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On the solution manifold of a differential equation
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Abstract. For a differential equation with a state-dependent delay we show that the as-
sociated solution manifold X f of codimension 1 in the space C1([−r, 0], R) is an almost
graph over a hyperplane, which implies that X f is diffeomorphic to the hyperplane.
For the case considered previous results only provide a covering by 2 almost graphs.
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1 Introduction

Let r > 0 be given, choose a norm on Rn, and let Cn = C([−r, 0], Rn) and C1
n = C1([−r, 0], Rn)

denote the Banach spaces of continuous and continuously differentiable functions [−r, 0] →
Rn, respectively, with the norms given by |φ|C = max−r≤t≤0 |φ(t)| and |φ| = |φ|C + |φ′|C. For
a delay differential equation

x′(t) = f (xt)

with a vector-valued functional f : C1
n ⊃ U → Rn and with the solution segment xt ∈ U

defined as xt(s) = x(t + s), the associated solution manifold is the set

X f = {φ ∈ U : φ′(0) = f (φ)}.

Assume that f is continuously differentiable and

(e) each derivative D f (φ) : C1
n → Rn, φ ∈ U, has a linear extension De f (φ) : Cn → Rn so that

the map
U × Cn 3 (φ, χ) 7→ De f (φ)χ ∈ Rn

is continuous.
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The extension property (e) is a relative of the notion of being almost Fréchet differentiable
from [4] and can be verified for a variety of differential equations with state-dependent de-
lay. – Under the said, mild conditions a non-empty set X f is a continuously differentiable
submanifold of codimension n in the Banach space C1

n, and it is on this manifold that the
initial value problem associated with x′(t) = f (xt) is well-posed, with solutions which are
continuously differentiable with respect to initial data [1, 5].

The present note continues the description of solution manifolds initiated in [6, 7]. In [6]
we saw that in case f satisfies a condition which in examples with explicit delays corresponds
to all of these delays being bounded away from zero the solution manifold is a graph over the
closed subspace

X0 = {φ ∈ C1
n : φ′(0) = 0},

which also is the solution manifold for f = 0. An example of a scalar equation with a single
state-dependent delay which is positive but not bounded away from zero shows that in general
solution manifolds do not admit any graph representation [6, Section 3]. However, the main
result from [6] guarantees that for a reasonably large class of systems with explicit discrete
state-dependent delays which are all positive the solution manifolds are nearly as simple as
graphs: They are almost graphs over X0, in the terminology introduced in [6, 7].

Let us recall from [7] that given a continuously differentiable submanifold X of a Banach
space E and a closed subspace H with a closed complementary space,

(i) X is called a graph (over H) if there are a closed complementary space Q for H and a
continuously differentiable map γ : H ⊃ dom→ Q with

X = {ζ + γ(ζ) ∈ E : ζ ∈ dom},

and that

(ii) X is called an almost graph (over H) if there is a continuously differentiable map α : H ⊃
dom→ E with

α(ζ) = 0 on dom ∩X,

α(ζ) ∈ E \ H on dom \X,

so that the map
dom 3 ζ 7→ ζ + α(ζ) ∈ E

defines a diffeomorphism onto X.

Furthermore,

(iii) a diffeomorphism A from an open neighbourhood O of X in E onto an open subset of
E is called an almost graph diffeomorphism (associated with X and H) if

A(X) ⊂ H

and
A(ζ) = ζ on X ∩ H.

In [7, Section 1] it is verified that in case there is an almost graph diffeomorphism A
associated with X and H the submanifold X is an almost graph over H.
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An example of an almost graph in finite dimension is the unit circle in the plane without
the point on top. The inverse of the stereographic projection onto the real line serves as the
map ζ 7→ ζ + α(ζ) in Part (ii) of the previous definition.

