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Abstract. Little work seems to be known about stabilization results of highly nonlinear
stochastic time-varying delay systems (STVDSs) with Markovian switching and Pois-
son jump. This paper is concerned with the stabilization problem for a class of STVDSs
with Markovian switching and Poisson jump. The coefficients of such systems do not
satisfy the conventional linear growth conditions, but are subject to high nonlinearity.
The aim of this paper is to design a delay feedback controller to make an unstable
highly nonlinear STVDSs with Markovian switching and Poisson jump H∞-stable and
asymptotically stable. Besides, an illustrative example is provided to support the theo-
retical results.
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1 Introduction

Many dynamical systems are inevitably influenced by internal and external random distur-
bance. Such perturbation can drastically alter the deterministic dynamics and even produce
new interesting dynamical behavior. Such systems are often described by stochastic differen-
tial equations (see monograph [22]) and the stability analysis of stochastic differential equa-
tions has received a great deal of attention, see [1, 12, 15, 16, 23, 32, 36, 38] and the references
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therein. In addition, the evolution process of a stochastic system is not only related to the
present state, but also to the past states. In this case, stochastic delay systems (SDSs) are
introduced, which have been widely applicable to genetic regulatory networks, complex dy-
namical networks, biological systems, control and so on ([6, 10, 13, 28, 35]). Accordingly, many
results on the stability of SDSs have been obtained, see, e.g. [7–9, 14, 29, 31].

It is well known that a Brownian motion is a continuous stochastic process, however,
some systems may suffer from the jump type abrupt perturbations and the phenomenon of
discontinuous random pulse excitation. In such cases, incorporating jumps into SDSs seems
to be necessary, and it is therefore valuable to discuss the SDSs with Poisson jump, see, e.g.,
[2, 11, 17, 26]. In the case of the SDSs with Poisson jump experiencing abrupt changes in their
structure and parameters due to sudden changes of system factors, SDSs with Markovian
switching and Poisson jump (SDSwMSPJs) can be applied to model them. This kind of models
are more realistic, and the stability research of them has aroused great concern (see, e.g.,
[19, 21, 34, 37]).

Consider an unstable STVDS with Markovian switching and Poisson jump

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt + g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t)

on t ≥ 0, where the state x(t) ∈ Rn, r(t) is a Markov chain, N(t) is a scalar Poisson process,
δ(·) : R+ → [0, δ] be continuous function with δ > 0. For details, see the system (2.1) below.
To make this given unstable system become stable, it is conventional to design a feedback
control u(x(t), r(t), t) in the drift term, based on the current state x(t), for the controlled
system to become stable. Due to the fact that there exists a time lag τ(τ > 0) between the
observation of the state is made and the time when the feedback control reaches the system,
it is thus more realistic to take into account the control depends on a past state x(t − τ) (see,
e.g. [18, 33]). Therefore, the control should be of the form u(x(t − τ), r(t), t). In this paper,
we assume that τ ≤ δ. Hence, the stabilization problem becomes to design a delay feedback
control u(x(t − τ), r(t), t) for the controlled system

dx(t) = [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t)

to be stable. In [24], Mao et al. designed a delay feedback controller to stabilize an unstable
SDSs with Markovian switching for the first time, where both the drift and diffusion coeffi-
cients of the given unstable system meet the linear growth condition. Notice that in many
economic and ecological systems, the coefficients of these systems are characterized by non-
linearity, e.g. [4] and [5]. Therefore, the stabilization problems of a class of highly nonlinear
stochastic systems or SDSs with Markovian switching via delay feedback control have received
considerable research interests.

Recently, Lu et al. [20] used the delay feedback control to make unstable highly nonlinear
stochastic systems with Markovian switching asymptotically stable. Later, Li and Mao [18]
made a progress and used the delay feedback control to tackle the stabilization problem for a
given unstable highly nonlinear SDSs with Markovian switching. Shen et al. [33] explored the
stabilization of highly nonlinear neutral SDSs with Markovian switching by delay feedback
control. Zhao and Zhu [39] designed a delay feedback control function to study the stability of
highly nonlinear switched stochastic systems with time delays. Mei et al. [27] further studied
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the exponential stabilization problem for a class of highly nonlinear infinite delay stochastic
functional differential systems with Markovian switching. It should be noted that, though
the coefficients of the given unstable systems in [18,20,27,33] are highly nonlinear, little work
has focused on the stabilization problem of SDSs with Markovian switching and Poisson
jump simultaneously, not to mention the case where the SDSs under consideration are highly
nonlinear and the delay of the SDSs is time-varying. As we know, the increment of Poisson
jump has a nonzero mean, which brings significant difficulties for the stabilization of STVDSs
with Markovian switching and Poisson jump. Therefore, the motivation of this paper is to
overcome the identified difficulties by launching a systematic investigation.

Inspired by the analysis above, this paper investigates the stabilization problems via de-
lay feedback control for a class of highly nonlinear STVDSs with Markovian switching and
Poisson jump. Different from the existing literature, a new stabilization problem is studied
for a class of highly nonlinear SDSs, where both the Markovian switching and Poisson jump
are taken into consideration, which advances the results of the system considered in [24] and
covers the results in [18, 20, 27, 33, 39]. Moreover, the delay of the SDSs is time-varying, which
also covers the results in [18, 20, 27, 33]. The main contributions of this paper are summa-
rized: (1) Very few results seem to be known about the stabilization problem of STVDSs with
Markovian switching and Poisson jump simultaneously, not to mention the case where the
coefficients of such systems are highly nonlinear. This paper investigates the stabilization of
highly nonlinear STVDSs with Markovian switching and Poisson jump; (2) A delay feedback
controller is designed to make an unstable highly nonlinear STVDS with Markovian switching
and Poisson jump H∞-stable and asymptotically stable.

