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Abstract. This paper deals with the following Kirchhoff-Schrodinger-Newton system
with critical growth

-M (/ IVMIde) Au = ¢plu* SBu+AlulP~2u, inQ,
Q

—Ap = [u* 1, in Q,

u=¢=20, on dQ),

where Q € RN(N > 3) is a smooth bounded domain, M(t) = 1+ bt~1 with t > 0,

1<0< %, b>0,1<p<2 A>0isaparameter, 2* = % is the critical Sobolev

exponent. By using the variational method and the Brézis-Lieb lemma, the existence
and multiplicity of positive solutions are established.

Keywords: Kirchhoff-Schrédinger—-Newton, positive solutions, critical growth.
2020 Mathematics Subject Classification: 35]20, 35]60, 35B09.

1 Introduction and main result

Consider the following Kirchhoff-Schrodinger-Newton system involving critical growth

-M (/ |VM|2dX> Au = @lul* Pu+AMulP"u, inQ,
0

—Ap = \u|2*_1, in (), (1.1
u=¢=0, on dQ),
where Q C RN(N > 3) is a smooth bounded domain, M(t) = 1+ bt~ with t > 0,1 < 6 <
B2,b>0,1<p <2 A>0is a parameter, 2* = 22 is the critical Sobolev exponent.
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This system is derived from the Schrodinger—Poisson system
—Au+V(x)u+n¢f(u) =h(x,u), inR3, (12)
—A¢p = 2F(u), in R?. '

System as (1.2) has been studied extensively by many researchers because (1.2) has a strong
physical meaning, which describes quantum particles interacting with the electromagnetic
field generated by the motion. The Schrodinger-Poisson system (also called Schrodinger—
Maxwell system) was first introduced by Benci and Fortunato in [6] as a physical model
describing a charged wave interacting with its own electrostatic field in quantum mechanic.
For more information on the physical aspects about (1.2), we refer the reader to [6,7].

Many recent studies of (1.2) have focused on existence of multiple solutions, ground states,
positive and non-radial solutions. When h(x,u) = |u|P~2u, Alves et al. in [4] considered the
existence of ground state solutions for (1.2) with 4 < p < 6. In [10], Cerami and Vaira proved
the existence of positive solutions of (1.2) when h(x,u) = a(x)|u|P~?u with 4 < p < 6 and a(x)
is a nonnegative function. The same result was established in [11,18,22,23] for 2 < p < 6. In
[20,25,26,28], by using variational methods, the authors proved the existence of ground state
solutions of (1.2) with subcritical and critical growths. In addition, the existence of solutions
for Schrodinger—Poisson system involving critical nonlocal term has been paid much attention
by many authors, we can see [2,13,16,19,24,27] and so on.

In [5], Arora et al. considered a nonlocal Kirchhoff type equation with a critical Sobolev
nonlinearity, using suitable variational techniques, the authors showed how to overcome the
lack of compactness at critical levels. In [15], by using the variational method and the con-
centration compactness principle, Lei and Suo established the existence and multiplicity of
nontrivial solutions. Luyen and Cuong [21] obtained the existence of multiple solutions for
a given boundary value problem, using the minimax method and Rabinowitz’s perturbation
method. In [29], Zhou, Guo and Zhang combined the variational method and the mountain
pass theorem, to get the existence of weak solutions, this time on the Heisenberg group.

Specially, Azzollini, D’Avenia and Vaira [3] studied the following Schrodinger—-Newton
type system with critical growth

—Au = Au+ |ul? Bup, inQ,
—Ap = |ul> 1, in O,
u=¢=0, on dQ),

where Q) C RN(N > 3) is a smooth bounded domain. By the variational method, they
obtained the existence and nonexistence results of positive solutions when N = 3 and the
existence of solutions in both the resonance and the non-resonance case for higher dimensions.