We return to the results in [6] and [7]. It is not difficult to see that the approach used in [6]
for an almost graph representation of a solution manifold fails in case some of the delays in
the system considered have zeros. For the solution manifold of such a system, with k delays
some of which have zeros, the approach can be used, however, in order to obtain a finite atlas
of manifold charts whose domains are almost graphs over X0. This is achieved in [7], with
the size of the atlas independent of the number of equations in the system considered, solely
determined by the zerosets of the delays, and not exceeding 2k.

The immediate question with regard to the topological properties of these solution man-
ifolds is whether the size of the atlas found in [7] is minimal. The result of the present note
shows that for a prototype of the systems studied in [6, 7] this is not the case: The entire
solution manifolds of the prototype equation is in fact an almost graph over X0. The proof
relies on a major modification of the approach taken in [7].

The prototype equation belongs to the simplest cases of the systems studied in [6,7] which
are scalar equations with a single delay (k=1) and have the form

x′(t) = g(x(t− d(Lxt))) (1.1)

with a continuously differentiable map g : R→ R, a continuously differentiable delay function
d : F → [0, r] defined on a finite-dimensional topological vectorspace F, and a surjective
continuous linear map L : C → F. We abbreviate C = C1 and C1 = C1

1 . For f : C1 → R given
by

f (φ) = g(φ(−d(Lφ)))

Eq. (1.1) takes the form x′(t) = f (xt). Proposition 2.1 from [7] applies and shows that f is con-
tinuously differentiable with property (e). Proposition 2.3 from [7] yields that the associated
solution manifold

X f = {φ ∈ C1 : φ′(0) = g(φ(−d(Lφ)))}
is non-empty, and it follows that it is a continuously differentiable submanifold of codimen-
sion 1 in C1.

If d(ξ) > 0 everywhere than we know from [6] that X f is an almost graph over X0 = {χ ∈
C1 : χ′(0) = 0}. If d has zeros then the result of [7] yields an atlas of 2 = 21 manifold charts
whose domains are almost graphs over X0.

In [8] an adaptation of the approach from [6, 7] to (1.1) with a linear map L for which,
loosely spoken, Lφ does not depend on φ(0) is used to prove that the associated solution
manifold is an almost graph over X0, no matter whether d has zeros or not.

In the sequel we consider a prototype for the remaining, critical cases, namely, Eq. (1.1) for

F = R, Lφ = φ(0) for all φ ∈ C,

and for
d with a single zero η0 ∈ R.

We find an almost graph diffeomorphism A : C1 → C1 which maps X f onto X0.
A part of the construction of the diffeomorphism A uses the technique developed in [6,7].

For another part it was helpful to have in mind an idea of Krisztin [2] which yields graph
representations of solution manifolds from bounds on extended derivatives as in property (e),
compare the proof of Lemma 1 in [3].

The assumption that d has a single zero is for simplicity and may be relaxed in future work.
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2 Preliminaries

Differentiable maps are always defined on open subsets of Banach spaces or Banach manifolds.
Differentiation ∂ : C1 → C, ∂φ = φ′, is linear and continuous, and the evaluation map

ev : C × [−r, 0] 3 (φ, t) 7→ φ(t) ∈ R is continuous but not locally Lipschitz continuous. The
composition

ev(·, 0) ◦ ∂ : C1 3 φ 7→ ev(∂φ, 0) ∈ R

is linear and continuous.
The restriction ev1 of ev to C1 × (−r, 0) is continuously differentiable with

D ev1(φ, t)(χ, s) = χ(t) + φ′(t) s,

and the composition
h : C1 3 φ 7→ ev(φ,−d(Lφ)) ∈ R

is continuously differentiable with

Dh(φ)χ = χ(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lχ,

see Part 2.1 of the proof of [7, Proposition 2.1].
In Section 1 we quoted [7, Proposition 2.3] for X f 6= ∅. Using the choice of L this also

follows directly from the fact that for every ξ ∈ R each φ ∈ C1 with L(φ) = φ(0) = ξ,
φ(−d(ξ)) = ξ, and φ′(0) = g(ξ) belongs to X f .

