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Abstract. We prove an existence result for strong solutions u ∈ W2,q (Ω) of singular
semilinear elliptic problems of the form −∆u = g (·, u) in Ω, u = τ on ∂Ω, where

1 < q < ∞, Ω is a bounded domain in Rn with C2 boundary, 0 ≤ τ ∈ W2− 1
q ,q

(∂Ω) ,
and with g : Ω × (0, ∞) → [0, ∞) belonging to a class of nonnegative Carathéodory
functions, which may be singular at s = 0 and also at x ∈ S for some suitable subsets
S ⊂ Ω. In addition, we give results concerning the uniqueness and regularity of the
solutions. A related problem on punctured domains is also considered.

Keywords: singular elliptic problems, strong solutions, Schauder’s fixed point theorem,
approximation method.
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1 Introduction and statement of the main results

Our aim in this paper is to state existence and uniqueness results for strong solutions u ∈
W2,q (Ω) of singular elliptic problems of the form

−∆u = g (·, u) in Ω,

u = τ on ∂Ω,

u > 0 in Ω,

(1.1)

where 1 < q < ∞, Ω is a bounded domain in Rn with C2 boundary, 0 ≤ τ ∈ W2− 1
q ,q

(∂Ω) ,
with the boundary condition understood in the sense of the trace, and where g : Ω× (0, ∞) →
[0, ∞) is a suitable nonnegative Carathéodory function which may be singular at s = 0 and at
x ∈ S for some suitable subsets S ⊂ Ω.

Singular elliptic problems appear in the study of nonlinear phenomena such as non-
Newtonian fluids, the temperature of some electrical conductors, thin films, micro electro-
mechanicals devices, and chemical catalysts process, (see e.g., [6, 15, 19, 20, 28] and the refer-
ences therein).
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Existence of classical solutions u ∈ C2 (Ω) ∩ C
(
Ω
)

of problem (1.1) were obtained, in the
pioneering works [11, 41] (in both cases for a general second order linear operator instead of
the Laplacian, but in [11] with homogeneous boundary condition), and in [9, 15, 20]. Cases
where g has the form g (x, s) = a (x) s−α, α ∈ (0, ∞) , and τ = 0 were studied in [26] and [14],
and more recently, in [16, 40], and [29]. Let us mention also that in [15], problem (1.1) was
studied when τ = 0 and g (x, s) = − 1

sγ + f (x) for some γ > 0 and f ∈ L1 (Ω) .
Existence results for classical solutions of Lane–Emden–Fowler equations with convection

and singular potential were obtained in [17], and related problems were studied in [8] and
[22]. Problem (1.1) was studied, again in a classical sense, in [1, 27, 31, 34, 35, 42], and [43],
in some cases where g = g (x, s) is singular at s = 0, and with some kind of singularity at
x ∈ ∂Ω. Related problems can be found also in [37], [38], and [39].

In [30] it was studied the existence, uniqueness, and regularity properties of the weak
solutions of problems of the form −div (A (x)∇u) = f (x)

uγ + µ in Ω, u > 0 in Ω, u = 0 on ∂Ω,
in the case when A (x) is a uniformly elliptic and bounded matrix, γ > 0, 0 ≤ f ∈ L1 (Ω) in
Ω, and µ is a nonnegative bounded Radon measure.

Existence and nonexistence of solutions of problems of the form −div (A (x)∇u) = f u−γ

in Ω, u > 0 in Ω, u = 0 on ∂Ω, was studied in [4], in the case where A is a bounded elliptic
matrix and f is, either a nonnegative function in a suitable Lp (Ω) or a nonnegative and
bounded Radon measure. The existence and uniqueness of solutions of problem of the form
−div (A (x)∇u) = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω, was studied in [31] in the case
when µ a bounded Radon measure, A (x) is a uniformly elliptic and bounded matrix with
Lipschitz continuous coefficients, and H : (0, ∞) → (0, ∞) satisfies some suitable conditions
which allow that lims→0+ H (s) = ∞.

Problems of the form −∆u = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω, with H : (0, ∞) →
(0, ∞) allowed to be singular at the origin, in the sense that lims→0+ H (s) = ∞, and where µ

is a bounded Radon measure were studied, under different assumptions, in [13] and [32], and
the analogous problem −∆pu = H (u) µ in Ω, u > 0 in Ω, u = 0 on ∂Ω (where ∆p is the usual
p-Laplacian operator ∆p (u) := div

(
|∇u|p−2 ∇u

)
), was studied in [12].

In [18] it was proved, via a comparison principle, the uniqueness of the weak solutions of
problems of the form −∆pu = F (·, u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, in the case when F is a
nonnegative Carathéodory function on Ω × (0, ∞) such that s → s1−pF (x, s) is decreasing on
(0, ∞) for a.e. x ∈ Ω. In addition, again in [18], it was proved the existence of weak solutions
of problems of the form −∆pu = f u−γ + guq in Ω, u > 0 in Ω, u = 0 on ∂Ω, in the case
when γ ≥ 0, 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue
spaces.

The existence of weak solutions in W1,q
0 (Ω) of problem (1.1) was studied in [7] in some

cases where τ = 0, g (x, s) = a (x) s−α(x). In [24] it was studied the existence of weak solutions,
in H1

0 (Ω) , for problems of the form −∆u = g (·, u) in Ω, u = 0 on ∂Ω, u > 0 in Ω, including
some cases where g (x, s) is singular at s = 0, and also at x ∈ ∂Ω.

Singular problems on punctured domains were studied in [3]. There it was proved that,
if x0 ∈ Ω and if a : Ω → R satisfies certain condition related to the Karamata class, then the
problem −∆u = au−α in Ω \ {x0} , u > 0 in Ω \ {x0} , u = 0 on ∂Ω has at least one solution
such that , limx→x0 |x − x0|n−2 u (x) = 0.

The interested reader will find an updated account, concerning the topic of singular elliptic
problems, as well as additional references, in the research books [36], and [21].

We assume, from now on, that n ≥ 2 and that Ω is a bounded domain in Rn with C2

boundary. Let q ∈ (1, ∞) , which we fix from now on. We recall that (see, e.g., [25, The-
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orem 2.4.2.5]), for f ∈ Lq (Ω) and τ ∈ W2− 1
q ,q

(∂Ω) , there exists a unique strong solution
u ∈ W2,q (Ω) of the problem {

−∆u = f in Ω,

u = τ on ∂Ω,
(1.2)

with the boundary condition understood in the sense of the trace, and that u satisfies
∥u∥W2,q(Ω) ≤ c

(
∥ f ∥Lq(Ω) + ∥τ∥

W2− 1
q ,q

(∂Ω)

)
, where c is a positive constant independent of u.

We will write (−∆)−1 for the solution operator (−∆)−1 : Lq (Ω) → W2,q (Ω) of the homoge-
neous Dirichlet problem {

−∆u = f in Ω,

u = 0 on ∂Ω,
(1.3)

i.e., for the operator defined by (−∆)−1 f := u, where u ∈ W2,q (Ω) is the unique strong
solution u of problem (1.3).