Lei and Gao [14] considered the Schrodinger-Newton system with sign-changing potential

—Au = fr () |u|P?u + |ulPup, in Q,
_A¢ = |u’5, in Q,
u=¢ =0, on dQ),

where QO C R? is a smooth bounded domain, 1 < p < 2, fy = Aft+f, A >0, f+ =
max{=£f,0}. By using the variational method and analytic techniques, the authors proved the
existence and multiplicity of positive solutions.
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In [17], Li et al. proved the existence, nonexistence and multiplicity of positive radially
symmetric solutions for the following Schrodinger—Poisson system

—Au+u+ AplulPu = plulP~?u, inR3,
—Ap = [ul?, in IR?,

where p € (2,6), A € R and p > 0 are parameters.

With the help of the Lax-Milgram theorem, for every u € H}(Q), the second equation of
system (1.1) has a unique solution ¢, € Hé (Q)), we substitute ¢, to the first equation of system
(1.1), then system (1.1) transforms into the following equation

-M </ IVulzdx> Au = ¢y |ul® Pu+ AulP2u, inQ,
QO
u=¢=0, on dQ).

(1.3)

The variational functional associated with (1.3) is defined by

0
1
2 2
2/ ‘VM‘ dx+</Q\Vu] dx> —2(2*_1)/04711‘1/[

We say that u € H}(Q) is a weak solution of (1.3), for all ¢ € H}(Q), then u satisfies

2*1alx—)L/ |u|Pdx.
p Ja

-1
2 — -3 p2
1+0b (/Q]Vul dx) ]/QVuV1pdx /Q<pu|u] mpdx+)\/0‘u| utpdx.

Our technique based on the Ekeland variational principle and the mountain pass theorem.
Since system (1.1) contains a nonlocal critical growth term, which leads to the cause of the
lack of compactness of the embedding H}(Q2) < L? (Q) and the Palais-Smale condition for
the corresponding energy functional could not be checked directly. Then we overcome the
compactness by using the Brézis-Lieb lemma.

Now we state our main result.

Theorem 1.1. Assume that 1 < 6 < 822 N> < p < 2and N > 4, b > 0 is small enough. Then
there exists A > 0 such that for all A € (0, Ay), system (1.1) has at least two positive solutions.

Throughout this paper, we make use of the following notations:

e The space H}(Q) is equipped with the norm ||u||§{1(0) = [ |Vu|?dx, the norm in LP(Q)
0
is denoted by || - ||,

e Let D2(RN) be the completion of CF(RN) with respect to the norm H”Hél,z(
Jrn [Vul?dx.

RN) —

* C,Cy,Cy,... denote various positive constants, which may vary from line to line.

* We denote by S, (respectively, B,) the sphere (respectively, the closed ball) of center zero
and radius p, i.e. S, = {u € H{(Q) : |lu|]| = p}, B = {u € H}(Q) : |Jul| < p}.

e Let S be the best constant for Sobolev embedding H}(Q) < L2 (Q)), namely

Jo |Vul?dx

S = inf —.
2*dx)z/z

ueHJ(Q\0} ([ [u
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2 Proof of the theorem

Firstly, we have the following important lemma in [3].

Lemma 2.1. For all u € H}(Q), there exists a unique solution ¢, € H}(Q) of

—Ap = |u|2*_1, in O,
¢ =0, on o).

Moreover,

(1) ¢u > 0for x € Qand for each t > 0, ¢y, = tZ**l%,

2 —
@ | 1VouPax = [ gulu
(3) Ifuy, — uin HY(Q), then

Ylgy < 57 qu(z*fl)‘

/Q(pun\unlz*’ldx—/o(pun_u]un—u]2**1dx:/Q(pu|u]2*’1dx—|—on(l).

Lemma 2.2. There exist constants 6,0, Ao > 0, for all A € (0, Ag) such that the functional I, satisfies
the following conditions:

(i) I)\’MESP >4 > 0;inf I)L(M) < 0.

u€Bp
(ii) There exists e € H}(Q) with ||e|| > p such that I)(e) < 0.