The tangent space TφX f of the solution manifold X f at φ ∈ X f consists of the vectors
c′(0) = Dc(0)1 of differentiable curves c : I → C1 with 0 ∈ I ⊂ R, c(0) = φ, c(I) ⊂ X f . We
have

TφX f = {χ ∈ C1 : χ′(0) = D f (φ)χ}
= {χ ∈ C1 : χ′(0) = g′(φ(−d(Lφ)))[χ(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lχ]}.

3 A map A taking X f into X0

As d is minimal at η0 we have d′(η0) = 0.
Notice that for φ ∈ C with Lφ = η0,

φ(−d(Lφ)) = φ(−d(η0)) = φ(0) = Lφ = η0. (3.1)

For reals η we introduce the continuous linear maps

Lη : C → R

given by Lηφ = φ(−d(η)).
In order to develop a bit of intuition about the shape of X f observe that the sets

X f η = X f ∩ L−1(η)

= {φ ∈ C1 : Lφ = η and φ′(0) = g(φ(−d(Lφ)))}
= {φ ∈ C1 : Lφ = η and φ′(0) = g(φ(−d(η)))}

are mutually disjoint and decompose X f , and that

X f η0 = {φ ∈ C1 : Lφ = η0 and φ′(0) = g(η0)}
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(with Eq. (3.1) for Lφ = η0) is a closed affine subspace of codimension 2 in C1.
Choose ρ > 0 and set

c = max
|ξ−η0|≤ρ

|g(ξ)|+ max
|ξ−η0|≤ρ

|g′(ξ)|,

c∗ =
ρ

4(c + 1)(ρ + 3)
.

The map which we are going to construct relies on vectors ψη ∈ C1 which are transversal
to the solution manifold at points in X f η . We begin with the case η = η0 and choose ψη0 ∈ C1

with the properties
ψη0(0) = 0, ψ′η0

(0) = 1, |ψη0 |C ≤ c∗.

For each φ ∈ X f with Lφ = η0 (or, for each φ ∈ X f η0) we have

ψ′η0
(0) = 1 > c c∗ ≥ |g′(η0)||ψη0 |C

= |g′(φ(−d(Lφ)))||ψη0 |C ≥ |g′(φ(−d(Lφ)))ψη0(−d(Lφ))|
= |g′(φ(−d(Lφ)))[ψη0(−d(Lφ))− φ′(−d(Lφ))d′(Lφ)Lψη0 ]|

(with d′(Lφ) = d′(η0) = 0)

which means
ψη0 ∈ C1 \ TφX f .

Proposition 3.1. There exists a continuously differentiable map

R \ {η0} 3 η 7→ ψη ∈ C1

so that for every η ∈ R \ {η0} we have

ψη(t) = 0 on [−r,−d(η)] ∪ {0}, ψ′η(0) = 1, |ψη |C ≤ c∗,

and for all φ ∈ X f with Lφ = η,
ψη ∈ C1 \ TφX f .

Proof. 1. For each z ∈ [−r, 0) choose ψz ∈ C1 with ψz(t) = 0 on [−r, z] ∪ {0}, ψ′(0) = 1,
and |ψz|C ≤ c∗. Then proceed as in the proof of [7, Proposition 4.1], with F = R,W =

R \ {η0}, λ = L, and construct the desired map R \ {η0} → C1 from a sequence of maps ψzm ,
m ∈N, with zm → min d = 0 as m→ ∞. Observe that |ψη |C ≤ c∗ is achieved.

2. For η ∈ R \ {η0} and φ ∈ X f with Lφ = η the function ψη does not satisfy the equation
characterizing the tangent space TφX f , due to ψ′η(0) = 1 and ψη(−d(Lφ)) = ψη(−d(η)) = 0 =

ψη(0) = Lψη .

