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Abstract

The purpose of this paper is to study evolution inclusions involving time depen-
dent subdifferential operators which are non-monotone. More precisely, we study
existence of solutions for the following evolution equation in a real Hilbert space X :
' (t) + 0ft(u(t)) — Ot (u(t)) > w(t), u(0) = ug, where f* and @' are closed convex
proper functions on X.

2010 Mathematics Subject Classification. 47J35, 47TH14, 35K55

Key words. Convex and difference convex functions, Evolution inclusion, Subdifferential,
local existence.

1 Introduction

Let T > 0 be a real. In this work, we consider a non-convex evolution equation governed
by the difference of two subdifferentials. Our interest is the existence of solutions of the
following inclusion in a real Hilbert space X:

u'(t) + 0f (u(t)) — 0p' (u(t)) > w(t), t€[0,T], (1)

(f"teor) and (¢")ejo,r] being families of lower semi-continuous convex proper functions
and w belonging to L?(0,T; X). For any t € [0,T], 0" and 9" denote the subdifferential
of f* and those of ' in the sense of convex analysis.

The interest of a such problem is explained by the fact that the class of functions which are
written as the difference of two convex functions is large. There is a significant literature
on the class of functions which are the difference of two continuous convex functions
(called DC functions). The difficult is these functions are in general not convex functions.

The existence of solution u to problem (1) was investigated in the case where f' and
¢" are not dependent on ¢, in Otani [13] or Koi and Watanabe [12] when X is a real
Hilbert space, and in Akagi and Otani [I] when X is a reflexive Banach space. In our
case, domf* # domf* and domy® # dome® as soon as s # t. The domain of f* and those
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of ¢! will depend on ¢ in a suitable way. By using the Moreau Yosida approximation of
f*, and of ', we shall construct some solution of (1).

When X is a real separable Hilbert space, many authors deals with the existence of
solutions to more general evolution inclusions:

u'(t) + Of (u(t)) + B(t,u(t)) 20, te[0,T] (2)

(B(t,.))sejo,r) being a family of multivalued operators on X, see [10] and references therein.
For each t, the operator B(t,.) : X Z X is a multivalued perturbation of df*, dependent
on the time ¢.

When the perturbation B(t,.) is single valued and monotone, many existence, unique-
ness and regularity results have been established, see Brezis [5] (if f* is independent of
t), Attouch-Damlamian [1] and Yamada [15]. The study of case B(t,.) nonmonotone and
upper-semicontinuous with convex closed values has been developed under some bounded-
ness conditions. For example, Attouch-Damlamian [3] have studied the case f independent
of time. Otani [11] has extended this result with more general assumptions (the convex
function f* depends on time t).

This type of inclusion has been studied when the values of B(t,.) are not necessary convex
by Cellina and Staicu [7] (if f* and B(t, .) are independent of ¢, see also [(] for extended re-
sults) and in more general case in [J]. The authors then assume —B(¢,.) C dg, g: X — R
being a convex lsc function.

In this paper we deal with the case where —B(t,.) = 0¢".

Lastly, the existence result could be applied to some non linear parabolic differential
equations in domain with moving boundaries for example.

Definition 1. A continuous function u : [0,T] — X is said to be a solution of (1) on
[0, T] if the following conditions are satisfied:

1. w is an absolutely continuous function on [0,T];
2. u(t) € domf* Ndome* for all t € [0,T];
3. there exists a section a(t) € dp'(u(t)) satisfying for a.e. t € [0,T]

u'(t) + Of (u(t)) 3 alt) +w(t).

We shall prove two existence theorems under the following assumptions by using the
method of Kenmochi [11] :

(Hs) For each r > 0, there are absolutely continuous real-valued functions
hy, k. on [0,T] such that:

(i) . € L?(0,T) and k. € L'(0,T);
(ii) for each s,t € [0,7] with s < t and each z, € domf*® with
|zs|| < r there exists x; € domf* satisfying

{ 2y — @] < |he(t) = he(s)| (1+ |2 () |2)
P < (@) + Ko (6) = By ()] (14 (),

EJQTDE, 2012 No. 92, p. 2



(H,) For each r > 0, there are absolutely continuous real-valued functions
ar, b, on [0, 7] such that:

(i) a. € L*(0,T) and b. € L*(0,T);
(ii) for each s,t € [0,7] and each x; € domg® with |zs|| < r there
exists z; € domy* satisfying

{ |y — x| < |ar(t) — a,(s)] (1 + “Ps@s)‘lﬂ)
W(:L‘t) < gps(xs) + |br(t) — br(3)| (1 + |§08(x5)|),

2 Preliminaries

Let X be a real Hilbert space with the inner product (.,.) and the associated norm ||.|.
Let h be a lower semi-continuous convex proper function on X. Set domh = {z € X |
h(z) < oo} the effective domain of h.

The set Oh(x), x € X, is the ordinary subdifferential at x of convex analysis, that is
Oh(z) ={ye X |Vz€ X h(z) > h(x)+ (y,z—x)}.

For any € X, 0°h(x) stands for its element of minimal norm (that is the minimal section

of Oh(x)); if Oh(x) = 0, then ||0°h(x)|| = co. Set Domoh = {x € X | Oh(x) # 0}.

Let A > 0. The function h) denotes the Moreau-Yosida proximal function of index A of h
which is defined by

: 1 2
hia(z) = min{h(y) + 5 llz — ylI°}-

The operator J = (I + A\0h)~! denotes the resolvent of the index A of 9h:
1
ha(@) = h(w) + g lle = L]

The function h) is convex, Fr'i(;%chet—differentiable on X and (hy)aso converges increas-
ingly to h when A decreases to 0. The Yosida approximation of index A of 0h, is

1
Vhy = X(I —Jh.

It is known that

Vo,y € X, e — Lyl < o -y
and Vh, is a 1/A-Lipschitz continuous function, see Attouch [2] and Brezis [5] for more
details. Just recall that we have:

1
Yo,y € X, 0<ha(y) = ha(z) = (Vha(2),y — ) < Sy — «|” (3)

and:
Vo € X, Vha(z) € Oh(Jiz) and ||[Vhya(x)|| < [|0°h(z)]|.

As usual, the Hilbert space L?*(0,T; X) denotes the space of X-valued measurable func-
tions on [0, 7] which are 2" power integrable, in which |.|| 22,7, x) and (., .)r2(0,1.x) are
the norm and the scalar product.

The set of the continuous functions from [0, 7] to X is denoted by C([0, 7], X). A function
is of class C! if it is continuously differentiable, it is of class C!! if, moreover, its Jacobian
is Lipschitz continuous.
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3 A global existence theorem

First, by considering the case where (¢")iejo 77 is a family of convex C!- functions on X,
we give sufficient conditions to ensure existence and uniqueness of global solutions.

In this section, (f*)icjo,r] denotes a family of lower semi-continuous convex proper func-
tions and (¢")ep,r] denotes a family of convex C*!-functions on X such that ¢ — V! (zo)
is bounded on [0, T for some zo € X and (V¢")co,r] is equi-Lipschitz on X.