Proof. (i) Using the Holder inequality and the Sobolev inequality, we get

*

P : N
/]u\”dxg </ \u\z*dx>2 </ 12*zr’dx> TS E . (2.1)
Q Q QO

Therefore, it follows from (2.1) and the Sobolev inequality that

1 b ‘ 1 - A
I/\(M) = E/Q|Vu‘2dx+% (/(\]‘Vulzdx> —2(2*_1)/(24)11’11’2 1dx_p/(\]‘u|pdx
1

22 —1)

2%—p

s-fnunﬂf-”—-ﬁuuww 55 Jull

2 —p p
2% Sz>.

Ptort > 0, thus, there exists a constant

1
> ull? -

1 1 - x A
= ||lu p < u 2,p — 7572 u 2(2 *1)717 - Q
Jul” (el = =gy s~ Ml |

Let H(t) = 31277 — ﬁs—z*g(z*fl)

_[@-D@e-ps T
p_[(%F—D—p)] >0

4
such that max;~o h(t) = h(p) > 0. Setting Ag = %h(p), there exists a constant 6 > 0 such
0|2
that I |,es, > ¢ for each A € (0, Ag). Moreover, for every u € H} (Q)\{0}, we get

I/\(tu) A

lim :——/ |u|Pdx < 0.
t—0t tP pJa
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So we obtain I) (fu) < 0 for all u # 0 and tu small enough. Hence, for ||u|| small enough, we
have

m = inf I)(u) < 0.
u€B,

(ii) Set u € H}(Q), for all t > 0, we get
N N ) v 1 AtP
- o - R p _
) = S+ S — s [ gl =2 s oo

as t — oo, which implies that I)(fu) < 0 for t > 0 large enough. Consequently, we can find
e € H{(Q) with |le|| > p such that I)(e) < 0. The proof is complete. O

Definition 2.3. A sequence {u,} C H}(Q) is called (PS). sequence of I, if I,(u,) — ¢ and
I (u,) = 0as n — oo. We say that I, satisfies (PS). condition if every (PS). sequence of I,
has a convergent subsequence in H}(Q}).

Lemma 2.4. Assume that 1 < 0 < Y2 and 1 < p < 2, the functional I, satisﬁes the (PS). condition

fOT’ each c < ¢, = N+252 _ D/\ﬁ, where D = [2(2*—1)—17]7 . ( Z‘Q’ 2* zi
2(2¢—1)(2*=2) 2P p2p
Proof. Let {u,} C H}(Q) be a (PS) sequence for I, at the level ¢, that is
L(uy) = c and Ii(uy) -0 asn— oco. (2.2)

Combining with (2.1) and (2.2), we have

e+ 1o unl) > 1 () = ey (Th ) )

_ (1 1 2 1 1 20
- <2 202" — )> [l +b<29 2(2*—1)> sl
1 1 2*—p p
_ - - * -3 p
A5 = ) 10755
1 1 5 1 1 2—p _p
>z —— A== : P,

Therefore {u,} is bounded in H}(Q) for all 1 < p < 2. Thus, we may assume up to a
subsequence, still denoted by {u, }, that there exists u € H}(Q) such that

Uy — U, weakly in H}(Q)),
Uy — U, strongly in L7(Q2) (1 < g < 2%), (2.3)
up(x) = u(x), ae.inQ,

as n — co. By (2.1) and the Young inequality, one has
A [ ulax < A8 HQPE ull < plull + AT, 24