In this paper, we first present some notations and preliminaries in Section 2. Then in
Section 3, we prove that the controlled highly nonlinear STVDSs with Markovian switching
and Poisson jump is H∞-stable and asymptotically stable, respectively. Finally, an example is
provided to illustrate the obtained results in Section 4.

2 Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let R =

(−∞,+∞), R+ = [0,+∞). Rn denotes the n-dimensional Euclidean space, and |x| denotes
the Euclidean norm of a vector x. ⟨x, y⟩ or xTy represents the inner product of ∀x, y ∈ Rn.
For a, b ∈ R, a ∨ b and a ∧ b stand for max{a, b} and min{a, b}, respectively. Let (Ω,F , P)

be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
its right continuous and F0 contains all P-null sets). For τ > 0, let C([−τ, 0]; Rn) denote the
family of all continuous functions φ : [−τ, 0] → Rn with the norm ∥φ∥ = sup−τ≤θ≤0 |φ(θ)|.
Let Cb

F0
(Ω; Rn) be the family of all F0-measurable bounded C([−τ, 0]; Rn). For ∀t ≥ 0 and

δ > 0, let δ(·) : R+ → [0, δ] be continuous function and δ̇(t) = dδ(t)/dt ≤ δ̄ < 1. In the case
when δ(t) ≡ constant, we assert δ̄ = 0. Let {r(t)}t≥0 be a right-continuous Markov chain on
the complete probability space taking values in a finite state space S = {1, 2, . . . , N} with the
generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =

{
γij∆ + o(∆), if i ̸= j,

1 + γii∆ + o(∆), if i = j,

where ∆ > 0, lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j for i ̸= j, and
γii = −∑j ̸=i γij. It is well known that almost every sample path of r(·) is a right-continuous
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step function with finite number of simple jumps in any finite subinterval of R+ (see [25]).
Consider the following unstable n-dimensional stochastic time-varying delay systems with

Markovian switching and Poisson jump

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt + g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t), t ≥ 0 (2.1)

with the initial value

x0 = φ = {x(t) : −δ ≤ t ≤ 0} ∈ Cb
F0
(Ω; Rn) and r(0) = i0 ∈ S, (2.2)

where f , g, h : Rn × Rn × S × R+ → Rn are Borel measurable functions, B(t) is a scalar
Brownian motion and N(t) is a scalar Poisson process with intensity λ > 0. Ñ(t) = N(t)− λt
is a compensated Poisson process satisfying the property of martingale. Moreover, B(t), N(t)
and r(t) are assumed to be mutually independent. For the purpose of the stability, we also
assume that f (0, 0, i, t) = g(0, 0, i, t) = h(0, 0, i, t) = 0 for ∀(i, t) ∈ S × R+. We are required
to design a delay feedback u(x(t − τ), r(t), t) in the drift term so that the controlled system
which is described by

dx(t) = [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ h(x(t), x(t − δ(t)), r(t), t)dN(t) (2.3)

becomes stable.
For the existence and uniqueness of the global solution, we assume that the local Lipschitz

condition and the polynomial growth condition are true. For ∀x, x̄, y, ȳ ∈ Rn and (i, t) ∈
S × R+, we also impose the following assumptions:

Assumption 1: For any real number h > 0, there is a constant Lh > 0 such that

| f (x, y, i, t)− f (x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|
∨ |h(x, y, i, t)− h(x̄, ȳ, i, t)| ≤ Lh(|x − x̄|+ |y − ȳ|) (2.4)

with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ h. Moreover, there exists a positive constant β such that

|u(x, i, t)− u(y, i, t)| ≤ β|x − y|. (2.5)

For the stability purpose, we also require that u(0, i, t) = 0. Then we can obtain

|u(x, i, t)| ≤ β|x|, ∀(x, i, t) ∈ Rn × S × R+. (2.6)

Assumption 2: There exist positive constants K and qi(i = 1, 2, 3) satisfying

| f (x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),

|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2),

|h(x, y, i, t)| ≤ K(1 + |x|q3 + |y|q3) (2.7)

with q1 ≥ 1, q2 ≥ 1 and q3 ≥ 1.
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Remark 2.1. If qi = 1(i = 1, 2, 3), the condition (2.7) is the linear growth condition. In this
paper, we consider that the coefficients of the stochastic time-varying delay systems (2.1) with
Markovian switching and Poisson jump are highly nonlinear, so we refer to the (2.7) as the
polynomial growth condition with max1≤i≤3{qi} > 1.

Let C2,1(Rn × S × R+; R+) be the family of all nonnegative functions V(x, i, t) on Rn ×
S × R+, which are continuously twice differentiable in x and once in t. Define an operator
LV : Rn × Rn × S × R+ → R by

LV(x, y, i, t) = Vt(x, i, t) + Vx(x, i, t) f (x, y, i, t)

+
1
2

trace[gT(x, y, i, t)Vxx(x, i, t)g(x, y, i, t)]

+ λ[V(x + h(x, y, i, t), i, t)− V(x, i, t)] +
N

∑
j=1

γijV(x, j, t),

where

Vt(x, i, t) =
∂V(x, i, t)

∂t
, Vx(x, i, t) =

(
∂V(x, i, t)

∂x1
, . . . ,

∂V(x, i, t)
∂xn

)
,

Vxx(x, i, t) =
(

∂2V(x, i, t)
∂xi∂xj

)
n×n

.