3.1 Estimations on the Moreau-Yosida approximate

Let A > 0. To study the evolution equation (1) we consider the approximate problems:
uh(t) + VA(ua(t) = V' (ua(t) = w(t) . ux(0) = uo.

The functions f{ denote, for any ¢ € [0, 7], the Moreau-Yosida proximal function of index
A of ft and
S=I+20f7, V=M1 =)

Lemma 1. Under the assumption (Hy), we can find a set {z : t € [0,T]} and a real
po > 0 such that ||z]] < po and f'(z;) < po for every t € [0,T].

Proof. Let z € domf® and r > 0 such that r > ||z||. For all ¢ € [0,T], there exists
2; € dom f! satisfying

{ 12t = 20ll < [Re () = B (O)](1 + [ °(20)['/%)
J'(z) < f(20) + ke (t) = K (0)](1 + [ £%(20)1)-

The lemma holds with po = ( 7+ R[] (1+]%(20)['/2) )V ( f*(20) + 1K1 |2 (1+]f*(20)]) )-

From Kenmochi [11, 26,Chapter 1,Section 1.5, Lemma 1.5.1], there exists some positive
number a;y such that for all ¢ € [0,7] and x € X we have f'(z) > —a;(1+ ||z]]).

Lemma 2. There exists My > 0 such that
|5 || < ]| + M,

foranyt € [0,T], x € X and X\ €]0,1].
If (Hy) holds, there exists My > 0 such that

—My(l2]l +1) < f'(N2) < fil@) < (Mo + [|2])

> =

foranyt € [0,T], x € X and X €]0,1].
Proof. Let zq be fixed in X. Let € X. We have for any ¢ € [0, 7] and X €]0, 1]

I 73z] < |3 = Jzoll + 1 3zoll < llz = zoll + [[T3zo|
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with

[ 7ol < [ T30 — Jiwoll + || Jiaol|
< 3@o — Ji(Azo + (1 = A)Jyo)|| + || Ty
< (1= N)llwo = Jioll + || Siaol|
< 2flwo — Jiwol| + o]l

Since fi(zo) = f1(Jizo) + 3l|lwo — Jizo|* = —as (|| Jizol| + 1) + 5/lzo — Jiwo||?, we obtain

1 2 O
filzo) = 5 (lwo = Jizoll — ay)” = == = ay(1+ ||zol)),

N | —

which assures

lwo — Jiwoll < oy + \/fo(%) +af + ap(1+ [|zol)-
Let us add that 2ff(xg) < 2f%(2) + ||zt — wol|* < 2p0 + (po + ||70]])?, and we can conclude

[ 73oll < 20y + 2\/200 + (oo + llzolD)* + aF + ay (1 + [[zol) + [l

Consequently,
Izl < [l + M,y

where M; = |lxo| + 204 + 2\/2/)0 + (po + llwol)? + aF + ap(1 4 |lzoll) + [lwoll. Next,
Hw) = f{(Sx) = —ag(|le] + My + 1) and

2Af () < 2Af (2e) + |2 — l* < 2200 + (po + [|2])%.

Let us set now :
Vr>0, p=r-+ M.

Then, for any « € X such that ||z|| < r, we have [|J(x)]| V ||z]| < p for any A > 0 and
te[0,7].

Proposition 1. Assume that (Hy) holds. Let v € X and X €]0,1]. Then, t — fi(x) is
of bounded variation on [0,T] and for any r > ||z||

%fﬁ(w) VA @RI+ L T3)[V2) + [y ()11 + [ £2(T3)]). (4)

almost everywhere.

Proof. For all t > s, there exists w € dom f* such that
{ |32 = wll < [hp(t) = ()1 + [ f(xs)|?)
fw) < () + [kt ) - kp(s)|(1+1f*(24)]).

Hence,
1 1
fil@) = @) < grllw- @l + f'(w) — ol = Jyz|* = f2 ()

1
2X

N

(llw = 2l* = llz = JR2l*) + [k, () = K,p(s)[(L+ [ £*(Jx)])-
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From ||w —z||? = ||z — J§z|* + || Jsz — w|* + 2(x — J§z, Jiz — w), we deduce

@) = fi(x)
%\h,,(t) = ho()PL+ | £ (T32)[V2)? + IV £ (@)1 p(2) = ho(s)I (1 + [ £ (J32)] V)
Hkp(1) = kp(s)[ (1 + [ 2 (J32)])-

Since s — ||V fi(z)] and s — |f*(J5x)| are bounded on [0, T], the function ¢t — fi(x)

is of bounded variation on [0, 7] and it is differentiable almost everywhere on [0, 7). Its
derivative is integrable on [0, 7] and satisfies for any s < ¢ in [0, T

N

¢
d

Ao - K@) < [ LR@ar
s dr

Furthermore, we obtain the inequality (4) for a.e. s € [0,T].

0

Corollary 1. Assume (Hy) holds. Let x : [0,T] — X be an absolutely continuous function
with ' € L*(0,T; X). Set r > ||z(t)|| for any t € [0,T]. Then, t — fi(x(t)) is of bounded
variation and for any t > s in [0, 7]

fat) - o) < [ L) dr )

Its derivative is integrable on [0,T] and satisfies for a.e. s € [0,T]
L R(a(s) — (VE(a(s), ()
VA @D R ()L + (TR ())Y2) + ky(s)| (1 + | F2( T3 ()

Proof. Applying the inequality (3) to f*, we obtain for all ¢ > s in [0, T

@) = () = (VIR(x(s), 2(t) — 2(s))
() —

(6)

< M) = K@) + R=0) = fiz(s) = (VR((s)), 2(8) — x(s))
< % ho(t) = hy(s)P(L+ £ (T2 (O))? + IV £ (@(O)1ho(t) = ho()I(1+ (T ()]?)

Hkp (1) = kp($)[(1+ (IR (6)]) + %Hw(t) —x(s)|I*.

Since (s,t) — ||V fi(z(t))|| and (s,t) — |f*(J5z(t))| are bounded on [0, T]?, the function
t — fi(x(t)) is of bounded variation on [0,7] and it is differentiable almost everywhere
on [0, 7). Its derivative ¢ — % fi(z(t)) is integrable on [0, 7] and we get (5). Observe that
for a.e. s €[0,T]

lim
t—stt— 8

|hp(t) = hp(8)]*(1 4 [ f*(J32(1))] /%)% = 0
and

t—st

tim, ——[la(#) — (s)]]* = 0.
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Add that the map z — f*(J5z) = fi(z) — 3|z — Jiz||* is continuous on X and

i [V A [1y(6) — ()L PR+ hy0) — k()1 + £ (e
= IVE @) ()1 + 12 (R (s)[Y2) + Ry (s)I (1 + (R (s))]).
We then obtain (6) almost everywhere.

O

Applying [11, lemma 1.2.2.], under (H;), the maps ¢ — fi(v(t)) and t — f*(v(t)) are
measurable on ¢ € [0, 7] for each A > 0 and v € L*(0,T; X).

