(1986), No. 4, 207–228. https://doi.org/10.
5802/aif.1074; MR0867921; Zbl 0591.47037

[27] R. Long, R. F. Nie, Weighted Sobolev inequality and eigenvalue estimates of Schrödinger
operators, in: Harmonic analysis (Tianjin, 1988), Lecture Notes in Math., Vol. 1494,
Springer, Berlin, 1991, pp. 131–141. https://doi.org/10.1007/BFb0087765; MR1187073

[28] R. A. Macías, C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in
Math. 33(1979), 257–270. https://doi.org/10.1016/0001-8708(79)90012-4; MR546295

[29] F. I. Mamedov, A Poincaré’s inequality with non-uniformly degenerating gradient,
Monatsh. Math. 194(2021), No. 1, 151–165. https://doi.org/10.1007/s00605-020-
01506-4; MR4200975

[30] F. Mamedov, R. Amanov, On some properties of solutions of quasilinear degenerate
equations, Ukrain. Math. J. 60(2008), No. 7, 918–936. https://doi.org/10.1007/s11253-
008-0108-6

[31] F. Mamedov, R. Amanov, On some nonuniform cases of weighted Sobolev and Poincaré
inequalities, Algebra i Analiz 20(2008), No. 3, 447–463. https://doi.org/10.1090/S1061-
0022-09-01055-3; MR2454455

[32] F. Mamedov, Y. Shukurov, A Sawyer-type sufficient condition for the weighted Poincaré
inequality, Positivity 22(2018), No. 3, 687–699. https://doi.org/10.1007/s11117-017-
0537-2; MR3817112

[33] V. G. Mazya, Sobolev spaces, Springer-Verlag, 1985. https://doi.org/10.1007/978-3-
662-09922-3; MR817985

https://doi.org/10.1112/S0024611500012375
https://www.ams.org/mathscinet-getitem?mr=1744780
https://www.ams.org/mathscinet-getitem?mr=963489
https://zbmath.org/?q=an:0685.35046
https://doi.org/10.1090/S0025-5718-99-01075-3
https://doi.org/10.1090/S0025-5718-99-01075-3
https://www.ams.org/mathscinet-getitem?mr=1642821
https://doi.org/10.1007/978-3-642-96379-7
https://www.ams.org/mathscinet-getitem?mr=0473443
https://doi.org/10.1080/00036811.2011.587809
https://www.ams.org/mathscinet-getitem?mr=2984000
https://www.ams.org/mathscinet-getitem?mr=934297
https://doi.org/10.5802/aif.1074
https://doi.org/10.5802/aif.1074
https://www.ams.org/mathscinet-getitem?mr=0867921
https://zbmath.org/?q=an:0591.47037
https://doi.org/10.1007/BFb0087765
https://www.ams.org/mathscinet-getitem?mr=1187073
https://doi.org/10.1016/0001-8708(79)90012-4
https://www.ams.org/mathscinet-getitem?mr=546295
https://doi.org/10.1007/s00605-020-01506-4
https://doi.org/10.1007/s00605-020-01506-4
https://www.ams.org/mathscinet-getitem?mr=4200975
https://doi.org/10.1007/s11253-008-0108-6
https://doi.org/10.1007/s11253-008-0108-6
https://doi.org/10.1090/S1061-0022-09-01055-3
https://doi.org/10.1090/S1061-0022-09-01055-3
https://www.ams.org/mathscinet-getitem?mr=2454455
https://doi.org/10.1007/s11117-017-0537-2
https://doi.org/10.1007/s11117-017-0537-2
https://www.ams.org/mathscinet-getitem?mr=3817112
https://doi.org/10.1007/978-3-662-09922-3
https://doi.org/10.1007/978-3-662-09922-3
https://www.ams.org/mathscinet-getitem?mr=817985


Sobolev inequality with non-uniformly degenerating gradient 19

[34] C. Pérez, Sharp Lp-weighted Sobolev inequalities, Ann. Inst. Fourier (Grenoble) 45(1995),
No. 3, 809–824. https://doi.org/10.5802/aif.1475; MR1340954; Zbl 0820.42008

[35] S. Rigot, Counter example to the Besicovitch covering property for some Carnot groups
equipped with their Carnot–Carathéodory metric, Math. Z. 248(2004), No. 4, 827–846.
https://doi.org/10.1007/s00209-004-0683-7

[36] A. Ruiz, L. Vega, Unique continuation for Schrödinger operators with potential in Mor-
rey spaces, Publ. Mat. 35(1991), 291–298. https://doi.org/10.5565/PUBLMAT_35191_15;
MR1103622

[37] E. T. Sawyer, R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean
and homogeneous spaces, Amer. J. Math. 114(1992), 813–874. https://doi.org/10.2307/
2374799; MR1175693

[38] G. Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Semi-
naire Jean Leray, No. 3, 1–77, 1963–1964.

[39] J. O. Stromberg, A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathe-
matics, Vol. 1381, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0091154;
MR1011673

[40] C. J. Xu, On Harnack’s inequality for second-order degenerate elliptic operators, Chinese
Ann. Math. Ser. A 10(1989), 359–365. MR1024922

https://doi.org/10.5802/aif.1475
https://www.ams.org/mathscinet-getitem?mr=1340954
https://zbmath.org/?q=an:0820.42008
https://doi.org/10.1007/s00209-004-0683-7
https://doi.org/10.5565/PUBLMAT_35191_15
https://www.ams.org/mathscinet-getitem?mr=1103622
https://doi.org/10.2307/2374799
https://doi.org/10.2307/2374799
https://www.ams.org/mathscinet-getitem?mr=1175693
https://doi.org/10.1007/BFb0091154
https://www.ams.org/mathscinet-getitem?mr=1011673
https://www.ams.org/mathscinet-getitem?mr=1024922

	Introduction
	Notation and main results
	An example of homogeneous space
	Applications
	Proofs of the main results
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Proof of Theorem 2.4
	Proof of Corollary 4.1
	Proof of Corollary 4.2
	Proof of Corollary 4.3