In the following, we can cite the generalized Itô formula

V(x(t), r(t), t) = V(x(0), r(0), 0) +
∫ t

0
LV(x(s), x(s − δ(s)), r(s), s) + Gt, (2.8)

where

Gt =
∫ t

0
Vx(x(s), r(s), s)g(x(s), x(s − δ(s)), r(s), s)dB(s)

+
∫ t

0
[Vx(x(s) + h(x(s), x(s − δ(s)), r(s), s), r(s), s)− Vx(x(s), r(s), s)]× dÑ(s)

+
∫ t

0

∫
R
[Vx(x(s), r0 + k(r(s), u), s)− Vx(x(s), r(s), s)]µ(ds, du) (2.9)

with r0 = r(0). The detailed representation of the functions µ and k can be found in [25].
Moreover, µ(ds, du) is a martingale measure and {Gt}t≥0 is a local martingale.

It is well known that under the Assumption 1 that the (2.3) with the given initial condition
(2.2) admits a unique maximal local solution, which may explode to infinity at a finite time.
To avoid such a possible explosion, we impose another assumption:

Assumption 3: Let H(·) ∈ C(Rn × [−δ, ∞); R+). There is a function V ∈ C2,1(Rn × S ×
R+; R+), as well as q ≥ 2(q1 ∨ q2 ∨ q3), and positive numbers c1, c2, c3, c4 such that c3 + c4 <

c2, |x|q ≤ V(x, i, t) ≤ H(x, t), ∀(x, i, t) ∈ Rn × S × R+, and LV(x, y, i, t) + Vx(x, i, t)u(z, i, t) ≤
c1 − c2H(x, t) + c3(1− δ̄)H(y, t − δ(t)) + c4H(z, t − τ), ∀(x, y, i, t) ∈ Rn ×Rn × S ×R+, z ∈ Rn.

Theorem 2.2. Let the Assumptions 1–3 hold. Under the initial value (2.2), the system (2.3) admits a
unique global solution x(t) on t ≥ −δ and the solution x(t) satisfies

sup
−δ≤t<∞

E|x(t)|q < ∞. (2.10)
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Proof. (1) Existence and uniqueness. Fix any initial value (2.2). It follows from Assumption
1 that Eq. (2.3) has an unique maximal local solution x(t) on t ∈ [−δ, σe], where σe is the
explosion time. If we prove that the solution x(t) is global, we only need to show that σe = ∞.
Let m0 be a sufficiently large integer such that ∥x0∥ = ∥φ∥ = sup−τ≤s≤0 x(s) < m0. For each
integer m > m0, define the stopping time σm = inf{t ∈ [0, σe) : |x(t)| ≥ m}. As usual we set
inf ∅ = ∞, here ∅ is an empty set. Clearly, σm’s are increasing and σ∞ = limm→∞ σm ≤ σe. By
Itô’s formula, we can get that for ∀t > 0,

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

= V(x(0), r(0), 0) + E

∫ t∧σm

0
[LV(x(s), x(s − δ(s)), r(s), s)

+ Vx(x(s), r(s), s)u(x(s − τ), r(s), s)]ds. (2.11)

Applying Assumption 3, we can obtain that

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + c1t − c2

∫ t∧σm

0
H(x(s), s)ds

+ c3(1 − δ̄)
∫ t∧σm

0
H(x(s − δ(s)), s − δ(s))ds

+ c4

∫ t∧σm

0
H(x(s − τ), s − τ)ds. (2.12)

Noting that∫ t∧σm

0
H(x(s − δ(s)), s − δ(s))ds ≤ 1

1 − δ̄

∫ t∧σm−δ(s)

−δ(s)
H(x(u), u)du (2.13)

≤ 1
1 − δ̄

∫ 0

−δ
H(x(s), s)ds +

1
1 − δ̄

∫ t∧σm

0
H(x(s), s)ds

and ∫ t∧σm

0
H(x(s − τ), s − τ)ds =

∫ t∧σm−τ

−τ
H(x(u), u)du

≤
∫ 0

−τ
H(x(s), s)ds +

∫ t∧σm

0
H(x(s), s)ds. (2.14)

Substituting (2.13) and (2.14) into (2.12) that we have

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ V(x(0), r(0), 0) + c3

∫ 0

−δ
H(x(s), s)ds

− (c2 − c3 − c4)
∫ t∧σm

0
H(x(s), s)ds

+ c4

∫ 0

−τ
H(x(s), s)ds + c1t. (2.15)

For c3 + c4 < c2, we can further get

EV(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ M1 + c1t, (2.16)

where M1 = V(x(0), r(0), 0) + c3
∫ 0
−δ H(x(s), s)ds + c4

∫ 0
−τ H(x(s), s)ds. Therefore,

E[V(x(σm), r(σm), σm)I{σm≤t}] ≤ M1 + c1t.
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For |x|q ≤ V(x, i, t), then we can obtain

E[|x(σm)|q I{σm≤t}] ≤ M1 + c1t,

By the definition of σm, we have mqP(σm ≤ t) ≤ M1 + c1t. When m → ∞, we have P(σ∞ ≤
t) → 0, that is σ∞ > t a.s. Letting t → ∞, we obtain that σ∞ = ∞ a.s.