We will write dΩ for the function dΩ : Ω → R , defined by dΩ (x) := dist (x, ∂Ω) . With
these notations, our first result reads as follows:

Theorem 1.1. Let n ≥ 2, let Ω be a bounded domain in Rn with C2 boundary, and let τ be a
nonnegative function in W2− 1

q ,q
(∂Ω) ∩ C (∂Ω). Let g : Ω × (0, ∞) → R satisfying the following

three conditions H1)–H3):

H1) g is a Carathéodory function (that is g (·, s) is measurable for any s > 0 and g (x, ·) is continuous
on (0, ∞) for any x ∈ Ω) and such that, for any x ∈ Ω, g (x, ·) is nonnegative and nonincreasing
on (0, ∞) .

H2) There exists A ⊂ Ω such that |A| > 0 and g (x, s) > 0 for all (x, s) ∈ A × (0, ∞) .

H3) g (·, cdΩ) ∈ Lq (Ω) for all c ∈ (0, ∞) .

Then problem (1.1) has a strong solution u ∈ W2,q (Ω) which satisfies τ∗ + cdΩ ≤ u ≤ τ∗ +

(−∆)−1 (g (·, cdΩ)) a.e. in Ω, where c is a positive constant and τ∗ ∈ W2,q (Ω) is the (unique) strong
solution of the problem {

−∆z = 0 in Ω,

z = τ on ∂Ω.
(1.4)

Remark 1.2. For τ as in the statement of Theorem 1.1, since τ ∈ C (∂Ω) , problem (1.4) has
a classical solution ζ ∈ C2 (Ω) ∩ C

(
Ω
)

(see e.g., [23, Theorem 2.14]) which, by the classical
maximum principle (as stated e.g., in [23, Theorem 3.1]), satisfies ζ ≥ 0 in Ω. On the other

hand, since τ ∈ W2− 1
q ,q

(∂Ω) , ([2, Theorem 15.2]) gives that ζ ∈ W2,q (Ω) and that ζ is the
strong solution of (1.4). Then τ∗ ≥ 0 in Ω and τ∗ ∈ C

(
Ω
)

. Moreover, τ∗ is harmonic in Ω,
then τ∗ ∈ C∞ (Ω) , and so τ∗ ∈ W2,p

loc (Ω) for any p ∈ [1, ∞) .

The next result states that, if H1)–H3) hold, and if some additional assumptions on g
are fulfilled, then the solution u of problem (1.1) is unique and has additional regularity
properties:

Theorem 1.3. Assume the hypothesis of Theorem 1.1 and that, in addition, the following conditions
H4)–H5) hold:

H4) g is continuous on Ω × (0, ∞) ,
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H5) (−∆)−1 (g (·, cdΩ)) ∈ C
(
Ω
)

for any c > 0.

Then problem (1.1) has a unique strong solution u ∈ W2,q (Ω) , and it belongs to W2,n
loc (Ω) ∩ C

(
Ω
)

.
In particular, u ∈ C1 (Ω) .

Our third result refers to the punctured domain U := Ω \ {x0} , where x0 ∈ Ω, and reads
as follows:

Theorem 1.4. Let x0 ∈ Ω, U := Ω \ {x0} and, for δ > 0, let

Aδ :=
{

x ∈ Ω :
δ

2
≤ |x − x0| ≤ δ

}
. (1.5)

Let h : Ω × (0, ∞) → R and let w ∈ W2,q (U) . Assume that w is a strong solution of the problem{
−∆w = h (·, w) in U,

w = τ on ∂Ω
(1.6)

(with the boundary condition understood in the sense of the trace). If either w ∈ C (Ω) or
lim supδ→0+

1
δ2

∫
Aδ

|w| = 0, then w ∈ W2,q (Ω) and w is a strong solution of the problem{
−∆w = h (·, w) in Ω,

w = τ on ∂Ω.
(1.7)

We have also the following:

Theorem 1.5. Assume the hypothesis of Theorem 1.3. Let x0 ∈ Ω, U := Ω \ {x0} , and let w ∈
W2,q (U) . If w is a strong solution of the problem

−∆w = g (·, w) in U,

w = τ on ∂Ω,

w > 0 in U.

Then:

i) If lim supx→x0
|x − x0|n−2 w (x) = 0 then, after redefining w in a set with zero measure, it hold

that w ∈ W2,q (Ω) ∩ C
(
Ω
)
∩ C1 (Ω) and w is the unique solution of problem (1.1)

ii) If ∥w∥L∞(U) = ∞, then lim supx→x0
|x − x0|n−2 w (x) > 0.

The paper is organized as follows: in Section 2 we study, for M ≥ 1 and ε ∈ (0, 1] , the
approximated problems {

−∆u = gM (·, ε + u) in Ω,

u = τ on ∂Ω,

where gM (x, s) := min {M, g (x, s)}. By using Schauder’s fixed point theorem, we show
that this problem has a unique solution uM,ε ∈ ∩1<p<∞W2,p (Ω) (see Lemmas 2.2 and 2.4).
Lemma 2.6 states that ε → uM,ε is nonincreasing, M → uM,ε is nondecreasing, and that
τ∗ + c0dΩ ≤ uM,ε ≤ τ∗ + (−∆)−1 (·, c0dΩ) in Ω, with c0 a positive constant independent of M
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and ε, and where τ∗ is the strong solution of (1.4). Lemma 2.7 shows that if uM := limε→0+ uM,ε,
then uM ∈ W2,q (Ω) and uM is a strong solution of the problem{

−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.

The main results are proved in Section 3. To prove Theorem 1.1 we define u := limM→∞ uM

and we show that u is a strong solution of problem (1.1) with the desired properties. This is
achieved from thanks to Lemma 2.7 by showing that g (·, u) := limM→∞ gM (·, uM) with con-
vergence in Lq (Ω). To prove Theorem 1.3 we show that, for any strong solution u of problem
(1.1), there exists a positive constant c such that τ∗ + cdΩ ≤ u ≤ τ∗ + (−∆)−1 (·, cdΩ) in Ω,
which will give the continuity of u at ∂Ω, next we show, by a suitable bootstrap argument, that
u ∈ W2,n

loc (Ω) , which gives that u ∈ C1 (Ω) . Proved that u ∈ W2,n
loc (Ω)∩C

(
Ω
)

, the uniqueness
assertion of Theorem 1.3 will follow from the fact that s → g (x, s) is nonincreasing, combined
with the application of an appropriate maximum principle. Finally, Theorem 1.4 is proved by
showing that, if w ∈ W2,q (Ω \ {x0}) satisfies the conditions of Theorem 1.4, then w, viewed
as a distribution on Ω, belongs to W2,q (Ω) .

2 Preliminaries

Let g : Ω × (0, ∞) → R be a function satisfying the conditions H1)–H3) of Theorem 1.1 and,
for M ∈ [1, ∞) , ε ∈ (0, 1] , let gM : Ω × (0, ∞) → R be defined by

gM (x, s) := min {M, g (x, s)} .

let KM := ∥τ∗∥Lq(Ω) + M
∥∥ (−∆)−1 (1)

∥∥
Lq(Ω)

, where τ∗ is the strong solution of problem (1.4),
and let

CM := {v ∈ Lq (Ω) : 0 ≤ v ≤ KM} .