Let us consider the function f : L*(0,T; X) — R defined by f / fi(v(t)) dt and, for

each A > 0, the function vy : L?(0,T; X) — R defined by (v / fi(v(t))dt. Then,

f is proper lower semi-continuous and convex and 1, is finite, continuous and convex on
L?*(0,T; X). Furthermore, by [I1, Lemma 1.2.3 and Lemma 1.2.4.], for each A > 0 and
v e LN0,T;X), t — Vfi(v(t)) is measurable on [0, 7] and V fi(v(t)) = V[wa(v)](t) for
a.e. t € [0,T] since v, coincides with the Moreau-Yosida approximation of f . So we
obtain:

Corollary 2. Assume that (H;) holds. For all v € L*(0,T;X) and X > 0, we have

fo ft(v(t)) dt. Furthermore, Jf( )(t) = Jio(t) and Vf\(0)(t) = Vfi(v(t)) for
a.e. t € [0, 7.

3.2 Other technical results
Let k denote the uniform Lipschitz constant of (V¢")seqo.1-

Lemma 3. There exists M3 > 0 such that |V¢'(z)|| < Ms(||z|| + 1) for any t € [0,T]
and x € X.

If (H,) holds, there exists My > 0 such that —My(||z|| + 1) < ¢'(x) < My(||z||* + 1) for
any t € [0,T] and x € X.

Proof. Let x € X. We have

IVe' @)l < [IVe'(x) = V' (zo) | + IV (o)
< kllr = aoll + V' (o)
<

Ellzll + Elloll + 1V (zo) -

We can conclude thanks to the assumption ¢ — V'(xy) bounded.

Next, from Kenmochi [I1, Lemma 1.5.1], there is a nonnegative constant ., such that
o'(z) = —=d/(||Jz|| + 1) for all z € X and ¢ € [0,T].

In the same way as lemma 1, for any ¢ € [0, T, there exists z; € X satisfying

{ lze = zoll < far () — ar (0)] (1 + [°(0)|"/?)
' () < (o) + [br(t) — br (0)] (1 + " (20)]) .

where r > ||zo]|. And, ¢'(z) < ¢'(2;) — (V' (x), 2 — z) for any x € X.
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Lemma 4. Under (H,), for any x € X, the map t — V¢'(x) is continuous on [0,T].

Proof. Let z € X and r > M;(||z||+1). By assumption (H,), for each s,t € [0, 7] there
exists x5 € X satisfying

{ IVe! (@) — sl < lan(t) = ar(s)[(1 + " (V' (2))]/?)
v (zs) < @' (V' (@) + [br(£) = br ()| (1 + " (V' (2))])-

Since ¢° is convex, we have

P (Vo' (2)) H{Ve' (), 2=V () < ¢*(@s) < @' (V' ()40 (8) =0, ()| 1+ (V' ()])-

Hence, for any s, t, we have

(Ve (x), V' (z) = V' (2))
< (Ve'(2), Ve'(x) - xs>+90( '(2)) = 9" (V' () + [ (1) = br(s)| (1 + [ (V' (2))])
< Ve @)lllar(t) = an(9)I(1 + | (V' (x ))|1/2)+<P (Ve'(2) — ¢" (V' (2))

Hbe(£) = br(s)|(1+ [ (V' (2))])-

By symmetry, we have for any ¢, s in [0, 7]

(V'(z), Vo' (z) = V' (z))
< Ve @) llar(t) = an(s)I(L+ [0* (Ve (@)]V?) + * (V' (2)) — ¢! (V' (2))
+br () = 0r(s)[(1 + |*(Ve* (2))])-

Adding these two inequalities we obtain

IVe' (@) — V' (2)]*
< LIV @+ IV (@) T lar(t) = ar($)I1 + |o* (Ve (2))[V2 V [ (V! (2))2)
+2[by(t) = b (s)[(1 + 0" (Ve (@) V [ (V' (2))])-

Since both t — ||[Ve!(z)|| and t — |¢"(Ve*(z))| are bounded on [0,T], ¢t — V¢'(z) is
continuous on [0, 7.

O

Proposition 2. Under (H,), for any x € X, the map t — ¢*(x) is absolutely continuous
on [0,T] and

9" (2) = *(@)] < (IV' @)l V IVe* (@)I1) lar(t) = ar(s)(1 + [ (@)]2 V [o*(2)]'?)
Hor () = b (s)|(1 + [ ()] V [ (2)])
foranyr = ||z|| and 0 < s,t < T

Proof. Let s,t € [0,7] and x € X with ||z|| < r. There exists z; € X satisfying

{ lve — 2| < la, (1) — ar(s)] (1 + |*(x)]"?)
(1) < () + 16, (2) = br(s)] (1 + [0 (2)])

EJQTDE, 2012 No. 92, p. 8



We have

P'(x) = @' (@) + @' () — ¢"(2)
(V' (), 2 = z0) + [0 () — be(s)|(1 + | (2)])
IV (@)l lar(t) = ar(s)I(1+ " (2)["2) + [br () = br(s)| (1 + ¢ (2)]).

If s and t are exchanged the above inequality still holds.

pl(x) = ()

NN

O

Corollary 3. Assume (H,) holds. Let x : [0,T] — X be an absolutely continuous function
and r = ||x(t)|| for any t € [0,T]. Then, t — ¢'(x(t)) is absolutely continuous and we
have for a.e. t € [0,T]

(V' (x(t)), 2 (1)) — %@t(ﬂc(t)) <V (@O 1ar (O] A+ @(®)]Y2)+ 0] 1+ (@(B))]).

Proof. Since V' : X — X is k-Lipschitz continuous, it’s easy to see that

Yo,y € X, 0< ¢'(y) — ¢'(2) — (Vo'(z),y — 2) < klly — =|>.
For all ¢,s in [0, T
(V®(x(s)), 2(t) — x(s)) — " (x(t)) + ¢*(x(s))]
(Vo' (2(5)), x(t) — x(s)) + ¢ (2(s)) — @*(2(t)| + [¢*(2(1)) — ¢ (2(1))]

kllz(s) — (O + +1b:(t) = be(s)[(L+ [0* ()] V " (2(1))])
(Ve @)V IV (@@ lar () = ar(s)I(1 + |* (@)Y V [ (@(6))]2).

Dividing by ¢ — s > 0 and letting ¢ — s*, we obtain

(Ve (2(s)), 2'(s)) — %ws(x(S))l
< V@) an()I(1+ 19" (@(s)V?) + L (s)1 (1 + | (2(5))]).

Let us consider the function ¢ : L*(0,7;X) — R defined by gp fo

The function ¢ are proper convex of class C'! with Vg(v)(t) = ( (1)) for all v €
L*(0,T; X) and for a.e. t € [0,T].

3.3 Existence results

Let A > 0 be fixed. By applying [5, Theorem 1.4] we obtain the existence of uy : [0,T] —
X, the unique solution to the problem

uh\ (1) + V(fi — @) (ur(t)) = w(t) ae. t € [0,T] , ur(0) = up.