(2) Prove sup−τ≤t≤∞ E|x(t)|q < ∞. Set f (u) = c2 − c3euδ − c4euτ − u for ∀u > 0. Obviously,
f (u) is continuous in u. Since f (0) = c2 − c3 − c4 > 0, by the local sign preserving property
of a continuous function, there is a sufficiently small positive number ε such that f (ε) =

c2 − c3eεδ − c4eετ − ε > 0. For ∀t > 0, applying Itô’s formula to eεtV(x(t), r(t), t), we gain

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

= V(x(0), r(0), 0) + E

∫ t∧σm

0
εeεsV(x(s), r(s), s)ds

+ E

∫ t∧σm

0
eεs[LV(x(s), x(s − δ(s)), r(s), s)

+ Vx(x(s), r(s), s)u(x(s − τ), r(s), s)]ds. (2.17)

Applying Assumption 3, we obtain

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

+ E

∫ t∧σm

0
eεs[c1 − c2H(x(s), s) + c3(1 − δ̄)H(x(s − δ(s)), s − δ(s))

+ c4H(x(s − τ), s − τ)]ds

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds +

c1

ε
(eεt − 1)

− c2E

∫ t∧σm

0
eεsH(x(s), s)ds + c3(1 − δ̄)E

∫ t∧σm

0
eεδ(s)eε(s−δ(s))

× H(x(s − δ(s)), s − δ(s))ds

+ c4E

∫ t∧σm

0
eετeε(s−τ)H(x(s − τ), s − τ)ds

≤ V(x(0), r(0), 0) + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

+
c1

ε
eεt − c2E

∫ t∧σm

0
eεsH(x(s), s)ds

+ c3eεδ(1 − δ̄)E
∫ t∧σm

0
eε(s−δ(s))H(x(s − δ(s)), s − δ(s))ds

+ c4eετE

∫ t∧σm

0
eε(s−τ)H(x(s − τ), s − τ)ds. (2.18)

Noting that ∫ t∧σm

0
eε(s−δ(s))H(x(s − δ(s)), s − δ(s))ds

≤ 1
1 − δ̄

∫ t∧σm−δ(s)

−δ(s)
eεuH(x(u), u)du

≤ 1
1 − δ̄

∫ 0

−δ
eεsH(x(s), s)ds +

1
1 − δ̄

∫ t∧σm

0
eεsH(x(s), s)ds (2.19)
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and ∫ t∧σm

0
eε(s−τ)H(x(s − τ), s − τ)ds =

∫ t∧σm−τ

−τ
eεuH(x(u), u)du

≤
∫ 0

−τ
eεsH(x(s), s)ds +

∫ t∧σm

0
eεsH(x(s), s)ds. (2.20)

Substituting (2.19) and (2.20) into (2.18) that we have

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ V(x(0), r(0), 0) + c3eεδ
∫ 0

−δ
eεsH(x(s), s)ds

+ c4eετ
∫ 0

−τ
eεsH(x(s), s)ds +

c1

ε
eεt

+ εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

− (c2 − c3eεδ − c4eετ)E
∫ t∧σm

0
eεsH(x(s), s)ds

= M2 +
c1

ε
eεt + εE

∫ t∧σm

0
eεsV(x(s), r(s), s)ds

− (c2 − c3eεδ − c4eετ)E
∫ t∧σm

0
eεsH(x(s), s)ds,

where M2 = V(x(0), r(0), 0) + c3eεδ
∫ 0
−δ eεsH(x(s), s)ds + c4eετ

∫ 0
−τ eεsH(x(s), s)ds. For |x|q ≤

V(x, i, t) ≤ H(x, t), we further compute

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm)

≤ M2 +
c1

ε
eεt − (c2 − c3eεδ − c4eετ − ε)E

∫ t∧σm

0
eεsH(x(s), s)ds.

For c2 − c3eεδ − c4eετ − ε > 0,

Eeε(t∧σm)V(x(t ∧ σm), r(t ∧ σm), t ∧ σm) ≤ M2 +
c1

ε
eεt.

Letting m → ∞. Then

EV(x(t), r(t), t) ≤ M2e−εt +
c1

ε
< M2 +

c1

ε
.

Applying |x(t)|q ≤ V(x(t), r(t), t) again, we can get E|x(t)|q < M2 +
c1
ε , ∀t > 0. Together

with t ∈ [−δ, 0], supt∈[−δ,0] E|x(t)|q ≤ ∥φ∥q, therefore, supt∈[−δ,∞) E|x(t)|q < ∞. The proof is
complete.

3 Main results

In this section, we will investigate the H∞-stabilization and asymptotic stabilization.
To proceed, a Lyapunov functional V̄(xt, rt, t) need to be constructed on the segment xt :=

{x(t + s) : −2δ ≤ s ≤ 0} and rt = {r(t + s) : −2δ ≤ s ≤ 0} for t ≥ 0. For xt and rt to be well
defined for 0 ≤ t < 2δ, we set x(s) = φ(−δ) for s ∈ [−2δ,−δ) and r(s) = r0 for s ∈ [−2δ, 0).
Let

V̄(xt, rt, t) = Ū(x(t), r(t), t) + θ
∫ 0

−τ

∫ t

t+s
Q(v)dvds, t ≥ 0, (3.1)
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where θ is a positive number to be determined later, Ū ∈ C2,1(Rn × S × R+; R+) such that

lim
|x|→∞

[
inf

(i,t)∈S×R+
Ū(x, i, t)

]
= ∞ (3.2)

and

Q(t) = τ| f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)|2

+ |g(x(t), x(t − δ(t)), r(t), t)|2

+ 2λ(1 + λτ)|h(x(t), x(t − δ(t)), r(t), t)|2. (3.3)

Set

f (x, y, i, s) = f (x, y, i, 0), u(z, i, s) = u(z, i, 0),

g(x, y, i, s) = g(x, y, i, 0), h(x, y, i, s) = h(x, y, i, 0)

for (x, y, i, s) ∈ Rn × Rn × S × [−2δ, 0). Applying Itô’s formula to Ū(x(t), r(t), t), we obtain

dŪ(x(t), r(t), t)