For v ∈ CM, since g is a Carathéodory function, gM (·, ε + v) is a measurable function. Let η be
a positive and small enough number such that ηdΩ ≤ ε in Ω. Then, since g is nonincreasing
in the second variable and v ≥ 0 in Ω, we have 0 ≤ g (·, ε + v) ≤ g (·, ε) ≤ g (·, ηdΩ) in Ω. By
H3), g (·, ηdΩ) ∈ Lq (Ω) , then 0 ≤ gM (·, ε + v) ≤ gM (·, ηdΩ) ∈ Lq (Ω) and thus gM (·, ε + v) ∈
Lq (Ω) . Then (−∆)−1 (gM (·, ε + v)) is a well defined element in W2,q (Ω) . Let TM,ε : CM →
W2,q (Ω) be the operator defined by

TM,ε (v) := τ∗ + (−∆)−1 (gM (·, ε + v)) .

Remark 2.1.

i) Let us recall the following form of the Aleksandrov maximum principle (which is a
particular case of [23], Theorem 9.1): If U is a bounded domain in Rn and if u ∈
W2,n

loc (U) ∩ C
(
U
)

satisfies −∆u ≥ 0 in U (respectively −∆u ≤ 0 in U) and u ≥ 0 on
∂U (resp. u ≤ 0 on ∂U), then u ≥ 0 in U (resp. u ≤ 0 in U).

ii) If 0 ≤ f ∈ Lq (Ω) then (−∆)−1 f ≥ 0 in Ω (note that we do not assume q ≥ n).
Indeed, let f̃ : Rn → R be the extension by zero of f . Then 0 ≤ f̃ ∈ Lq (Rn) and so f̃
can be approximated, in the Lq (Rn) norm, by a sequence

{
f̃ j
}

j∈N ⊂ C∞ (Rn) obtained
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by convolving f̃ with suitable mollifiers (see [33, Proposition 1.1.3]). Thus, for each j,
0 ≤ f̃ j|Ω ∈ L∞ (Ω) , and so the solution uj of the problem{

−∆uj = f̃ j|Ω in Ω,

uj = 0 on ∂Ω

belongs to W2,p (Ω) for any p ∈ [1, ∞) and, since
{

f̃ j|Ω
}

j∈N converges to f in Lq (Rn) , it

follows that
{

uj
}

j∈N converges to u in W2,q (Ω). Now, by i), uj ≥ 0 in Ω, and then u ≥ 0
in Ω.

iii) From ii), it follows immediately that if f and h belong to Lq (Ω) and f ≤ h in Ω, then
(−∆)−1 f ≤ (−∆)−1 h in Ω.

Lemma 2.2. Assume the conditions H1)–H3) of Theorem 1.1, let τ be a nonnegative function in
W2− 1

q ,q
(∂Ω) , and let τ∗ ∈ W2,q (Ω) be the strong solution of problem (1.4). Then, for M ∈ [1, ∞)

and ε ∈ (0, 1] ,

i) CM is a closed and convex subset of Lq (Ω) .

ii) TM,ε (CM) ⊂ CM.

iii) TM,ε : CM → CM is continuous.

iv) TM,ε : CM → CM is a compact operator.

Proof. i) is immediate. To prove ii), observe that, for v ∈ CM, since g (·, ε + v) is nonnegative,
Remark 2.1 iii) gives that (−∆)−1 (gM (·, ε + v)) ≥ 0 and so, since τ∗ ≥ 0 in Ω, we have
TM,ε (v) ≥ 0 in Ω. Also,

∥TM,ε (v)∥q ≤ ∥τ∗∥q +
∥∥∥(−∆)−1 (gM (·, ε + v))

∥∥∥
q

≤ ∥τ∗∥q + M
∥∥∥(−∆)−1 (1)

∥∥∥
q
= KM.

Then TM,ε (v) ∈ CM.
To show iii), it is enough to see that if v ∈ CM and if

{
vj
}

j∈N
is a sequence in CM such

that
{

vj
}

j∈N
converges to v in Lq (Ω) , then there exists a subsequence

{
vjk

}
k∈N

such that{
TM,ε

(
vjk

)}
k∈N

converges to TM,ε (v) in Lq (Ω) .
Let v ∈ CM and let

{
vj
}

j∈N
⊂ CM be such that

{
vj
}

j∈N
converges to v in Lq (Ω). Then

there exists a subsequence
{

vjk
}

k∈N
such that

{
vjk

}
k∈N

converges to v a.e. in Ω. Then, since
gM is a Carathéodory function,

{
gM

(
·, ε + vjk

)}
k∈N

converges to gM (·, ε + v) a.e. in Ω. Thus
limk→∞

∣∣gM
(
·, ε + vjk

)
− gM (·, ε + v)

∣∣q
= 0 a.e. in Ω. Also,

∣∣gM
(
·, ε + vjk

)
− gM (·, ε + v)

∣∣q ≤
(2M)q and then, by Lebesgue’s dominated convergence theorem,

{
gM

(
·, ε + vjk

)}
k∈N

converges to gM (·, ε + v) in Lq (Ω). Thus
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

converges to

(−∆)−1 (gM (·, ε + v)) in W2,q (Ω). Then iii) holds.
To prove iv), consider a sequence

{
vj
}

j∈N
⊂ CM. Then

{
vj
}

j∈N
is bounded in Lq (Ω) , and

thus
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

is bounded in W2,q (Ω). Then there exists a subsequence{
vjk

}
k∈N

such that
{
(−∆)−1 (gM

(
·, ε + vjk

)) }
k∈N

converges in Lq (Ω) , and so iv) holds.
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Lemma 2.3. Let h : Ω × (0, ∞) → R be a function such that h (x, ·) is nonincreasing on (0, ∞) for
any x ∈ Ω, and let u, v be two functions in W2,n

loc (Ω) ∩ C
(
Ω
)
. If u, v satisfy −∆u = h (·, u) in Ω,

−∆v = h (·, v) in Ω, and u = v on ∂Ω, then u = v in Ω.

Proof. Let U := {x ∈ Ω : u (x) > v (x)} and let V := {x ∈ Ω : u (x) < v (x)} . Then U and V
are open subsets of Ω. Suppose that U ̸= ∅, Then

−∆ (u − v) = h (·, u)− h (·, v) ≤ 0 in U. (2.1)

Also,

u − v = 0 on ∂U. (2.2)

Indeed, if x ∈ ∂U ∩ ∂Ω then u (x) − v (x) = 0, and if x ∈ ∂U ∩ Ω then u (x) − v (x) ≥ 0
(because u − v > 0 in U and u − v is continuous in Ω), but if u (x) − v (x) > 0 we would
have u − v > 0 in a neighborhood of x, in contradiction with the fact that x ∈ U. Then
u (x)− v (x) = 0 also in the case when x ∈ ∂U ∩ Ω. Thus (2.2) holds. Now, from (2.1), (2.2)
and Remark 2.1, we obtain u − v ≤ 0 in U. which is impossible. Thus U = ∅. Similarly,
V = ∅, and so u = v in Ω.