The curve uy is absolutely continuous on [0, 7] and u} € L?(0,T; X). We now study the
approximate solution u,.
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Lemma 5. Under (Hy) the following estimates hold

ro=sup{[lux(®)|| [ £ € [0,T], A €]0, 1]} < o0,
sup{||JAux(s)| | s, ¢ € [0, T], A €]0, 1]} < oo,
sup{A[fx(ua(s))] | £, s € [0, 77, A EJO, 1]} < o0,

wmgﬁﬁwm@nw|Aa,J}

Proof. According to the results in [1 1, Chap. 1], for each A > 0, there exists a unique ab-

solutely continuous function vy : [0,7] — X such that v\(0) = ug and v} (¢)+V fi(va(t))
w(t) for a.e. t € [0,T]. Furthermore (v, ), uniformly converges to v on [0, 7], v being the

unique solution of v'(t) + df*(v(t)) > w(t) a.e. t € [0,T], v(0) = uy.

We have for a.e. t € [0,T]:

— 5 lua(t) — oA (@)

(uh(t) = vA(1), ua(t) — oA (1))

—(VAaA®) = VAA®), ur(t) — oa()) + (V' (ua(t)), ua(t) — va(t))
(V' (ua(t)), ua(t) — va(t))

kllua() — (@)1 + (Ve (0a(8)), ua(t) — va (1)

kllua(t) — ox(®)]1* + +Ms([loa(®)[| + 1) [[ua(t) — va @)

NN N

We thus obtain for a.e. t € [0,7T]

%IIUA(t) — @ <20k + D) fua(t) — ()] + %(Hw(t)ll +1)%

Gronwall’s lemma yields for any ¢ € [0, T]

Jun(t) — oa(®)]1* < M7§ /Ot(Hw(S)H + 1) expl2(t — s)(k + 1)] ds.

(vr)rejo,1) being uniformly bounded on [0, T, (ux)aejo,1] is uniformly bounded on [0, 7.
Thanks to lemma 2, we have || Jiux(s)|| < ||ux(s)|| + M; and

—My([lux(s)]l + 1) < f'(Sua(s)) < fi(ua(s)) < 5 (Mo + [Jur(s)]*)

>/|H

for any ¢t € [0, T], x € X and X €]0,1]. To conclude,

Aa®) < AH0®) + (VAA®), urt) — v(t)
F1(®) + Ellux(t) — v(@)[I* + (VA (0(1), urt) — v (1)
F1(®) + Ellua(t) — v @) + 1v'(t) — w)[[[lua(t) — v(@)ll

Notice that t — f'(v(t)) is bounded on [0,7] and v € L*(0,T;X). Furthermore,
fr(ux(t)) = —Ma(|lux(®)|| + 1) for any ¢ € [0, T]. Thus,

NN N

smﬂé|ﬁwx$H%\AdQH}<W-
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For r > 0 chosen as in Lemma 5, we always set p = r + M;. Then,
p = lua@® V(| xu(s)l]
for any ¢,s € [0,T] and X €0, 1].

Proposition 3. Under (Hy) and (H,), t — fi(ux(t)) is of bounded variation on [0,T],
t — o' (ux(t)) is absolutely continuous on [0,T) and the following inequality holds for a.e.
te 0,7

© (0 + gl O + 3 (6) — w(r)|?

jt (ur()) + 5 I+ IV @RI + | ()] )
)] (1+ 17 (T (0)])
T r @)1+ [ ar(®)2) + 0] (1+ ¢ (un(e))])

Proof. Let A > 0. From Corollary 1, t — fi(uy(t)) is of bounded variation on [0, T]. Its
derivative is integrable on [0, 7] and satisfies for a.e. t € [0, 7]

N

L F2(ua(s) — (V3 (al5)), w4 (5)
< IV NI+ [ us) ) + KN+ ().
Bu 40+ 9 )~ o) = ol

FX(wa(9)) + (uy(s) = w(s), uy(s))

) (s) =
< *(u(s)), ud(s)) + IV AR (ua(s) ()1 (1 + [£*(TFua(s))[2)
Hk () [(1 A+ [f*(JRuals))])-

N

with
() = w(s), wy () = 3l (8)[ + 5 [ (5) — w(s)[P = 3 ()]

We conclude thanks to Corollary 3.

Corollary 4. Under (Hy) and (H,),

sup | fL(ua(t)] < oo,
0<A<1,t€[0,7)

T
Ms := sup / |uh ()] dt < oo,
0

0<A<1
and .
sup / IV f(ua(®)[|* dt < oo, sup VAV (ua(t)] < oo. (7)
Ael0,1[ Jo A€[0,1[,t€[0,T]
Hence,
[ux() —ua(s)|| < v/ Ms(t = s) (8)

for any A €]0,1] and 0 < s <t < T.
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Proof. According to Proposition 3, we have for a.e. t € [0, 7]

ifﬁ(uw)) F Sl @7 + Sl () — (o)

© o un(0) + gD + (1) — V! (un(0) — w1+ 7 (s ()])
P01 (04 @) + 19 @01 + @) )
1 1+ a0

(un(1)) + ()] 4+ [l (6) — w(e) |+ CY (0| (1 + 17 (1))
D1+ 5@ + € [0+ 1),

where C' is a suitable nonnegative constant. Thus,

¥ (
+|k’(

d 1
) + Sl
d 1 1
< e w(®) + §||w(75)||2 + §|h'p(t)|2(1 + | f(Tfua ()] 2)?
+O (O] (1+ [F(T5un@)Y2) + [k, (14 | F(Tua()]) + C [lag ()] + [0,t)]] -
By integrating we obtain for all ¢ € [0, T
o) = £+ 5 [ TP ds
1
< ¢ (ua(t) — ¢"(uo) + §HwHL2 + (L4 CTY?)|| 2 + SCT + kgl + Cllag s
t73
reltplo + [ (IR + 1) U] ds.
0

By Lemma 2, since fi(ux(t)) = f{(Jiux(t)) = —Ma(|lux(t)|| + 1), there exists a suitable
nonnegative constant K which satisfies :

t
PO +5 [ )P
L3
< &+ [ (IR + ) 1Pl ds
By Gronwall’s lemma it follows:
tr3 3
PO < Kesp [ (S0P + W01 ) dr < Ko (S0 + 1K )

which implies

O = sup |ft(J§\u)\(t))| < 0.

0<A<1,t€[0,T)

It ensures that

F(ur(®) / (s 2 ds < K+01( ||h'||L2+||k'||L1)
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Consequently,

sup | fi(ua(t))] < oo,
0<A<1,t€[0,7)

T
sup/ |uh ()] dt < oo.
0

0<A<1

Since u) (t) + V fi(ur(t)) — V' (ua(t)) = w(t), we obtain

T
sup / IV £ ur(8) ]2 dt < o,

0<A<1

We then obtain the convergence of approximate problems :

Proposition 4. Under (Hy) and (H,), there exists an absolutely continuous curve w :
[0,T] — X such that (uy)x converges uniformly to u on [0,T] in X and (u))x converges
strongly to v’ in L*(0,T; X) as A goes to 0. Furthermore, u(0) = ug and u(t) € domf*
for any t € [0,T7].

Proof. Let A\, x> 0 and ¢ € [0, 7], then

d 1

Tl ®) = w1 = () = w,(8), ua(t) = uu(1))

= —(VA@A®) = VA (uu(t)), ua(t) = wu(t)) + (V' (ualt)) — Vo' (uu(t)), ua(t) — w(t)).