The map from Proposition 3.1 has no continuous extension to R. Nevertheless, for all
η ∈ R,

Lψη = ψη(0) = 0. (3.2)

Also, for each η ∈ R,
Lηψη = 0, (3.3)

which in case η = η0 holds with Lη0 = L, and,

ψ′η(0) = 1. (3.4)
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It follows from Eq. (3.4) that for all η ∈ R,

C1 = X0 ⊕Rψη ,

and the continuous linear projection Pη : C1 → C1 along Rψη onto X0 is given by

Pηφ = φ− φ′(0)ψη .

Now we are ready for the definition of the map A : C1 → C1 which in the next section will
be shown to be an almost graph diffeomorphism associated with X f and X0. Let

a : R→ [0, 1]

be a continuously differentiable map with a(ξ) = 1 for |ξ − η0| ≤ ρ
2 , a(ξ) = 0 for |ξ − η0| ≥ ρ,

and |a′(ξ)| ≤ 3
ρ for ρ

2 ≤ |ξ − η0| ≤ ρ.

The maps Aρ/2 : C1
ρ/2 → C1 and A+ : C1

+ → C1 given by

C1
ρ/2 = {φ ∈ C1 : |φ(−d(Lφ))− η0| < ρ/2},

Aρ/2(φ) = φ− g(τ)ψη0 ,

C1
+ = {φ ∈ C1 : d(Lφ) > 0},

A+(φ) = φ− g(τ)[a(τ)ψη0 + (1− a(τ))ψη ],

with

τ = Lηφ = ev(φ,−d(Lφ)), η = Lφ,

are continuously differentiable. On the intersection of their domains they coincide: For φ ∈
C1

ρ/2 ∩ C1
+ we have

|τ − η0| = |φ(−d(Lφ))− η0| <
ρ

2
,

which yields a(τ) = 1, and thereby, Aρ/2(φ) = A+(φ).
Also,

C1 = C1
ρ/2 ∪ C1

+,

since for φ ∈ C1 \ C1
+, d(Lφ) = 0, hence Lφ = η0, and due to Eq. (3.1), φ(−d(Lφ)) = η0, which

means |φ(−d(Lφ))− η0| = 0, or φ ∈ C1
ρ/2.

It follows that Aρ/2 and A+ define a continuously differentiable map A : C1 → C1.
Using Eq. (3.4) we infer that for every φ ∈ X f ,

(A(φ))′(0) = φ′(0)− g(τ) · 1 = φ′(0)− g(φ(−d(Lφ))) = 0,

or, A(φ) ∈ X0. Hence

A(X f ) ⊂ X0.

Notice also that due to Eq. (3.2),

LA(φ) = Lφ for all φ ∈ C1. (3.5)
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4 A is an almost graph diffeomorphism

In order to find the inverse of A we first consider φ ∈ C1
+ ∩ X f and χ = A(φ) = A+(φ) ∈ X0,

and compare τ = Lηφ where η = Lφ to σ = Lη̂χ where η̂ = Lχ. By Eq. (3.5), η̂ = η, hence

σ = Lηχ = Lη A+(φ)

= Lηφ− g(τ)[a(τ)Lηφη0 + (1− a(τ))Lηφη ]

= τ − g(τ)a(τ)Lηφη0 (with Eq. (3.3)).

(4.1)

For every η ∈ R the map

hη : R 3 τ 7→ τ − (ga)(τ)Lηψη0 ∈ R

is continuously differentiable.

Proposition 4.1. Every map hη , η ∈ R, is a bijection, the map T : R2 → R given by T(η, σ) =

(hη)−1(σ) is continuously differentiable, and for all (η, σ, τ) ∈ R3 Eq. (4.1) is equivalent to τ =

T(η, σ).

Proof. 1. For every η ∈ R the map hη satisfies hη(τ) = τ for |τ− η0| ≥ ρ, and for |τ− η0| ≤ ρ,

h′η(τ) = 1− (g′(τ)a(τ) + g(τ)a′(τ))Lηψη0

≥ 1− (c + c(3/ρ))c∗ > 0.