Lemma 2.4. Assume the hypothesis of Theorem 1.1. Then, for M ∈ [1, ∞) and ε ∈ (0, 1]

i) The problem {
−∆u = gM (·, ε + u) in Ω,

u = τ on ∂Ω
(2.3)

has a unique strong solution uM,ε ∈ W2,q (Ω) ∩ CM.

ii) The problem {
−∆v = gM (·, ε + τ∗ + v) in Ω,

v = 0 on ∂Ω.
(2.4)

has a unique strong solution vM,ε ∈ ∩1<p<∞W2,p (Ω) and uM,ε = τ∗ + vM,ε.

Proof. Taking into account Lemma 2.2 and Schauder’s fixed point theorem (as stated, e.g., in
[23, Corollary 11.2]), TM,ε has a fixed point uM,ε ∈ CM, which, by the definition of TM,ε, belongs
also to W2,q (Ω) and that is a strong solution of problem (2.3). Clearly a function u ∈ W2,q (Ω)
is solution of (2.3) if and only if v := u − τ∗ is a solution of (2.4), and so (2.4) has, at least, a
solution vM,ε ∈ W2,q (Ω). Moreover, if v is a solution of (2.4), since gM (·, ε + τ∗ + v) ∈ L∞ (Ω)
and v = 0 on ∂Ω, it follows that v ∈ ∩1≤p<∞W2,p (Ω) . In particular v ∈ C

(
Ω
)
∩ W2,n

loc (Ω) .
Suppose now that v and w are two solutions of (2.4). Then v and w belong to C

(
Ω
)
∩W2,n

loc (Ω)
and v = w = 0 on ∂Ω. Since s → g (x, ε + τ∗ (x) + s) is nonincreasing for any x ∈ Ω, the
function h (x, s) := gM (x, ε + τ∗ (x) + s) is also nonincreasing for any x ∈ Ω. Then, by Lemma
2.3, v = w in Ω and so the solution of (2.4) is unique. Now, from the equivalence of problems
(2.3) and (2.4), the solution of (2.3) is also unique.

For M ∈ [1, ∞) and ε ∈ (0, 1] we will denote by uM,ε and vM,ε the solutions of problems
(2.3) and (2.4) given by Lemma 2.4.
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Remark 2.5.

i) Let us recall the following form of the Hopf maximum principle (see [5], Lemma 3.2):
Suppose that ρ ≥ 0 belongs to L∞ (Ω) . Let v be the solution of −∆v = ρ in Ω, v = 0 on
∂Ω. Then

v (x) ≥ cdΩ (x)
∫

Ω
ρdΩ a.e.in Ω, (2.5)

where c is a positive constant depending only on Ω.

ii) Suppose that ρ ≥ 0 belongs to L∞ (Ω) . If h ∈ Lq (Ω) and h ≥ ρ in Ω, then, from Remark
2.1 iii) and (2.5) it follows immediately that (−∆)−1 h ≥ cdΩ (x)

∫
Ω ρdΩ a.e. in Ω, where

c is the constant given in (2.5).

iii) We recall also Hardy’s inequality (see e.g., [33], Theorem 1.10.15): There exists a positive
constant c such that

∥∥ φ
dΩ

∥∥
2 ≤ c

∥∥∇φ
∥∥

2 for any φ ∈ H1
0 (Ω) .

Lemma 2.6. Assume the hypothesis of Theorem 1.1. Then

i) For each M ∈ [1, ∞) the map ε → uM,ε is nonincreasing on (0, 1].

ii) For each ε ∈ (0, 1] the map M → uM,ε is nondecreasing on [1, ∞).

iii) There exists a positive constant c0 such that, for any ε ∈ (0, 1] and M ∈ [1, ∞) , τ∗ + c0dΩ ≤
uM,ε ≤ τ∗ + (−∆)−1 (·, c0dΩ) in Ω .

Proof. To see i), suppose that 0 < ε ≤ η ≤ 1. Let U :=
{

x ∈ Ω : vM,ε (x) < vM,η (x)
}

and
suppose that U ̸= ∅. Since g is nonincreasing in the second variable, the same is true for gM

and so,

−∆ (vM,ε) = gM (·, ε + τ∗ + vM,ε) ≥ gM (·, η + τ∗ + vM,ε)

≥ gM
(
·, η + τ∗ + vM,η

)
= −∆

(
vM,η

)
in U.

Also, as in the proof of Lemma 2.3, we have vM,ε = vM,η on ∂U. Then, by Remark 2.1 iii),
vM,ε ≥ vM,η in U, which is impossible. Then U = ∅ and so vM,ε ≥ vM,η in Ω, which implies
uM,ε ≥ uM,η in Ω. Thus i) holds.

To see ii), suppose 1 ≤ M1 ≤ M2 and ε ∈ (0, 1] . Let U := {vM1,ε > vM2,ε} . If U ̸= ∅, then

−∆ (vM2,ε) = gM2 (·, ε + τ∗ + vM2,ε) ≥ gM1 (·, ε + τ∗ + vM2,ε)

≥ gM1 (·, ε + τ∗ + vM1,ε) = −∆ (vM1,ε) in U.

Also, vM1,ε = vM2,ε on ∂U. Then, by Remark 2.1 iii), vM1,ε ≤ vM2,ε in U, which is impossible.
Therefore U = ∅ and so vM1,ε ≤ vM2,ε in Ω, which implies uM1,ε ≤ uM2,ε in Ω. Thus ii) holds.

To prove iii), observe that by i) and ii) we have, for M ∈ [1, ∞) and ε ∈ (0, 1] ,

vM,ε ≥ vM,1 ≥ v1,1 in Ω. (2.6)

Now, {
−∆v1,1 = g1 (·, 1 + τ∗ + v1,1) in Ω,

v1,1 = 0 on ∂Ω
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and 0 ≤ g1 (·, 1 + τ∗ + v1,1) ∈ L∞ (Ω). Note that g1 (·, 1 + τ∗ + v1,1) ̸≡ 0 in Ω (that is:
|{x ∈ Ω : g1 (x, 1 + τ∗(x) + v1,1(x)) > 0}| > 0) because if g1 (·, 1 + τ∗ + v1,1) ≡ 0 in Ω then
g (·, 1 + τ∗ + v1,1) ≡ 0 in Ω, which contradicts H2). Then∫

Ω
dΩg1 (·, 1 + τ∗ + v1,1) > 0,

and so, taking into account Remark 2.5, there exists a positive constant c′, depending only on
Ω, such that

v1,1 ≥ c′dΩ

∫
Ω

g1 (·, 1 + τ∗ + v1,1) dΩ a.e. in Ω.

Then, from (2.6), vM,ε ≥ c0dΩ with

c0 := c′
∫

Ω
g1 (·, 1 + τ∗ + v1,1) dΩ > 0. (2.7)

and so, since uM,ε = τ∗ + vM,ε, we get that uM,ε ≥ τ∗ + c0dΩ in Ω.
On the other hand, vM,ε = (−∆)−1 (gM (·, ε + τ∗ + vM,ε)) . Now, vM,ε ≥ v1,ε ≥ v1,1 in Ω,

and so gM (·, ε + τ∗ + vM,ε) ≤ gM (·, v1,1) ≤ gM (·, c0dΩ) ≤ g (·, c0dΩ) , with c0 given by (2.7).
Then, by Remark 2.1 iii), (−∆)−1 gM (·, ε + τ∗ + vM,ε) ≤ (−∆)−1 (g (·, c0dΩ)) in Ω, that is,
vM,ε ≤ (−∆)−1 (g (·, c0dΩ)) in Ω. Thus uM,ε = τ∗ + vM,ε ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω,
which completes the proof of the lemma.