= Ūt(x(t), r(t), t)dt + Ūx(x(t), r(t), t)

× [ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+
1
2

trace[gT(x(t), x(t − δ(t)), r(t), t)

× Ūxx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)]dt

+ λ[Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]dt

+
N

∑
j=1

γr(t)jŪ(x(t), j, t)dt + Ūx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)dB(t)

+ [Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]dÑ(t)

+
∫

R
[Ū(x(t), r0 + h(r(t), u), t)− Ū(x(t), r(t), t)]µ(dt, du)

= [Ūx(x(t), r(t), t)(u(x(t − τ), r(t), t)− u(x(t), r(t), t))

+ LŪ(x(t), x(t − δ(t)), r(t), t)]dt + dM(t), t ≥ 0, (3.4)

where

LŪ(x(t), x(t − δ(t)), r(t), t)

= Ūt(x(t), r(t), t) + Ūx(x(t), r(t), t)[ f (x(t), x(t − δ(t)), r(t), t)

+ u(x(t), r(t), t)] +
1
2

trace[gT(x(t), x(t − δ(t)), r(t), t)

× Ūxx(x(t), r(t), t)g(x(t), x(t − δ(t)), r(t), t)]

+ λ[Ū(x(t) + h(x(t), x(t − δ(t)), r(t), t), r(t), t)− Ū(x(t), r(t), t)]

+
N

∑
j=1

γr(t)jŪ(x(t), j, t) (3.5)
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and

M(t) =
∫ t

0
Ūx(x(s), r(s), s)g(x(s), x(s − δ(s)), r(s), s)dB(s)

+
∫ t

0

∫
R
[Ū(x(t), r0 + h(r(t), u), t)− Ū(x(t), r(t), t)]µ(ds, du)

+
∫ t

0
[Ū(x(s) + h(x(s), x(s − δ(s)), r(s), s), r(s), s)− Ū(x(s), r(s), s)]dÑ(s).

Here M(t) is a local martingale with M(0) = 0.
To investigate the H∞-stability and asymptotic stability of system (2.3), the following as-

sumption is also given.

Assumption 4: For all (x, y, i, t) ∈ Rn × Rn × S × R+, assume that there exist functions
U(x, i, t) ∈ C2,1(Rn × S × R+; R+), W(x) ∈ C(Rn; R+) and positive constants α and ρi(i =

1, 2, . . . , 6) such that

LŪ(x, y, i, t) + ρ1|Ūx(x, i, t)|2 + ρ2| f (x, y, i, t)|2

+ ρ3|g(x, y, i, t)|2 + ρ4|h(x, y, i, t)|2

≤ − ρ5|x|2 + ρ6(1 − δ̄)|y|2 − W(x) + α(1 − δ̄)W(y), (3.6)

where α < 1 and ρ6 < ρ5.
The following theorem shows that the controlled system (2.3) is stable in the sense of H∞.

Theorem 3.1. Suppose that Assumptions 1–2 and Assumption 4 hold, if positive number τ is small
enough for

τ ≤ 1
β

√
2ρ1ρ2

3
∧ 4ρ1ρ3

3β2 ∧ 1
β2

√
2ρ1(ρ5 − ρ6)

3
(3.7)

and 3λ(1+λτ)τβ2

2ρ1
≤ ρ4. Then for any given initial data (2.2), the solution of the controlled system (2.3)

has the property ∫ ∞

0
E[|x(t)|2 + W(x(t))]dt < ∞. (3.8)

Moreover, there exist positive constants c and p̃ > 2 such that c|x| p̃ ≤ W(x)(∀(x, t) ∈ Rn × R+),
then the controlled system (2.3) is H∞-stable, namely∫ ∞

0
E|x(t)|pdt < ∞, p ∈ [2, p̃] (3.9)

for any given initial value (2.2).

Proof. Given any initial value (2.2). Applying Itô’s formula to V̄(xt∧σm , rt∧σm , t ∧ σm) defined
by (3.1) yields

EV̄(xt∧σm , rt∧σm , t ∧ σm) = V̄(x0, r0, 0) + E

∫ t∧σm

0
LV̄(xs, rs, s)ds, t ≥ 0, (3.10)

where σm is defined as the same as in Theorem 2.2, and

LV̄(xt, rt, t) = LŪ(x(t), x(t − δ(t)), r(t), t)

+ Ūx(x(t), r(t), t)[u(x(t − τ), r(t), t)− u(x(t), r(t), t)]

+ θτQ(t)− θ
∫ t

t−τ
Q(r)dr. (3.11)
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Using (2.5) that we can gain

Ūx(x(t), r(t), t)[u(x(t − τ), r(t), t)− u(x(t), r(t), t)]

≤ ρ1|Ux(x(t), r(t), t)|2 + 1
4ρ1

|u(x(t − τ), r(t), t)− u(x(t), r(t), t)|2

≤ ρ1|Ux(x(t), r(t), t)|2 + β2

4ρ1
|x(t)− x(t − τ)|2. (3.12)

Then we can obtain

LV̄(xt, rt, t) ≤ LŪ(x(t), x(t − δ(t)), r(t), t) + ρ1|Ūx(x(t), r(t), t)|2

+
β2

4ρ1
|x(t)− x(t − τ)|2 + 2θτ2| f (x(t), x(t − δ(t)), r(t), t)|2

+ 2θτ2|u(x(t − τ), r(t), t)|2 + θτ|g(x(t), x(t − δ(t)), r(t), t)|2

+ 2λ(1 + λτ)θτ|h(x(t), x(t − δ(t)), r(t), t)|2 − θ
∫ t

t−τ
Q(r)dr. (3.13)