Since uy(t) = Jiux(t) + AV fL(ux(t)) and also for p, by monotonicity of df*, it follows

— S () — w ()
< = (VA@A®) = V(wu(), AV i (ua(t) = 1V f (1)) + kllua(t) — w,(t)]?

k being the ratio of the Lipschitz continuous function V. Let us set

Oru(t) = =M+ IV A (ua () =V f (O = A=) [IVA @A) = [V fu (a0 -

Notice 6y, € L'(0,T;R) and:
=2 (VA(ur(t)) = VI (), AV i (ua(t) = 1V fo(u(t)) = 0x,(t)-
By Gronwall’s lemma, we obtain
() = u()]2 < / O () exp(2K(t — s)) ds.
0

which ensures

0 < flualt) = wu(®)I* + A+ ) Jo IV f3(ua(s)) = V.5 (w())|* exp(2K(t — 8)) ds - (9)
<= =) Jy IV = 1V fi ()] exp(2k(t - s)) ds. (10)
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Therefore, the sequence (fg IV £ (ux(s))||? exp(2k(t — s)) ds) is nondecreasing as A | 0
and bounded from above, thus converges. Furthermore,

[ 196 = Tl s
< [ IV = VDI e ds

S _ﬁ ; [ IV £ (ua(s)) > — ||Vf;(uu(s))”2 ] e2K(=9) g
< | LTIV B = 1961?42 as).

Consequently, (s +— V f5(ua(s)))aso is a Cauchy sequence with respect to the norm ||.|| 2
and it converges to some £ in L?(0,T; X) when X\ goes to 0.

We also deduce that (uy), converges uniformly to some continuous curve u on [0, 7.
It is clear that u(0) = wg. By using Corollary 4, [|u(t) — u(s)|] < M5/t — s for any
0 < s <t <T and suppq f(u(t)) < +o00. So, u is an absolutely continuous function
from [0, 7] to X and u(t) € domf".

The sequence (u})y converges weakly in L? to v’ as A | 0. We have in L?(0,T; X)

/)\ —Vf)\<U)\) + V(,O(U)\) + w,

which converges in L?. Thus, (u})y converges to v’ in L?(0,T; X) as A goes to 0.

We now prove the uniqueness and existence theorem:

Theorem 1. Let (f*)icio,r be a family of lower semi-continuous convex proper functions
and (¢")iejor) be a family of conver CH-functions on X. Assume that t — V'(zg) is
bounded on [0,T] for some xg € X and (V')ep1 is equi-Lipschitz on X.

If (Hy) and (H,) hold, for any ug € domf®, the problem (1) has a unique solution
w:[0,T] = X such that u(0) = ug.

Proof. For uniqueness result, we consider uy,us : [0,7] — X two solutions of (1). By
monotonicity of df*, we obtain for a.e. s € [0,T7:

L2 () —wal)l = (il (6) — (), wn(6) — ua(t))

ds 2
(Vo' (ui(t)) — V' (ua(t)), ua(t) — ua(t))
< kllua(s) = ua(s)II%,

N

k being the Lipschitz constant of V'. By Gronwall’s lemma, it follows for any ¢ € [0, T
lua(8) = ua()[* < [lua(0) — uz(0)[|* exp(2kt).
So, u1(0) = ua(0) = ug yields uy(t) = us(t) for every t € [0,T7.
For existence result, we use above propositions. Since V f(uy) € 0f (Jf (u,)) and Of is
a maximal monotone set-valued map, by letting A to 04, £ belongs to df(u). Lastly, the
(

equality u'+&—V@(u) = w holds in L*(0,T; X). We deduce u'(t)+£(t)— V! (u(t)) = w(t)
with £(t) € 9f*(u(t) for a.e. t € [0,T].
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Examples: Let us consider
e(t)

#(2) = 2l

Assume that € : [0,7] — R is an absolutely continuous function such that & € L'(0,T).
According to Theorem 1, for any vy € dom f°, the problem

u'(t) + 0f (u(t)) 3 e(t)u(t) + w(t)

has a unique solution u : [0, 7] — X such that u(0) = uo.
More generally we can consider

#(x) = 3{A'z, )

where A' : X — X is a linear positive symmetric continuous operator. Assume that
there exists b : [0,7] — R an absolutely continuous function such that ¥ € L'(0,T) and
| At —A%|| < |b(t)—b(s)]| for any ¢, s € [0, T]. According to Theorem 1, for any ug € dom f©,
the problem

u'(t) + Of (u(t)) 2 A(t)u(t) + w(t)

has a unique solution u : [0, 7] — X such that u(0) = uo.

3.4 Properties of evolution curve

Lemma 6. Under the assumptions of Theorem 1, we have for any t € [0,T):
1 2 t T t
dm S fua(®) —u@®)" =0 and  f(u(t)) = lim fi(us(?)).

Proof. Let t € [0,T] and X €]0, 1]. By the proof of Proposition 4 and letting p to 0, in
(9) we obtain

||U>\(t) u(@)[?+ A 5 IV f3(ua(s)) = ()12 exp(2K(t — s)) ds
Ay IV £ (aDI? = 1) exp (2K (t - s)) ds.

So,

%Hux(t) —u(®)]” < —/0 IV (ua()I* = 1§ ()7 exp(2Kk(t — s)) ds,

which converges to 0 as A goes to 0,. Furthermore,

(VA ua(t)), ult) = ua()] < VIV (ua(0))]] % (1) = ua(®)]l;

fHu
which ensures that
lim (V f (ux(t)), u(t) — ux(t)) = 0.

)\—>+

We also can establish following inequalities by convexity of f1 :

Fua(®)) + (VA (uat), u(t) — ua(t)) < fi(u(t)) < f(u(t).
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We know that /\h%l fi(u(t)) = f"(u(t)). By epiconvergency of (fHa—0, to fi, we have
f*(u(t)) < liminf f{(ux(t)), hence
Fu(t) =l F(n(0)

for any ¢ € [0, T7.

Theorem 2. Under the assumptions of Theorem 1, the functiont — f'(u(t)) is of bounded
variation on [0,T] and we have the inequality for t,s € [0,T], t > s:

F(ul /nu (P dr+ /||u I dr
< @Hu(t)) — o (u(s) —|—§/ Hw7'|]2d7'+/cp(r) T

where we set
co(t) = EDONRLOIQ + £ @@)V?) + kO] (1 + f (u(®)]) +
IV (w®) [l (11 + [ (w()]2) + b, (E)] (1 + " (ult))]) -
Proof. Following Proposition 3, we have for a.e. s € [0, 7]

d ¢ 1 / 2 1 / 2
I®) + SIAOIF + 5l (1) — w(b)]

© (D) + 3l + 19 Fur (DI DI+ L (ann (1))
RO (14 17 (un ()

IV O 011+ [ O ) +15,0)] (1 + [ w®)]) -
By integrating, we obtain for any ¢t < s

o) = F5uro) + 3 [ 1@+ [ o) w7
< () — o' u(s) +§/ Juo(r) | dr

/N

+/ IV FX (I AN+ £ (TRua(m)[2) + [ () (L + |7 (ISua (7)) dr
+/ IV (un(m)Il [lap ()L + o7 (ua(m))[M2) + (5, (1)L + |7 (wa(7))])] dr.