For M ∈ [1, ∞) , let uM and vM be the functions, defined on Ω by

uM (x) := lim
ε→0+

uM,ε (x) , vM (x) := lim
ε→0+

vM,ε (x) . (2.8)

Note that, by Lemma 2.6, uM (x) is well defined and finite for a.e. x ∈ Ω and so, since
uM,ε = τ∗ + vM,ε, the same assertion holds also for vM.

Lemma 2.7. Assume the hypothesis of Theorem 1.1 and let c0 be the constant given by Lemma 2.6 iii).
Then:

i) The map M → uM is nondecreasing on [1, ∞).

ii) τ∗ + c0dΩ ≤ uM ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω,for any M ≥ 1 (in particular uM > 0 in
Ω)

iii) For each M > 0, uM ∈ W2,q (Ω) and uM is a strong solution of the problem{
−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.

Proof. If 1 ≤ M1 ≤ M2 and ε ∈ (0, 1] then, by Lemma 2.6, uM1,ε ≤ uM2,ε, and so, by taking
limε→0+ , we get uM1 ≤ uM2 . Thus i) holds. Also, taking limε→0+ in the inequalities of Lemma
2.6 iii) we get ii).

To prove iii) note that, by Lemma 2.4 ii), we have, for ε ∈ (0, 1] and M ∈ [1, ∞) ,

uM,ε = τ∗ + vM,ε, (2.9)

where vM,ε = (−∆)−1 (gM (·, ε + τ∗ + vM,ε)) . From (2.9),

lim
ε→0+

(τ∗ + vM,ε) = uM a.e. in Ω,
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and so, since gM is a Carathéodory function,

lim
ε→0+

gM (·, ε + τ∗ + vM,ε) = gM (·, uM) a.e. in Ω.

Then limε→0+ |gM (·, ε + τ∗ + vM,ε)− gM (·, uM)|q = 0 a.e. in Ω. Also,

|gM (·, ε + τ∗ + vM,ε)− gM (·, uM)|q ≤ (2M)q

for any ε ∈ (0, 1] . Then, by the Lebesgue’s dominated convergence theorem,

lim
ε→0+

gM (·, ε + τ∗ + vM,ε) = gM (·, uM)

with convergence in Lq (Ω) . Then

lim
ε→0+

(−∆)−1 (gM (·, ε + τ∗ + vM,ε)) = (−∆)−1 (gM (·, uM))

with convergence in W2,q (Ω) , and so, in particular, (−∆)−1 (gM (·, uM)) ∈ W2,q (Ω) . There-
fore limε→0+ vM,ε = (−∆)−1 (gM (·, uM)) with convergence in W2,q (Ω) , and thus uM =

limε→0+ uM,ε = limε→0+ (τ
∗ + vM,ε) = τ∗ + (−∆)−1 (gM (·, uM)) , with convergence in W2,q(Ω).

Then −∆uM = gM (·, uM) in Ω and uM = τ on ∂Ω.

3 Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Define u : Ω → R by

u := lim
M→∞

uM. (3.1)

Note that, by Lemma 2.7 i), the map M → uM is nondecreasing on (0, ∞) , and so u is well
defined. By Lemma 2.7 we have, for any M ≥ 1,

τ∗ + c0dΩ ≤ uM ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω, (3.2)

with τ∗ given by by (1.4). Then

τ∗ + c0dΩ ≤ u ≤ τ∗ + (−∆)−1 (g (·, c0dΩ)) in Ω (3.3)

Also, by Lemma 2.7, {
−∆uM = gM (·, uM) in Ω,

uM = τ on ∂Ω.
(3.4)

Note that
lim

M→∞
gM (·, uM) = g (·, u) a.e. in Ω. (3.5)

Indeed, for k ∈ N let

Ωk :=
{

x ∈ Ω :
1
k

dΩ (x) < u (x) < k
}

,

and let E := Ω \ ∪k∈NΩk. Thus E = {x ∈ Ω : u (x) = 0} ∪ {x ∈ Ω : u (x) = ∞} and so, from
(3.3) and taking into account that τ∗ ≥ 0 in Ω and that (−∆)−1 (g (·, c0dΩ)) < ∞ a.e. in Ω, we
get that |E| = 0. Then

Ω = ∪k∈NΩk ∪ E. (3.6)
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with |E| = 0. Now, for each k ∈ N and x ∈ Ωk, we have u (x) > 1
k dΩ (x) and so, since

u (x) = limM→∞ uM (x) , there exists Nk,x such that uM (x) > 1
k dΩ (x) for any M > Nk,x. Let

Mk,x := max
{

Nk,x, g
(

x, 1
k dΩ (x)

)}
. Since g (x, ·) is nonincreasing we have, for M > Mk,x,

g (x, uM (x)) ≤ g
(

x,
1
k

dΩ (x)
)
≤ Mk,x < M,

and so gM (x, uM (x)) = g (x, uM (x)) whenever M > Mk,x. Thus, for any x ∈ Ωk,

lim
M→∞

gM (x, uM (x)) = lim
M→∞

g (x, uM (x)) = g (x, u (x)) ,

the last equality because g is a Carathéodory function. Then, for each k,

lim
M→∞

gM (·, uM) = g (·, u) a.e. in Ωk,

and so, taking into account (3.6) and that |E| = 0, we get (3.5).
Let us see that {gM (·, uM)}M∈N converges to g (·, u) with convergence in Lq (Ω). From

(3.5),
lim

M→∞
|gM (·, uM)− g (·, u)|q = 0 a.e. in Ω.

Also, since τ∗ ≥ 0, from (3.3) and (3.2) we have that u ≥ c0dΩ in Ω and that uM ≥ c0dΩ in Ω
for any M ≥ 1. Then, recalling that g and gM are nonincreasing in the second variable,

|gM (·, uM)− g (·, u)|q ≤ (gM (·, uM) + g (·, u))q

≤ (2g (·, c0dΩ))
q a.e. in Ω.

By H3), (2g (·, c0dΩ))
q ∈ L1 (Ω). By Lebesgue’s dominated convergence theorem,

g (·, u) ∈ Lq (Ω) , (3.7)

and lim
M→∞

gM (·, uM) = g (·, u) with convergence in Lq (Ω) .

Let v = u − τ∗. Since vM = uM − τ∗, Lemma 2.7 gives{
−∆vM = −∆uM = gM (·, uM) in Ω,

vM = 0 on ∂Ω.

i.e., vM = (−∆)−1 gM (·, uM) ; and so, by (3.7),

v = lim
M→∞

vM = (−∆)−1 g (·, u) with convergence in W2,q (Ω) . (3.8)

Then u − τ∗ = v = (−∆)−1 g (·, u) , which gives that u ∈ W2,q (Ω) and that{
−∆u = g (·, u) in Ω,

u = τ on ∂Ω.