According to (3.7), we can further gain

LV̄(xt, rt, t) ≤ LŪ(x(t), x(t − δ(t)), r(t), t) + ρ1|Ūx(x(t), r(t), t)|2

+
β2

4ρ1
|x(t)− x(t − τ)|2 + ρ2| f (x(t), x(t − δ(t)), r(t), t)|2

+ ρ3|g(x(t), x(t − δ(t)), r(t), t)|2 + ρ4|h(x(t), x(t − δ(t)), r(t), t)|2

+ 2θτ2β2|x(t − τ)|2 − θ
∫ t

t−τ
Q(r)dr

≤ − ρ5|x(t)|2 + ρ6(1 − δ̄)|x(t − δ(t))|2 − W(x(t))

+ α(1 − δ̄)W(x(t − δ(t))) +
β2

4ρ1
|x(t)− x(t − τ)|2

+ 2θτ2β2|x(t − τ)|2 − θ
∫ t

t−τ
Q(r)dr. (3.14)

Substituting (3.14) into (3.10), we can obtain

EV̄(xt∧σm , rt∧σm , t ∧ σm) ≤ V̄(x0, r0, 0) + v1 + v2 + v3 − v4, (3.15)

where

v1 = E

∫ t∧σm

0
[−ρ5|x(r)|2 + ρ6(1 − δ̄)|x(r − δ(r))|2 + 2θτ2β2|x(r − τ)|2]dr,

v2 = E

∫ t∧σm

0
[−W(x(r)) + α(1 − δ̄)W(x(r − δ(r)))]dr,

v3 =
β2

4ρ1
E

∫ t∧σm

0
|x(r)− x(r − τ)|2dr,

v4 = θE

∫ t∧σm

0

∫ r

r−τ
Q(v)dvdr.
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Noting that∫ t∧σm

0
|x(s − δ(s))|2ds ≤ 1

1 − δ̄

∫ t∧σm−δ(t∧σm)

−δ(0)
|x(r)|2dr ≤ 1

1 − δ̄

∫ t∧σm

−δ
|x(r)|2dr,∫ t∧σm

0
|x(s − τ)|2ds ≤

∫ t∧σm−τ

−τ
|x(r)|2dr ≤

∫ t∧σm

−δ
|x(r)|2dr,∫ t∧σm

0
W(x(s − δ(s)))ds ≤ 1

1 − δ̄

∫ t∧σm−δ(t∧σm)

−δ(0)
W(x(r))dr

≤ 1
1 − δ̄

∫ t∧σm

−δ
W(x(r))dr,

v1 ≤ (ρ6 + 2θτ2β2)
∫ 0

−δ
|x(r)|2dr − (ρ5 − ρ6 − 2θτ2β2)E

∫ t∧σm

0
|x(r))|2dr,

v2 ≤ α
∫ 0

−δ
W(x(r))dr − (1 − α)

∫ t∧σm

0
W(x(r))dr. (3.16)

Substituting (3.16) into (3.15) that we obtain

EV̄(xt∧σm , rt∧σm , t ∧ σm) ≤ C − (ρ5 − ρ6 − 2θτ2β2)E
∫ t∧σm

0
|x(r)|2dr

− (1 − α)E
∫ t∧σm

0
W(x(r))dr + v3 − v4, (3.17)

where C = V̄(x0, r0, 0) + (ρ6 + 2θτ2β2)
∫ 0
−τ |x(r)|

2dr + α
∫ 0
−τ W(x(r))dr. Letting m → ∞ and

applying the classical Fatou lemma, we gain

EV(xt, rt, t) ≤ C − (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr

− (1 − α)E
∫ t

0
W(x(r))dr + v̄3 − v̄4, (3.18)

where

v̄3 =
β2

4ρ1
E

∫ t

0
|x(r)− x(r − τ)|2dr, v̄4 = θE

∫ t

0

∫ r

r−τ
Q(v)dvdr.

For t ∈ [0, τ], we have

v̄3 ≤ β2

4ρ1

∫ t

0
E|x(r)− x(r − τ)|2dr

≤ β2

2ρ1

∫ τ

0
(E|x(r)|2 + E|x(r − τ)|2)dr

≤ β2

ρ1
τ

(
sup

−τ≤r≤τ

E|x(r)|2
)

.

For t > τ, we gain

v̄3 ≤ τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)
+

β2

4ρ1
E

∫ t

τ
|x(r)− x(r − τ)|2dr.
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It follows from (2.3) and Hölder inequality that we can obtain

E

∫ t

τ
|x(r)− x(r − τ)|2dr ≤ 3E

∫ t

τ

∫ r

r−τ
Q(v)dvdr ≤ 3E

∫ t

0

∫ r

r−τ
Q(v)dvdr.