Letting A to 04 it follows

F(ul / I ()P dr + / o/ (r) — w(r)|? dr
< @Hu(t)) — o (u(s) —|—§/ Hw7'|]2d7'+/cp(r) T
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4 A local existence theorem

We now consider the general case. In this section, (f*)icjor] and (¢)sepo,r) denote fam-
ilies of lower semi-continuous convex proper functions on X. By adding a compactness
assumption, we shall obtain a local existence result.

4.1 Approximate problems

To solve the evolution equation (1), we regularize the convex function ¢' by considering
the C!-function ¢f which denotes the Moreau-Yosida approximate of index A > 0 of ¢'.
We then obtain the nonconvex evolution equation

uj(t) + O f (ua(t)) — Vi (ua(t)) 3 w(t), t€[0,T] (11)
We use the notations:
Ji= (T + 2007, Vh =111 = Jb).

According to Lemma 2, under the assumption (H,), there exist non negative constants
N7 and Ny such that
I3l < [lll + Ny

(N2 + [|=]1*)

> =

—Na([lz] +1) < ¢'(Jhz) < ph(2) <
for any ¢t € [0, 7], x € X and X €]0,1]. Let us set now :
VT>O, p:T+maX<M1,N1).

Then, for any € X such that ||z|| < r, we have || Jiz|| V ||z|| < p for any A > 0 and
te[0,7].

Lemma 7. [0, Proposition 3.1]. Assume (H,) holds. Let x € X and A\ > 0. The maps
t — Jix and t — Vi (x) are continuous on [0, T).

Proof. Let x € X with ||z]] <r and X €]0,1]. By assumption (H,,), for each s,t € [0, T]
there exists x5 € domyp® satisfying

{ 152 = 2ll < lan(t) — ap(s)|(1 + " (J52)[V?)
P (xs) < @' (Sx) + [0, (8) = by(s)|(1 + [ (J32)])-

Since \7Y(z — J5z) € 0¢*(Jix), we have
S S 1 S S S
P (x) + o = Lw,ws = Jiw) < @0 (2s) < @ (D) + [B,(1) = bp(9)(1+ [ (r2)])-

Hence, for any s, t, we have

1

X(x — Jyx, Jsx — Jix)

1
< Sl = Sw S = x) + @' (L) = @ () + 15, (1) = bp(s)(1+ [ (Jro)])
< IV @)lllap(t) = ap(s)|(1 + [ (i2)]V?) + ¢ (Sz) — *(S5a)

Hb, () = by(s)| (1 + [ (J3z)])-
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By symmetry, we have for any ¢, s in [0, 7]

%@3 — S, o — Jia) < Vel @)lllap(t) — ap(s)[(1+ 9°(J5a)[?) + ¢ (Jiz) — ¢ (Siz)
H1bo(t) = b, (s)[ (1 + [ (J32)])-

Adding these two inequalities we obtain

Sl e =
< LIV @I+ TN laplt) — a1+ e (ol v [ () 2)
$20b,(1) — by )| (1 + 1" ()| V! ()],

Since both t — ||V (2)]| and ¢ — |'(Jix)| are bounded on [0, T, t — Jix is continuous
on [0,77.

In the same way of Proposition 1, we obtain:

Lemma 8. Assume (H,) holds. Let x € X and X\ > 0. The function t — ¢} (z) is
absolutely continuous on [0,T] and for any r = ||z|

%s@i(w) <V @) ay ()1 + 9 (J32)] V%) + B, (s)|(1+ [ (JRa)]).  (12)

almost everywhere.
If x : [0, T] — X is an absolutely continuous function and r > ||z(t)|| for any t € [0,T],
then t — ¢ (z(t)) is absolutely continuous and we have for a.e. t € [0,T]

d
(T /0 - G el0)
< V@O a1+ " (T ()[Y2) + [0,O1(1 + " (S (t))]).
Proof. Let x € X and A > 0. For all ¢, s, there exists w € dom¢® such that

{ 152 — wl < la,(t) = a,(s)|(1 + |*(2:)[2)
P (w) < " (J3z) + |b ( ) = ba()I(L+ () ).

1 1
A = (@) < gylle =l + ') - 55z = el - ¢ (Jse)

1 S S S
< oy (lw =2l = llz = L l) + 15,(t) = bp()I(1 + 9" (S3)]).
From ||w — z|]? = ||z — Jiz||? + || Jiz — w||? + 2(x — Jix, Jiz — w), we deduce

pi(x) = oi(@)
;Alap( t) = ap(s)*(1+ |*(J52)[V2)? + [V (@) lap(t) — a,(s)1(1+ 9" (i) V)

+1bo(t) = b, (s)[ (1 + [0*(J32)])-

N
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If s and ¢ are exchanged the above inequality still holds. Since s — [|[V3 ()] is bounded
on [0,7] according to Lemma 7, the function ¢ — % (x) is absolutely continuous on

[0, 7.
By the inequality (3) applied to ¢! we have for all ¢, s in [0, T
(Vs (a(s)), 2(t) — 2(s)) — e (z(?) + p3(x(s))]
< [(Ver(a(s)), x(t) — $(8)> + @3 (@(s) = P (@ ()] + [3 (@ (1) — Ph(z(t)]
< %Hfb’(s) —x(t)|]” + \@p() a,(s)]P(1 + |¢*(J32)[/?)?
(x

+ max([| Vi) ((t ))|| IIV% () Nlan(t) = ap(s)[(1 + max[|o (Sa(®))], lo* (S5 (s)]]"?)
+bu(t) = by () [(1 + max(|p" (rz(t))], [* (3 ()])-

Dividing by ¢ — s > 0 and letting ¢ — s*, we obtain

(Vi (a(s)), 2'(s)) — %@i(fﬁ(S))\
< VR @D (I + | (T (9))]Y?) + [0()I (1 + [o° (Ja(s))])-

As in the above section we can prove that equation (11) has a unique solution uy : [0,7] —
X satisfying uy(0) = ug. Yet, there exists &, € L?(0,T; X) such that for a.e. t € [0, 7]

at) € 0f (ualt)) uh(t) +&(t) — Vi (ua(t)) = w(t).

The curve uy is absolutely continuous on [0, 7] and u} € L?(0,T; X).