It follows that hη is bijective.
2. The map

F : R3 3 (η, σ, τ) 7→ σ− hη(τ) ∈ R

is continuously differentiable (with Lηψη0 = ψη0(−d(η))). For each (η, σ, τ) ∈ R3 Eq. (4.1) and
the relations F(η, σ, τ) = 0 and τ = (hη)−1(σ) = T(η, σ) are equivalent. For |τ − η0| ≤ ρ we
have

∂3F(η, σ, τ) = −1 + (ga)′(τ)Lηψη0 ≤ −1 + (c + c(3/ρ))c∗ < 0,

and
∂3F(η, σ, τ) = −1 6= 0

for |τ − η0| ≥ ρ. Applications of the Implicit Function Theorem to the zeroset of F show that
the map T is locally given by continuously differentiable maps.

For the open subsets C1
ρ/4 = {χ ∈ C1 : |χ(−d(Lχ))− η0| < ρ/4} and C1

+ of the space C1

we have
C1 = C1

ρ/4 ∪ C1
+

since for χ ∈ C1 \ C1
+, d(Lχ) = 0, hence Lχ = η0, and due to Eq. (3.1) χ(−d(Lχ)) = η0, which

means |χ(−d(Lχ))− η0| = 0. The maps Bρ/4 : C1
ρ/4 → C1 and B+ : C1

+ → C1 given by

Bρ/4(χ) = χ + g(τ)ψη0 ,

B+(χ) = χ + g(τ)[a(τ)ψη0 + (1− a(τ))ψη ],

with
τ = T(η, σ), η = Lχ, σ = Lηχ = ev(χ,−d(Lχ))
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are continuously differentiable. On the intersection C1
ρ/4∩C1

+ both maps Bρ/4 and B+ coincide.
In order to verify this we need to know a(τ) = 1 for

τ = T(η, σ), η = Lχ, χ ∈ C1, σ = Lηχ

with |χ(−d(Lχ))− η0| < ρ/4 and d(Lχ) > 0. The equation a(τ) = 1 holds provided |τ− η0| ≤
ρ/2, which follows from

|τ − η0| = |σ + (ga)(τ)Lηψη0 − η0| ≤
ρ

4
+ max

ξ∈R
|(ga)(ξ)| · c∗

in combination with

(ga)(τ) = 0 for |τ − η0| ≥ ρ

|(ga)(τ)| ≤ c for |τ − η0| ≤ ρ,

c c∗ < ρ/4.

So Bρ/4 and B+ define a continuously differentiable map B : C1 → C1.
Observe that due to Eq. (3.2),

LB(χ) = Lχ for all χ ∈ C1. (4.2)

We have
B(X0) ⊂ X f .

Proof of this: For χ ∈ X0 let φ = B(χ) and η = Lχ, σ = Lηχ, and τ = T(η, σ) = h−1
η (σ). Then

σ = hη(τ) = τ − (ga)(τ)Lηψη0 .

Using χ′(0) = 0, Eq. (3.4), and the preceding equation we get

φ′(0) = (B(χ))′(0) = 0 + g(τ) · 1 = g(τ)

with

τ = σ + (ga)(τ)Lηψη0

= Lηχ + g(τ)[a(τ)Lηψη0 + (1− a(τ))Lηψη ] (with Eq. (3.3))

= Lη B(χ) = Lηφ.

Eq. (4.2) yields η = Lχ = Lφ, and we obtain

φ′(0) = g(τ) = g(Lηφ) = g(φ(−d(η))) = g(φ(−d(Lφ))),

or, B(χ) = φ ∈ X f .

Proposition 4.2. B(A(φ)) = φ for all φ ∈ C1.

Proof. 1. The case d(Lφ) > 0. Consider

χ = A(φ) = A+(φ) = φ− g(τ)[a(τ)ψη0 + (1− a(τ))ψLφ]

with
τ = Lηφ, η = Lφ.