Remark 3.1. It is a well known fact that, for η ∈ R, d−η
Ω ∈ L1 (Ω) if, and only if, η < 1. More-

over, if S ⊂ Ω is a closed C2 and n − 1 dimensional surface, and if ρS (x) := dist (x, S) , then
ρ
−η
S ∈ L1 (Ω) whenever η < 1. From these facts, and taking into account that dist (S, ∂Ω) > 0,

it follows easily that if α : Ω → R and β : Ω → R are measurable functions such that
ess supΩ α < 1

q and ess supΩ β < 1
q , then d−α

Ω s−β ∈ Lq (Ω) .
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Example 3.2. The conditions H1–H3) of Theorem 1.1 allow some cases where the function
g (x, s) is singular at s = 0, and also at x ∈ ∂Ω. For instance, consider the case where g (x, s) :=
b (x) d−α

Ω s−β, with α : Ω → R, and β : Ω → [0, ∞) measurable functions such that ess sup Ωα +

ess sup Ωβ < 1
q , and with b : Ω → R such that

0 ≤ b ∈ L∞ (Ω) and |{x ∈ Ω : b (x) > 0}| > 0. (3.9)

Clearly g satisfies H1) and H2) and, for q ∈
(
1, 1

α+β

)
, the first assertion of Remark (3.1), jointly

with (3.9), implies that g satisfies also H3).

Example 3.3. A second example of application of Theorem 1.1 is given by the function
g(x, s) := |x − x0|−γ b (x) s−β, where x0 ∈ Ω, 0 < γ < n, 0 < β < 1, 1 < q < min

{ 1
β , n

γ

}
and with b : Ω → R satisfying (3.9).

Example 3.4. A third example can be given by taking g (x, s) := b (x) ρ
−γ
S (x) s−β, where S ⊂ Ω

is a closed C2 and n − 1 dimensional surface, ρS (x) := dist (x, S) , 0 < γ < 1, 0 < β < 1,
1 < q < min

{ 1
β , 1

γ

}
and with b satisfying (3.9). Indeed, H1) and H2) clearly hold, and H3)

follows easily from the last assertion of Remark 3.1.

If U and V ′ are domains in Rn, we will write U ⊂⊂ V to mean that U ⊂ U ⊂ V.

Proof of Theorem 1.3. Let u be a solution of (1.1). By H1) and H2), g (·, u) is nonnegative and
nonidentically zero on Ω and, since u is a strong solution of problem (1.1), then g (·, u) ∈
Lq (Ω). Let v := u − τ∗. Then −∆v = −∆u = g (·, u) in Ω and v = 0 on ∂Ω, i.e., v =

(−∆)−1 g (·, u) . Then, by Remark 2.5 ii), there exists a positive constant c′ such that v ≥ c′dΩ

in Ω. On the other hand, τ∗ ≥ 0 in Ω. Thus, since u = v + τ∗,

u ≥ τ∗ + c′dΩ in Ω. (3.10)

Also, since τ∗ ≥ 0 in Ω, and taking into account that g is nonincreasing in the second variable
and that v ≥ c′dΩ in Ω, we have g (·, τ∗ + v) ≤ g (·, c′dΩ) and so v = (−∆)−1 g (·, u) =

(−∆)−1 g (·, τ∗ + v) ≤ (−∆)−1 g (·, c′dΩ) . Then

u ≤ τ∗ + (−∆)−1 g
(
·, c′dΩ

)
in Ω. (3.11)

Then
τ∗ + c′dΩ ≤ u ≤ τ∗ + (−∆)−1 g

(
·, c′dΩ

)
in Ω, (3.12)

which, taking into account H5) and that τ∗ ∈ C
(
Ω
)

, implies that u is continuous at ∂Ω.
Now we prove, by a bootstrap argument, that u ∈ W2,n

loc (Ω) . For 1 ≤ p ≤ ∞ define p∗ by
1
p∗ = 1

p − 1
n if p < n and by p∗ = ∞ if p ≥ n; and, for k ∈ N∪ {0}, define inductively qk, by

q0 = q, and by qk+1 = q∗k . Thus 1
qk

= 1
q −

k
n when k < n

q and qk = ∞ if k ≥ n
q . Let j ∈ N∪ {0}

be such that j
n < 1

q ≤ j+1
n . Then 0 < 1

q − j
n < 1

n , and so n < qj < ∞. Given a domain

Ω̃ ⊂⊂ Ω, let Ω0, Ω1, Ω2, . . . , Ωj be regular domains such that Ω̃ ⊂ Ωj ⊂⊂ Ωj−1 ⊂⊂ · · · ⊂⊂
Ω1 ⊂⊂ Ω0 = Ω. Now, u ∈ W2,q(Ω) = W2,q0 (Ω0). Suppose that u ∈ W2,qk (Ωk) for some
k = 0, 1, . . . , j − 1 and let Ω̃k be a domain such that Ωk+1 ⊂⊂ Ω̃k ⊂⊂ Ωk. Then u ∈ W2,qk(Ω̃k)

and so, by the embedding theorems for Sobolev spaces, u ∈ Lq∗k
(

Ω̃k

)
= Lqk+1(Ω̃k). Also, by

H4), g is continuous on Ω × (0, ∞) , and so, since 0 ≤ g (·, u) = g (·, τ∗ + v) ≤ g (·, c′dΩ) , we
have g (·, c′dΩ) ∈ L∞(Ω̃k). Thus, by the inner elliptic estimates (as stated, e.g., in [23, Theorem
9.11]), u ∈ W2,qk+1 (Ωk+1). Thus, inductively, we get that u ∈ W2,qj

(
Ωj

)
and so, since Ω̃ ⊂ Ωj
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and j > n, we have u ∈ W2,n(Ω̃). Thus (since Ω̃ was an arbitrary domain such that Ω̃ ⊂⊂ Ω),
u ∈ W2,n

loc (Ω) . Then u ∈ C (Ω) and so, since we had already seen that u is continuous at ∂Ω,
we conclude that u ∈ C

(
Ω
)

.
Suppose now that u and ũ are solutions of problem (1.1). Then u and ũ belong to

W2,n
loc (Ω) ∩ C

(
Ω
)

and {
−∆ (u − ũ) = g (·, u)− g (·, v) in Ω,

u − ũ = 0 on ∂Ω.

Thus, by Lemma 2.3, u = ũ in Ω.