4.2 Convergence of approximate problems

We now study the approximate solution wuy : [0,7] — X. This curve is absolutely contin-
uous on [0,7] and uy € L?(0,T; X). Let r > 0. Let us set for any A €]0, 1]

T\ =sup{t € [0,T] | Vs € [0,¢], ||ur(s) — uo| < 7}

Let A €]0,1]. According to Theorem 2, the function ¢ — ffowu,(t) is of bounded variation
on [0, 7] and the following inequality holds for any ¢ € [0, T)]:

F(ua() — F(uo) + / ()| dr + » / leh(7) — w(r)| dr
< h(ur(t)) — A (uo) / Jeo(r) | dr + / ery(7) dr

where p > r + |Jug|| + M; V Ny and

o) = OO+ [ ux@)?) + [, ()] (1+ 1 (ua(®)]) +
VS (un (@)1, () (L + o5 (uaE)V) + 15, (0)] (L + [0h(ua(t))]) -

Let us prove that infyg)o 1) Ty > 0.
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Lemma 9. Assume there exist co € [0,1[, n € Ry and o € L*(0,T;R,) such that
107" (@) | < €2l F (@) | + nl f1(2)] V2 + o (1)

for all x € Domdf*, ||x — ugl| < r and t € [0,T].
Let A €]0,1]. For a.e. t € [0,T3], we have ¢y ,(t) < €y ,(t) where we set

nalt) = Tl (0) = wO] [FOIL+ PO + el O+ O] +

%@(nlf%m(t)ﬂ“ + () A1+ L (ua@)[Y?) + lan (1L + 5 (ua()]?)]
HkR (O] (14 [ a®)]) + 15,01 (1+ [2A(ua(®))]) -
Proof. Since ) (t) 4+ &x(t) — Vi (un(t)) = w(t), it follows :

1@ < IV (ur(@®)] + [[u) () — w(t)].
From this
anp(t) < [luh(8) — w1+ [ (ua®)]V?) + [k ()] (1+ |F (ua(t))]) +

VS @I TR OIL A+ [ (ua(@)Y?) + ag (D)L + |03 (wa()]V?)]
HBL (0] (1+ [ea(ua(®))]) -

On the other hand, we have for ¢ € [0, T}]

IV (i) < 107" (un (@) < callx(®l +nl f (ur ()72 + o (¢)
< el Vel (ua®)l + callur () — w(t)l + 0l f (ur(O) + o ().
Thus,
IVA@E < T2 (0) = Ol + 1 Gl @) + o). (13)

Consequently, ¢y ,(t) < ¢ ,(%) .

Lemma 10. Assume that:

1. there exist ¢ € [0,1] and co € R such that ¢'(x) < 1] f'(x)| + co for all x € domf?,
|z — ol <7 andt € [0,T];

2. there exist ¢y € [0,1[, n € Ry and o € L*(0,T;R.) such that
107" (@) | < 2|0 F* (@) | + nl f1(2)] V2 + o (1)
for all x € Domdf?, ||z — ugl| < r and t € [0, 7).

Under (Hy) and (H,), we have:

sup [ f'(ua(t))] < oo,
0<ALL,te[0,Ty]
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Tx
Mg := sup / |uh (1) || dt < oo,
0

0<AL1
and
Ty
sup [ a0l di < o (14)
0o<AL1Jo
Hence,

Jua(t) —ur(s)|| < vV Ms(t — s)
for any A €]0,1] and 0 < s <t < Tp.

Proof. Let A €]0,1]. We have for all ¢ € [0, T)]

/Hw 2 dr + /Hw (|2 dr
< £ (o) + @ (un()) — 2 (o) /|m 2 dr + /Cm()

So, there exists a suitable real constant K which satisfies :

Flan®)+ 5 [ 1@l < K+ )+ [ dtr)ir

= 2 IR+ [ Cn()I72) + el (] (1 + [ (un(0)]2))

2(1 =)
(nlft ) 12+ a(8)) [ (D11 + £ (a(®)]?) + ap (11 + [ @4 (u(2))[ )]
+|k' (1 + 1 (ua@®)]) + 15,0 (1 + leh(ua(®)]) -

By assumption, ¢} (u(t)) < c1|f(ur(t))| + co for any ¢ € [0, T,], which ensures

1 t t
(1 —c1) ff(un(t)) + 5/ |uA (T dr < K + ¢ +/ dx () dr.
0 0
Since ¢ (ux(t)) = —Na(r + ||lug|| + 1) for any ¢t € [0,7)], we can find ¢ > 0 such that
|4 (ux(t))] < c1| fH(ux(t))| + éo for any t € [0, T)]. Tt follows:

2
(1—cp)?

o (0) {101 + a1 (1 +@"2) + [ ar@)] [ [B0] + a0l

@) [0 + Ol + alt (0] + nlay ]2+ G2)

RO+ 0,011+ o) + [ (u(@)] (1B, (0] + (b, (B)]e1)

d/\,p(t) <

R, + 3l (O (1 + o) + ([h, (O] + ercglag (1)) 2 (ua(t)]]

+
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Setting
2 1
n(t) = m(\h'p(tw +eicalay(t)) + 1_762(|h'p(t)\ + | ()]er”®) + [k ()] + 18, ()] ex

we obtain

holt) < g IROP + Bl O (1 + )] + -

(]_ — Cg)

N _1 - %Ift(m(t))l(n +0(t)?) + RO + laj,(8)er +nlh, () + nla, ()] (1 + &'/?)?

k()] + 16, (01 + o) + | fx(ua(t))] x 1 (2)

o) (I 0] + lay0)] (1 + @) +

which ensures:

2 / 2 214! 2 “(
Aoy mOF +ElgOra+a)] +

+T§gR1+mmuwf+mxm%q+na+dﬂ%%kﬂ%ﬁﬂ

L)1+ o) + [fx(ua(®))] x 2(t)

n+a(t)?
2(]_ — Cg)

dlt) < —o(t) [I1y(0)| + 1,011+ &)

where 19 (t) = U (t) + . Integrating on [0, ¢], we obtain

¢
/ dx,(T)dr
0

2 112 201 7 ~ 1
s (1—c2)? IR 172 + callapllze (1 + co)] + 1—c

1 N -
[T+ )72 + eyl Za(er + (1 +&"2)")] + 1Kl + 1Bl (1 + 6o)

lorllze (1R Il + Napllze (1 + &)

1-— Co
t
+ [ 1R vals) ds.
0
We notice that there exists a positive constant K7 such that for any A €]0, 1]
1 t t
e 0.1, (1=l i)+ [ Ih@IPdr < it [ 1K) ds

0 0

Since f(ux(t)) = —as(r + |Juol| + 1), we obtain for some positive constant K, and some
function ¥ € L'(0,7)

ve 0T 17 < K (1 [ IR ds)
0
Gronwall’s lemma assures
Vvt e [0,Th], |ff(ur(t))| < Kyexp (/ U(s) ds) < Koexp || V|| 1.
0

Thus:

sup [ f'(ua(t))] < oo, sup [ (ua(t))] < oo,
0<ALL,te[0,Th] 0<ALL,te[0,Th]
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which implies

Ty T
swp [ o< oo, s [ n@)Pat < o
0 0

0<A<1 0<A<1

Since u) (t) + &x(t) — Vb (ua(t)) = w(t), we obtain

Ty
Sup[/ IEx(®)[? dt < oc.
0

A€l0,1

O

Proposition 5. Under the assumptions of the above lemma, there exists some T' > 0
such that T" < Ty for any A €]0,1].

Proof. Let 7" belong to [O,/\i?f ]T)\]. Assume that 7" = 0. There exists A €]0, 1] such
€lo,1

2

.
that 0 < T\ <
& AS UM,

for any A €]0, A[. It follows for such A:

,
s € 0,1, [lua(t) — ua(o)ll < VMo(t — 5) < VMeTy < 5.