P 2% —
2— *P

where C(17) = 1777(5_§|Q| 3

)2 it follows from (2.2) and (2.4) that

() = () - 2(23_1)<13<u>,u>

1_; 2_1 p

)
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2

Letting = 2% 2 and D = — B2D-#"7 _(5-410%+")7, we have I, (i) > —DA?7.
&1 = 22-1—p 2(2*71)(2*72)%’]%’( Q[ 2) A(u) >
Next, we prove that u, — u strongly in Hé(Q) Set w, = u, —u and lim,_, ||w,|| = I, by

using the Brézis-Lieb lemma [9], we have
]| = {lewnl|* + [|u][* +0(1),
0
[ual? = (llwall® + [[ul* + 0(1))",
251 251 2r—1
u dx:/ w dx—l—/ u dx +o(1).
[ uli [ gl [ gulu 1)

From (2.2), (2.3) and Lemma 2.1, one has

0

Jeonll? =+ ]2+ b (ol + 1]+ 0(1))
- w n 2*_1d _/ i 2*_1d _)\/ pd - 1 y 2.5
[t loal ax = [ gulullax—a [ julrdx = o(1), @5)

and
||u|\2+b]|u||29—/ ¢u|u|2*—1dx—A/ lulPdx = 0. 2.6)
(@) QO

It follows from (2.5) and (2.6) that
ol 4+ [(lea |2+ 2+ 0(1)" = Nul®] = [ o, fwou? Max = 0(1).  @7)
Since ||wy|| — I, we have
(a2 + 1l + 0(1))” = ulP?® = (2 + ul* +0(1))" ~ [u® =1 >0, asn — c.

If follows from (2.7) that
0

Applying the Sobolev inequality, we get

JwoalP® 0 2 8% [ g woal* M +0(1), e
Thus, by (2.8), we can deduce that

221 > Sz*(l2 +bl) > ST asn — oo,

which implies that | > S% as n — oo. Since I(u,) = ¢ + 0(1), we obtain

1 2, b 2 2 O o207 1 / A
S0l ?+ (ol + el +0(1)” = 1] = 5 [ o2 = = 1y 3)+ 0(0),

Hence, there holds

(1 1 , (1 1

o= (272 =1)"* (2@ =m) "+ ho
2 N 2

> 2 — 2= > *7

_N+252 DA > ¢

as n — co. This is a contradiction. Hence, we can conclude that u, — u in H}(Q)). The proof
is complete. O
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Choose the extremal function

N—

[N(N —2)e ]ZT

, xeRN, e>0.
(2 +x2) 2

Ue(x) =

It is a positive solution of the following problem
—AU, = U?"! inRY,

and satisfies

/ VU, Pdx :/ U2 dx = 53
RN RN

Pick a cut-off function ¢ € C{(Q) such that ¢(x) = 1 on B(0,5), ¢(x) = 0 on RN — B(0,7)
and 0 < ¢(x) < 1on RV, Set u.(x) = ¢(x)Uc(x), from [8], we have

/Q (Ve Pdx = ¥ + 0(eN2),
(2.9)
/Q lue|® dx = S? +0(eN).

To estimate the value ¢ observe that, multiplying the second equation of system (1.1) by |u|
and integrating, we get

. 1 1
2 — < Z 2 - 2
[l dx= [ VouTluldx < Zligul + 5 lul. (2.10)

Then, we define a new functional H, : H}(Q?) — R by

a2 g2 E 20 _ 2 A/ p
HA(M)—2<2*_ gy llll” + 2 el = dx |u|Pdx
2, ( — Db, 06 / 2 g 2* / p
2 e+ E ufdx -2 updx
é 2 1])\(“)/
where 1 (2" —1)b 1 2* —1
_ L2 20 1 2 g - p
Jal) = gl + g el = [l e =A% [l
By (2.10), which implies that
2*

In(u) < Hy(u) = mh(”)/ (2.11)
for every u € H}(Q), and ¢ < inf, c 1)\ o) SUPy= Ja(tu). 1If we consider the following
problem

— 1—|—u (/ \Vu\%x) Au = |ul> 2 —i—)\ \u]” 2y, inQ,
2* 0 (2.12)
u=20, on 0Q).