Remark 3.5. Assume the hypothesis of Theorem 1.1 and that τ = 0 in problem (1.1). Assume
also that dΩg (·, cdΩ) ∈ L2 (Ω) for any c ∈ (0, ∞) , and let u ∈ W2,q (Ω) be the strong solution
of problem (1.1) given by Theorem 1.1. Then u ∈ H1

0 (Ω) and u is a weak solution of problem
(1.1), i.e., for any φ ∈ H1

0 (Ω) ,

g (·, u) φ ∈ L1 (Ω) and
∫

Ω
⟨∇u,∇φ⟩ =

∫
Ω

g (·, u) φ. (3.13)

Indeed, by Theorem 1.1, we have u ≥ cudΩ for some cu ∈ (0, ∞) and so 0 ≤ g (·, u) ≤
g (·, cudΩ) . Now, for φ ∈ H1

0 (Ω) , the Holder’s inequality and the Hardy’s inequality of
Remark 2.5 iii) give∫

Ω
|g (·, u) φ| =

∫
Ω

dΩg (·, u)
∣∣∣∣ φ

dΩ

∣∣∣∣ ≤ ∫
Ω

dΩg (·, cudΩ)

∣∣∣∣ φ

dΩ

∣∣∣∣
≤ ∥dΩg (·, cudΩ)∥2

∥∥∥∥ φ

dΩ

∥∥∥∥
2
≤ c ∥dΩg (·, cudΩ)∥2 ∥∇φ∥2 ,

and thus g(·, u)φ ∈ L1(Ω). Moreover, the above inequality gives that the map φ →
∫

Ω g(·, u)φ

is continuous on H1
0 (Ω) . Then, since H1

0 (Ω) is a Hilbert space with respect to the inner
product (u, v) :=

∫
Ω ⟨∇u,∇v⟩ , it follows that there exists a function ũ ∈ H1

0 (Ω) such that, for
any φ ∈ H1

0 (Ω) , ∫
Ω
⟨∇ũ,∇φ⟩ =

∫
Ω
⟨∇u,∇φ⟩ .

Then
∫

Ω ⟨∇ (ũ − u) ,∇φ⟩ = 0 for any φ ∈ C∞
c (Ω) and so z := ũ − u satisfies, in the sense of

distributions, −∆z = 0 in Ω. Also, z ∈ W1,q
0 (Ω) with q := min (q, 2) and so, in the sense of

the trace, z = 0 on ∂Ω. Then z = 0 and thus u = ũ in Ω. Therefore u ∈ H1
0 (Ω) . Since u is a

strong solution of problem (1.1) we have∫
Ω
⟨∇u,∇ψ⟩ =

∫
Ω

g (·, u)ψ for any ψ ∈ C∞
c (Ω) . (3.14)

and then, by density, (3.14) holds also for any φ ∈ H1
0 (Ω) .

For f : Ω → R and h : Ω → R we will write f ≈ h to mean that there exist positive
constants c1 and c2 such that c1 f ≤ h ≤ c2h a.e. in Ω

Remark 3.6. In order to illustrate the relationship between the existence of classical solutions,
strong solutions and weak solutions in H1

0 (Ω) let us consider the case when Ω is a C2+α

domain in Rn for some α ∈ (0, 1) , n ≥ 3 and g (x, s) = a (x) s−γ with a ∈ Cα
(
Ω
)

such that
minΩ α > 0. Assume also that τ = 0 in problem (1.1). In this situation, [26, Theorem 1] states
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that problem (1.1) has a unique classical solution u ∈ C2+α (Ω) ∩ C
(
Ω
)

for any γ > 0 and

that, when γ > 1, u ≈ d
2

1+γ

Ω in Ω. In addition, [26, Theorem 2] says that when γ > 3 no
(classical) solution belonging to H1 (Ω) exists. In the case γ = 1 [29, Theorem 1] states that

u ≈ dΩ
(

ln
(

ω
dΩ

)) 1
2 , where ω is any constant such that ω > diam (Ω). On the other hand, as a

consequence of [42, Theorems 1 and 2] a weak solution u ∈ H1
0 (Ω) exists if and only if γ < 3.

However, for 1 ≤ γ < 3 these weak solution are not strong solutions. Indeed, when γ = 1,

au−γ = au−1 ≈ d−1
Ω

(
ln

(
ω
dΩ

))− 1
2 and it is easy to see that, for all q ≥ 1,

∫
Ω d−q

Ω

(
ln

(
ω
dΩ

))− q
2 = ∞

(in fact,
∫

Ω d−q
Ω

(
ln

(
ω
dΩ

))− q
2 < ∞ if and only if I (ε) :=

∫ ε
0 t−q (ln

(
ω
t

))− q
2 dt < ∞ for some ε > 0,

but the change of variable s = ln ω
t immediately shows that I (ε) = ∞ for all ε > 0). When

1 < γ < 3, we have u ≈ d
2

1+γ

Ω in Ω, and thus au−γ ≈ d
− 2γ

1+γ

Ω . Then, for q ≥ 1, au−γ ∈ Lq (Ω) if
and only if 2γq

1+γ < 1, that is γ < 1
2q−1 . Since 1

2q−1 ≤ 1 we get that γ < 1, which contradicts our
assumption 1 < γ < 3.

4 A related problem in a punctured domain

Let x0 ∈ Ω, let U := Ω \ {x0} and let w ∈ L1 (U) . Then w ∈ L1 (Ω) , and so w can be viewed
as a distribution on U and also as a distribution on Ω. For 1 ≤ i, j ≤ n, we will denote by
∂U

i w and ∂U
i ∂U

j w (respectively by ∂Ω
i w and ∂Ω

i ∂Ω
j w) the first and the second derivatives of w

considered as a distribution on U (resp. as a distribution on Ω), and, if φ ∈ C∞ (Rn) , we will
write simply ∂i φ and ∂i∂j φ for the first and the second derivatives of φ.

If w ∈ W2,q (U) for some q ∈ (1, ∞) , then ∂U
i w and ∂U

i ∂U
j w belong to Lq (U) and so they

also belong to Lq (Ω) . One may ask if ∂U
i w = ∂Ω

i w and ∂U
i ∂U

j w = ∂Ω
i ∂Ω

j w, i.e., if the equalities

〈
∂U

i w, φ
〉
= −

∫
Ω

w∂i φ and
〈

∂U
i ∂U

j w, φ
〉
=

∫
Ω

w∂i∂j φ,

which hold for φ ∈ C∞
c (U) , hold also for φ ∈ C∞

c (Ω) . The next lemma provides a partial
answer to this question.

Lemma 4.1. Let x0 ∈ Ω, let U := Ω \ {x0} , and, for δ > 0, let Aδ be defined by (1.5) and let
w ∈ W2,q (U) . If either limx→x0 w (x) exists and is finite, or if

lim sup
δ→0+

1
δ2

∫
Aδ

|w| = 0, (4.1)

then ∂U
i w = ∂Ω

i w and ∂U
i ∂U

j w = ∂Ω
i ∂Ω

j w for each i and j, and so, in particular, w ∈ W2,q (Ω) .