Then we can get

v̄3 ≤
(

β2τ

ρ1
sup

−τ≤r≤τ

E|x(r)|2
)
+

3β2

4ρ1
E

∫ t

0

∫ r

r−τ
Q(v)dvdr. (3.19)

Substituting (3.19) into (3.18) we obtain

0 ≤ EV̄(xt, rt, t) ≤ C +
τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)

− (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr

− (1 − α)E
∫ t

0
W(x(r))dr

+
3β2

4ρ1
E

∫ t

0

∫ r

r−τ
Q(v)dvdr − θE

∫ t

0

∫ r

r−τ
Q(v)dvdr. (3.20)

Let θ = 3β2

4ρ1
. For τ < 1

β2

√
2(ρ5−ρ6)ρ1

3 , then

min{ρ5 − ρ6 − 2θτ2β2, 1 − α}
∫ t

0
E[|x(r)|2 + W(x(r))]dr

≤ (ρ5 − ρ6 − 2θτ2β2)E
∫ t

0
|x(r)|2dr + (1 − α)E

∫ t

0
W(x(r))dr

≤ C +
τβ2

ρ1

(
sup

−τ≤r≤τ

E|x(r)|2
)

(3.21)

which implies the desired conclusion (3.8). Moreover, for c|x| p̃ ≤ W(x), applying the inequal-
ity |v|b ≤ |v|a + |v|c(∀0 < a ≤ b ≤ c), we can get for any p ∈ [2, p̃],

min{1, c}
∫ ∞

0
E|x(t)|pdt ≤ min{1, c}

∫ ∞

0
E[|x(t)|2 + |x(t)| p̃]dt

≤
∫ ∞

0
E[|x(t)|2 + c|x(t)| p̃]dt

≤
∫ ∞

0
E[|x(t)|2 + W(x(t))]dt < ∞

which implies (3.9) is true. The proof is complete.

The next theorem illustrates that the controlled system (2.3) is asymptotically stable.

Theorem 3.2. Let all the conditions of Theorem 3.1 hold. If p ≥ 2 and q ≥ (p + q1 − 1) ∨
(p + 2q2 − 2) ∨ pq3, then for the any given initial date (2.2), the solution of the system (2.3) sat-
isfies

lim
t→∞

E|x(t)|p = 0. (3.22)

Namely, the system (2.3) is asymptotically stable.



14 G. Li, Z. Hu, F. Deng and H. Zhang

Proof. Applying Itô’s formula to |x(t)|p that we obtain for any 0 ≤ t1 < t2 < ∞,

E|x(t2)|p − E|x(t1)|p

≤ E

∫ t2

t1

p|x(t)|p−2xT(t)[ f (x(t), x(t − δ(t)), r(t), t) + u(x(t − τ), r(t), t)]dt

+
p(p − 1)

2
E

∫ t2

t1

|x(t)|p−2|g(x(t), x(t − δ(t)), r(t), t)|2dt

+ λE

∫ t2

t1

(|x(t) + h(x(t), x(t − δ(t)), r(t), t)|p − |x(t)|p) dt. (3.23)

It follows from (2.7) that we gain

E|x(t2)|p − E|x(t1)|p ≤ pE

∫ t2

t1

|x(t)|p−1[K(1 + |x(t)|q1 + |x(t − δ(t))|q1) + β|x(t − τ)|]dt

+
3p(p − 1)K2

2
E

∫ t2

t1

|x(t)|p−2(1 + |x(t)|2q2 + |x(t − δ(t))|2q2)dt

+ λ6p−1KpE

∫ t2

t1

(1 + |x(t)|pq3 + |x(t − δ(t))|pq3)dt

+ λ(2p−1 − 1)E
∫ t2

t1

|x(t)|pdt. (3.24)

By Young’s inequality, we can get

E

∫ t2

t1

|x(t)|p−1|x(t − δ(t))|q1 dt

≤ p − 1
p + q1 − 1

∫ t2

t1

E|x(t)|p+q1−1dt +
q1

p + q1 − 1

∫ t2

t1

E|x(t − δ(t))|p+q1−1dt. (3.25)

Using Theorem 2.2 and p + q1 − 1 ≤ q that we get

E

∫ t2

t1

|x(t)|p−1|x(t − δ(t))|q1 dt ≤ sup
−δ≤t<∞

E|x(t)|p+q1−1(t2 − t1). (3.26)

Similarly, according to p + 2q2 − 2 ≤ q and pq3 ≤ q that we can get

E

∫ t2

t1

|x(t)|p−2|x(t − δ(t))|2q2 dt ≤ sup
−δ≤t<∞

E|x(t)|p+2q2−2(t2 − t1) (3.27)

and

E

∫ t2

t1

|x(t)|pq3 dt ≤ sup
0≤t<∞

E|x(t)|pq3(t2 − t1). (3.28)

It follows from (3.26)–(3.28) that we can obtain

E|x(t2)|p − E|x(t1)|p ≤ C̃(t2 − t1) (3.29)

where C̃ is a constant independent t1, t2. That is, E|x(t)|p is uniformly continuous in t on R+.
Together with (3.9), we can assert limt→∞ E|x(t)|p = 0. The proof is thus complete.

Remark 3.3. Different from the existing literature, this paper studies the H∞-stability and
asymptotic stability for a class of highly nonlinear SDSs, where both the Markovian switching
and Poisson jump are taken into consideration, which advances the results of the system
with the coefficients satisfying the linear growth condition in [24] and covers the results in
[18, 20, 27, 33, 39].
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4 An example

In this section, we give an example to illustrate the the obtained results. Let B(t) be a scalar
Brown motion and N(t) be a Poisson process with intensity λ = 1. For the sake of simplicity,
here we consider δ(t) ≡ δ. We thus consider the following scalar system

dx(t) = f (x(t), x(t − δ), r(t), t)dt + g(x(t), x(t − δ), r(t), t)dB(t)

+ h(x(t), x(t − δ), r(t), t)dN(t), t ≥ 0 (4.1)

with the initial data x(t) = 3 + 2 cos(t), t ∈ [−1, 0] and r(0) = 1, where f (x, y, 1, t) = x +
1
2 y3 − 2x3 − 2x7, f (x, y, 2, t) = x + y3 − 2x3 − x7, g(x, y, 1, t) = g(x, y, 2, t) = 1

4 y2, h(x, y, 1, t) =
h(x, y, 2, t) = 1

2 x, r(t) is a Markov chain on the state space S = {1, 2} with

Γ = (γij)2×2 =

[
cc − 2 2

1 −1

]
.