The solution manifold of a DDE 9

From Eq. (3.5) we infer
Lχ = Lφ, (4.3)

hence d(Lχ) = d(Lφ) > 0, and thereby

B(χ) = B+(χ) = χ + g(τ̂)[a(τ̂)ψη0 + (1− a(τ̂))ψLχ]

with
τ̂ = T(η̂, σ̂) = h−1

η̂ (σ̂), η̂ = Lχ, σ̂ = Lη̂χ.

It follows that

B(χ) = B(A(φ)) = {φ− g(τ)[a(τ)ψη0 + (1− a(τ))ψLφ]}+ g(τ̂)[a(τ̂)ψη0 + (1− a(τ̂))ψLχ].

Using the preceding equation in combination with Eq. (4.3) we obtain B(A(φ)) = φ provided
we have τ̂ = τ. Proof of this: By Eq. (4.3), η̂ = Lχ = Lφ = η. We get

hη(τ̂) = hη̂(τ̂) = σ̂ = Lη̂χ = Lηχ = Lη A(φ)

= Lηφ− g(τ)[a(τ)Lηψη0 + (1− a(τ))Lηψη ]

= Lηφ− g(τ)a(τ)Lηψη0 (with Eq. (3.3))

= τ − (ga)(τ)Lηψη0

= hη(τ),

and the injectivity of hη yields τ̂ = τ.
2. The case d(Lφ) = 0. Then φ(0) = Lφ = η0. Choose a sequence of points φj ∈ C1, j ∈N,

with φj(0) 6= η0 for all j ∈N and φj → φ in C1 as j→ ∞. For all j ∈N, B(A(φj)) = φj, due to
Part 1 of the proof, and continuity yields B(A(φ)) = φ.

Proposition 4.3. A(B(χ)) = χ for all χ ∈ C1.

Proof. 1. The case d(Lχ) > 0. Then χ ∈ C1
+ and

B(χ) = B+(χ) = χ + g(τ)[a(τ)ψη0 + (1− a(τ))ψη ]

with τ = T(η, σ) = h−1
η (σ), η = Lχ, σ = Lηχ. Set φ = B(χ). By Eq. (4.2), Lφ = Lχ = η. Hence

d(Lφ) = d(Lχ) > 0, or φ ∈ C1
+, and

A(φ) = A+(φ) = φ− g(τ̂)[a(τ̂)ψη0 + (1− a(τ̂))ψη̂ ]

with
τ̂ = Lη̂φ, η̂ = Lφ (= η).

It follows that

A(B(χ)) = A(φ) = {χ + g(τ)[a(τ)ψη0 + (1− a(τ))ψη ]} − g(τ̂)[a(τ̂)ψη0 + (1− a(τ̂))ψη̂ ]

= {χ + g(τ)[a(τ)ψη0 + (1− a(τ))ψη ]} − g(τ̂)[a(τ̂)ψη0 + (1− a(τ̂))ψη ] (with η̂ = η),

and for A(B(χ)) = χ it remains to show τ̂ = τ. Proof of this:

τ̂ = Lη̂φ = Lηφ = Lη(χ + g(τ)[a(τ)ψη0 + (1− a(τ))ψη ])

= Lηχ + g(τ)[a(τ)Lηψη0 + (1− a(τ))Lηψη ]

= σ + (ga)(τ)Lηψη0 (with Eq. (3.3))

= hη(τ) + (ga)(τ)Lηψη0 = τ.

2. In case d(Lχ) = 0 use the result of Part 1 above and continuity as in Part 2 of the proof
of Proposition 4.2.
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Corollary 4.4. The map A is an almost graph diffeomorphism associated with X f and X0.

Proof. Propositions 4.2 and 4.3 yield that A is a diffeomorphism onto C1 with inverse B. Using
A(X f ) ⊂ X0 and B(X0) ⊂ X f one finds A(X f ) = X0. For φ ∈ X f ∩ X0, τ = Lηφ, and η = Lφ,
we have

g(τ) = g(Lηφ) = g(φ(−d(η))) = g(φ(−d(Lφ))) = φ′(0) = 0.

This yields A(φ) = φ.
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