Proof. Observe that, in the case when limx→x0 w (x) exists and is finite, it is enough to prove
the lemma under the additional assumption that limx→x0 w (x) = 0 (because the functions
w − limx→x0 w (x) and w have the same derivatives, either in D′ (U) or in D′ (Ω)). Let ψ ∈
C∞

c (Rn) be such that 0 ≤ ψ ≤ 1 in Rn, ψ (x) = 1 for |x| ≤ 1
2 and ψ (x) = 0 for |x| ≥ 1; and for

δ > 0, define ψ1,δ and ψ2,δ by ψ1,δ (x) := ψ
( x−x0

δ

)
and ψ2,δ (x) := 1 − ψ1,δ (x) . For φ ∈ C∞

c (Ω)
and 0 < δ < min {1, dist (x0, ∂Ω)} we have∫

Ω
φ∂U

i ∂U
j w =

∫
Ω

φψ1,δ∂U
i ∂U

j w +
∫

Ω
φψ2,δ∂U

i ∂U
j w.
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Now,
∣∣φψ1,δ∂U

i ∂U
j w

∣∣≤∥φ∥L∞(Ω)

∣∣∂U
i ∂U

j w
∣∣∈Lq(U)=Lq(Ω)⊂L1(Ω). Also limδ→0 φψ1,δ∂U

i ∂U
j w=0

a.e. in Ω. Then, by Lebesgue’s dominated convergence theorem,

lim
δ→0

∫
Ω

φψ1,δ∂U
i ∂U

j w = 0. (4.2)

Thus, to prove the assertion of the lemma for the second derivatives, it suffices to show that

lim
δ→0

∫
Ω

φψ2,δ∂U
i ∂U

j w =
∫

Ω
w∂i∂j φ for any φ ∈ C∞

c (Ω) . (4.3)

Notice that ∂iψ2,δ (x) = 1
δ

∂ψ
∂xi

( x−x0
δ

)
and ∂i∂jψ2,δ (x) = 1

δ2

(
∂i∂jψ

) ( x−x0
δ

)
, and so there exists a

positive constant c, independent of δ, such that

|∂iψ2,δ| ≤
c
δ

and
∣∣∂i∂jψ2,δ

∣∣ ≤ c
δ2 in Ω. (4.4)

Now, ∫
Ω

φψ2,δ∂U
i ∂U

j w =
∫

U
φψ2,δ∂U

i ∂U
j w =

∫
U

w∂i∂j (φψ2,δ) ,

and a computation gives that

∂i∂j (φψ2,δ) = ∂i φ∂jψ2,δ + φ∂i∂jψ2,δ + ∂iψ2,δ∂j φ + ψ2,δ∂i∂j φ,

and so, ψ2,δ, ∂iψ2,δ and ∂i∂jψ2,δ have their supports contained in Aδ, we have∫
U

w∂i∂j (φψ2,δ) = I1,δ + I2,δ + I3,δ + I4,δ, (4.5)

where

I1,δ :=
∫

Aδ

w∂i φ∂jψ2,δ, I2,δ :=
∫

Aδ

wφ∂i∂jψ2,δ,

I3,δ :=
∫

Aδ

w∂iψ2,δ∂j φ, I4,δ :=
∫

U
wψ2,δ∂i∂j φ.

Thus, by (4.4),

|I1,δ| ≤ c ∥∂i φ∥L∞(Ω)

1
δ

∫
Aδ

|w| , (4.6)

with c a positive constant independent of δ. If (4.1) holds then clearly

lim
δ→0+

I1,δ = 0. (4.7)

and, in the case when limx→x0 w (x) = 0, we have limδ→0+ supAδ
|w| = 0, and so, from (4.6),

|I1,δ| ≤ c
δ ∥∂i φ∥L∞(Ω) |Aδ| supAδ

|w| , where |Aδ| denotes the Lebesgue measure of Aδ. Since
|Aδ| = αn

(
1 − 1

2n

)
δn where αn is the volume of the unit ball in Rn and taking into account

that n ≥ 2, we get (4.7) again in this case. Similarly,

lim
δ→0+

I3,δ = 0. (4.8)

To estimate I2,δ observe that, by (4.4),

|I2,δ| ≤
c
δ2 ∥φ∥L∞(Ω)

∫
Aδ

|w| , (4.9)
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and so, proceeding similarly to the estimative of I3,δ we get, in both cases of the lemma, that

lim
δ→0+

I2,δ = 0. (4.10)

Consider now I4,δ. We have
∣∣wψ2,δ∂i∂j φ

∣∣≤|w||∂i∂j φ|∈L1(Ω), and clearly limδ→0+wψ2,δ∂i∂j φ =

w∂i∂j φ a.e. in Ω. Then, by Lebesgue’s dominated convergence theorem,

lim
δ→0+

I4,δ =
∫

Ω
w∂i∂j φ =

〈
∂Ω

i ∂Ω
j w, φ

〉
. (4.11)

From (4.7), (4.8), (4.10), and (4.11), we get (4.3), and so the assertion of the lemma for the
second derivatives holds. The proof of the assertion of the lemma for the first derivatives
follows similar lines and we omit it.

Proof of Theorem 1.4. Let w ∈ W2,q (U) be a strong solution of problem (1.6). If either w ∈
C (Ω) or lim supδ→0+

1
δ2

∫
Aδ

|w| = 0, then, by Lemma 4.1, w ∈ W2,q (Ω) . Since the equality
−∆w = h (·, w) holds a.e. in Ω, and, in the sense of the trace, w = τ on ∂Ω, we have that w is
a strong solution u of problem (1.7).

Proof of Theorem 1.5. To see i), suppose that lim supx→x0
|x − x0|n−2 w (x) = 0, and let ε > 0.

Then there exist δ0 > 0 such that |x − x0|n−2 w (x) ≤ ε if 0 < |x − x0| < δ0. Now, for δ ∈ (0, δ0) ,

1
δ2

∫
Aδ

|w| = 1
δ2

∫
Aδ

1

|x − x0|n−2 |x − x0|n−2 w (x) dx

≤ 1
δ2

∫
Aδ

(
2
δ

)n−2

|x − x0|n−2 w (x) dx

≤ 2n−2εδ−n |Aδ| = 2n−2
(

1 − 1
2n

)
αnε,

where αn is the volume of the unit ball in Rn. Thus limδ→0
1
δ2

∫
Aδ

|w| = 0, and then i) follows
from Theorems 1.4 and 1.3.

ii) follows directly from i). If ∥w∥L∞(U) = ∞ and lim supx→x0
|x − x0|n−2 w (x) = 0, then, by

i), after redefining w in a set with zero measure, we would have C
(
Ω
)

, which is impossible
when ∥w∥L∞(U) = ∞.

Remark 4.2. Theorems 1.4 and 1.5 say that if x0 ∈ Ω, U = Ω \ {x0} , and if w is a nice enough
strong solution of problem (1.7) then w is a strong solution of problem 1.1.

On the other hand, it was proved in ([30], Theorem 3.6) that, if µ is a bounded Radon
measure in Ω, γ ≤ 1, and f ∈ L1 (Ω) , then the problem

−∆w = f u−γ + µ in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

has a solution in the sense that:

i) u ∈ W1,1
0 (Ω) and for any compact K ⊂ Ω there exists a positive constant c such that

u ≥ c a.e. in K,

ii)
∫

Ω ⟨∇w,∇φ⟩ =
∫

Ω f u−γ φ +
∫

Ω φdµ for any φ ∈ C1
c (Ω) .
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By taking µ = δx0 (the Dirac’s measure concentrated at x0), and, for instance, f = 1,
in [30, Theorem 3.6] it is clear that the conclusions of Theorems 1.4 and 1.5 could not hold
anymore if the notion of solution is changed and the requirement that w is “nice enough” is
dropped.
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