It is easy to see that q1 = 7, q2 = 2 and q3 = 1. The sample paths of the Markov chain and the
solution of the system (4.1) are shown in Fig. 4.1. From this figure, we can see that the system
(4.1) is unstable. We are in position to design a control function u : R × S × R+ → R defined
by u(x, 1, t) = −4x, u(x, 2, t) = −5x to make the system (4.1) become stable. It is also easy to
see that β = 5. The controlled system of the form

dx(t) = [ f (x(t), x(t − δ), r(t), t) + u(x(t − τ), r(t), t)]dt

+ g(x(t), x(t − δ), r(t), t)dB(t)

+ h(x(t), x(t − δ), r(t), t)dN(t), t ≥ 0. (4.2)
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2

3

4

x
(t

)

Figure 4.1: The sample paths of the Markov chain (left) and the solution of the
system (4.1) (right) with δ = 1.

Let V(x, i, t) = x14(i = 1, 2). By Young inequality, we compute

LV(x, y, i, t) + Vx(x, i, t)u(z, i, t)

≤
{
− 28x20 − 18x16 + 356.93x14 + 2.74y16 + 4z14, i = 1,

− 14x20 − 12x16 + 369.93x14 + 4.05y16 + 5z14, i = 2,

≤ c1 − 12(x16 + x14) + 4.05(y14 + y16) + 5(z14 + z16),

where c1 = supx∈R{−14x20 + 381.93x14} < ∞. Therefore, Assumption 3 is fulfilled with c2 =

12, c3 = 4.05, c4 = 5, H(x, t) = x14 + x16 and q = 14.
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In the following, we define Ū(x, 1, t) = x2 + x4 + x8 and Ū(x, 2, t) = 1
2 (x2 + x4 + x8). Then

LŪ(x, y, i, t) ≤


− 21

4
x12 − 195

16
x4 − 7

2
x8 − 403

20
x10 − 16x14 +

13
16

y4 +
5
4

y6 +
19
10

y10, i = 1,

− 19
8

x2 − 215
8

x4 − 47
16

x6 − 7
2

x8 − 267
40

x10 − 4x14 +
25
32

y4 +
9
8

y6 +
31
20

y10, i = 2.

Moreover,

|Ūx(x, i, t)|2 ≤
{

12x2 + 48x6 + 192x14, i = 1,

3x2 + 12x6 + 48x14, i = 2,

and

| f (x, y, i, t)|2 ≤
{

4x2 + y6 + 16x6 + 16x14, i = 1,

4x2 + 4y6 + 16x6 + 4x14, i = 2,

and for ∀i = 1, 2, |g(x, y, i, t)|2 = 1
16 y4, |h(x, y, i, t)|2 = 1

4 x2. Let ρ1 = 1
650 , ρ2 = 1

80 , ρ3 = 1
5 and

ρ4 = 1
2 . Then we can compute

LŪ(x, y, i, t) + ρ1|Ūx(x, i, t)|2 + ρ2| f (x, y, i, t)|2 + ρ3|g(x, y, i, t)|2 + ρ4|h(x, y, i, t)|2

≤ −2.2|x|2 − 2.7(x4 + x6 + x8 + x10 + x14) + 1.9(y4 + y6 + y8 + y10 + y14). (4.3)

It follows from (4.3) that we can assert that Assumption 4 is satisfied with W(x) = 2.7(x4 +

x6 + x8 + x10 + x14), ρ5 = 11
5 , ρ6 = 0 and α = 19

27 . By computing, we can set τ = 10−5 to satisfy

(3.7) and 3λ(1+λτ)τβ2

2ρ1
≤ ρ4. Then according to Theorem 3.1, we therefore conclude that the

solution of the controlled system (4.2) satisfies the following property∫ ∞

0
E[x2(t) + x4(t) + x6(t) + x8(t) + x10(t) + x14(t)]dt < ∞.

Thus, we can get ∫ ∞

0
E[x2(t) + x4(t) + x6(t) + x8(t) + x10(t)]dt < ∞.

Moreover, as |x(t)|p ≤ x2(t) + x4(t) + x6(t) + x8(t) + x10(t) for any p ∈ [2, 10], we obtain∫ ∞
0 E|x(t)|pdt < ∞.
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Figure 4.2: The sample paths of the Markov chain (left) and the solution of the
system (4.2) (right) with δ = 1 and τ = 10−5.

Let p = 4. Recalling q1 = 7, q2 = 2, q3 = 1, then all the conditions of Theorem 3.2 are
satisfied, so we can get limt→∞ E|x(t)|4 = 0.

The sample paths of the Markov chain and the solution of the controlled system (4.2) are
shown in Fig. 4.2. The simulation supports the theoretical results.
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5 Conclusion

Up to now, very few stabilization results seem to be known about the STVDSs with Markovian
switching and Poisson jump, not to mention the case where the coefficients of such systems
are highly nonlinear. This paper discussed the stabilization problem of such systems. In
this paper, we designed a delay feedback controller to make an unstable highly nonlinear
STVDS with Markovian switching and Poisson jump H∞-stable and asymptotically stable,
which enriches the stabilization results on such systems. Moreover, an illustrative example
has been presented to verify the effectiveness of the obtained results.
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