Particularly, for s = 0 and ¢ = T}, we obtain [Ju)(Th) — ue|| < § which contradicts the

definition of T) since we could find some T5 > T) such that |Juy(t) — uo|| < 7, ¢ € [0,T%],
by continuity of uy. Consequently, 77 > 0 and 7" < T), for any A €]0, 1].

O

Proposition 6. Assume the assumptions of the above lemma holds and add the compact-
ness asumption:

for each t € [0,T), the function f' is of compact type around ug, that is the set
{z e X |llz—uol <r, |f(2)] <c}
18 compact at each level c.

If (Hy) and (H,) hold, there ezists an absolutely continuous curve u : [0,7'] — X such
that a subsequence (uy,)n converges uniformly to w on [0,T"] and (u) ). converges weakly
tou' in L*(0,T"; X) as \ goes to 0. Furthermore, u(0) = uy and u(t) € domf* for any
te€0,1"].

Proof. Under the compactness assumption on each f*, {ux(¢) | A €]0,1]} is relatively
compact in X for each ¢ € [0,7']. Furthermore, [|uy(t) — ux(s)|| < /Mgt — s| for
any A €]0,1] and 0 < s,t < T". By Ascoli’s theorem {uy | A €]0,1]} is relatively
compact in C([0,7"], X) and (uy), admits a subsequence which converges uniformly to
some u € C([0,7], X) on [0,T"].

From Lemma 10 there exist subsequences (u) )n, (&), )n and (Vg (ua,))n which weakly
converge in L*(0,7", X) respectively to u/, £ and 3.

We are now ready to prove the following local existence result:
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Theorem 3. Let (f*)icpom and (¢")icior) be families of lower semi-continuous convex
proper functions. Let uy € domf° N domy. Assume the existence of r > 0 satisfying:

1. there exist ¢c; € [0,1] and ¢y € R such that

') < alf'(@)| +co
for all x € domf*, ||x — uol| <7 and t € 0,T7];
2. there exist ¢y € [0,1[, n € Ry and o € L*(0,T;R.) such that
10°" (2) | < callO® f (@)l + L f ()2 + o (2)
for all x € Domdf*, ||x — ugl| < r and t € [0,T;

3. each t € [0,T), the function f' is of compact type around ug, that is the set

{ze X |llz—uol <7 |f(2)] <c}
18 compact at each level c.

If (Hy) and (H,) hold, there exists some T' €]0,T] such that the problem (1) has a
solution u : [0,T"] — X satisfying u(0) = uy.

Proof. We have v’ + &, = V@(uy) + w in L*(0,7; X). By weak convergency, we
have € € Of (u), that is £(t) € aft(u(t)) for ae. t € [0,T7]. Yet B € 0p(u), that is
B(t) € dp'(u(t)) for a.e. t € [0,7']. So, u'(t) + ff(u(t)) — dp'(u(t)) > w(t) for a.e.
t 0,17

O

Notice under assumption 1., if x € domf* and ||z —up|| < r, then x € domg*. And, under
assumption 2., if € Domdf* and ||z — uo|| < r, then & € Domdy".

Furthermore by Lemma 3, the assumptions 1 and 2 of Theorem 3 are trivially satisfied
when (p')ep,7] is a family of convex Ch'- functions on X.

5 Example

Let Q2 be a regular (C') bounded open subset of R® and w € L?(0,T x §2). We denote by
I' the smooth boundary of €.

For each t € [0,T], let B': © x R — R be a Carathéodory function such that 3*(zx,.) is
(continuous) increasing function from R to R.

Let (7")ic(0,r) be a family of maximal monotone operators from R into R such that v*(0) 3
0.

We apply the results of the above section to a problem of parabolic type :

%(x, t) = Au(z,t) + Bz, u(x, b)) + w(z,t), (x,t) € Qx]0,T|
_3_17;(95,,5) e vt (u(x, b)), (x,t) € T'x]0, T
u(z,0) = up(x) , x €Q

where g_:; denotes the outward normal derivative.
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We define proper lower semi-continuous convex functions ¢*(z,.) : R — Rand j* : R — R
by ('(z,s) = / B'(z,7)dr and 95 = ~*. Then, ¢!(z,.) is a continuously differentiable

0
convex function, and j*(s) > 0 for any s € R. We then define f, ¢ : L?(2) — RU{+o0}
by

400 otherwise,

F(u) = { s o IVu(x)|?de + [, j*(u(z))dl if we H(Q) and j*ou € LY(T)

() = fﬂft(:ﬂ,u(x))dz if ftoue LY(Q)
P = +00 otherwise.

The function ¢’ is proper lower semi-continuous and convex on L?(Q2). The function f* is
proper and convex on L*(€2). Introducing a slight modification, the functional f! becomes
lower semi-continuous on some {u € L*(Q) | |lug — ul|z2 < R}, see [3]. Furthermore, for
a given function a € L*(1),

a € 0¢'(u) < a(z) =[x, u(z)), ae xe

and 0f(u) = —Au with Domdf! = {u € H'(Q) —g—f] € 7' (u) a.e. on I'}. So, the above
problem can be written in the form of (1).
We shall consider the following assumptions :

(H;)  There is an absolutely continuous real-valued function k on [0, 7] such
that ¥’ € L'(0,T) and for each s,t € [0,T] with s < ¢ we have

3G R = ) +15°)

(H¢)  There is an absolutely continuous real-valued function b on [0, T'] such
that ¥ € L'(0,T) and for each s,t € [0,T] and a.e. z € Q we have

;) < O(,.) +[b(8) = b(s) (1 + [, )],

We obtain the local existence result:

Theorem 4. Let ug € H'(Q) with j° o ug € L'(T) and (° o ug € L' (). Assume the
existence of Ky > 0 and Kz € L*(Q,R.) such that for almost every x €  and any
te0,7], s €R:

B (z, 5)| < Kals| + Ks(z).
If (H;) and (Hg) hold, there exists T' €]0,T] such that the above problem of parabolic
form has a solution u : [0,T"] — X satisfying u(0) = uo.

Proof. We want to apply Theorem 3 with X the Hilbert space L?(Q) endowed with the
usual scalar product. The families (f*)scpo,r) and (¢")tejo,r] are above defined and satisfy
(Hy) and (H,) respectively.

Let t € [0,T]. By assumption on 5, we have for any s € [0,7] and almost every z € Q

1
|0'(x, )] < 5[(252 + K3ls|.
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If u € L?(2), Cauchy-Schwarz inequality ensures ¢ ou € L*(2) and

1
" (W) < 5K llullze + (1Kl el 2.

The condition 1. of Theorem 3 is satisfied with ¢; = 0.
In the same way, the minimal section of d¢'(u) at u being (., u(.)) almost everywhere
on {2 we have

10°" (w)llz2 < KollullZs + [ K| ze-

The condition 2. of Theorem 3 is satisfied with ¢, = 0.
The condition 3. is satisfied thanks to Rellich theorem. Theorem 3 ensures existence of
solutions.
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