Then we find that the weak solution of problem (2.12) correspond to the critical points of the
functional ). Next, we compute sup, ., Jx(tue) = Ja(fette).
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Lemma 2.5. Assume that 1 < 0 < N*%, N <P <2and N > 4, then there exist A3, by > 0 such
that for all A € (0, Az) and b € (0, by), it holds

1 2
sup i (fue) < —5% — N+

DAZ v
>0 N 2N

In particular,

2 2
sup I (fu) < ———S82% — DAZ7.
tzg T N+2

Proof. For convenience, we consider the functional J; : Hj(Q)) — R as follows

(2 =1)b
Ji ) = gl + g

Define

hb(t):]*(tu):ﬁnu 12 + (7W|| — */]u 1%’dx, forallt>0
pATTeS T g 1T 202+ e * Jo e =

It is clear that lim 0/ (t) = 0 and lim;,e hp(f) = —oo. Therefore there exists ¢, > 0 such
that h(t,.) = max;>o hp(t), that is

0= hé(to/s) = tQ,g <HMSH2 — tz _2/ |l/lg‘2 dx>

one has

Hence, we deduce from (2.9) that

sup J; (tue) = hy(tpette) < ho(tpette) < ho(toette)
>0

= (2.13)
1.y N+42_ > N42_ 2

= S = DA+ DA 0N ),

By using the definitions of | and u,, we have

t2 b(2* — 1)t
Ja(tue) < EH”sH2+ WH ||

for all t > 0 and A > 0. It follows from (2.9) that there exist T € (0,1), A1, bp > 0 and &1 > 0
such that
1 N+2

sup Jy(tug) < —S% — N Ipa,
oo M S N 2N

forevery 0 < A < A1, 0 < b < bpand 0 < & < ;. According to the definition of u,, there
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exists C; > 0, such that we have

p(N-2)

/ |ue|Pdx > C/ £’ S a4
Q B,2(0) (2 4 |x|2) "2
p(N-2

Ly r/2 gN-1
° (

€2 + 12) E
— Ce N— pN 2) /r/Z\f yN_l d (2.14)
= 0 (1+y2)n(1\12—2) Y
_ 1 N-1
> CSNJ(N2 2)/ y—,Mdy
0 (14y2)"

_p(N-2)
> C1£N 2.

Thus, it follows from (2.13) and (2.14) that

2% —1
sup (1) = sup Jo(tu) 207 [ jupax)

t>T t>T
1 ~n N+2 2
< -S7 - —_"“p)r
SN°T T aN PAY (2.15)
+ %DM P4 CoeN2 - AN
1 N+2
— G2 __"_'"p =
NS 2N AT
where the constant C; > 0. Here we have used the fact that % <p<2and % <
(N-2)(2-p)
ﬁ, lete = AWN- 37 ,0< A< Ay =min {1, (%)MW%)JN }, then
2
%DAZ b4 CoeN 2 — AN < CaA T — CuAeN
_ oA — A e (2.16)
<0,
where Cz > 0. Therefore, we have
1 N+2
pr < st 2o
forall 0 < A < Az = min{Aj, Az, &1} and 0 < b < by. The proof is complete. O

Theorem 2.6. Assume that 0 < A < Ag (A is as in Lemma 2.2). Then system (1.1) has a positive
solution u, satisfying Iy (uy) < 0.

Proof. Applying Lemma 2.2, we have

m= inf I,(u) <O0.
u€B,(0)

By the Ekeland variational principle [12], there exists a minimizing sequence {u,} C B,(0)
such that

. 1 1 —
Ii(un) < inf L(u) + -, L) 2 Li(un) — =0 —unl|, vE BP(O)'
u€B,(0) n h
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Thus, we obtain that I (u,) — m and I} (u,) — 0. By Lemma 2.4, we have u,, — u, in H}(Q)
with I)(u,) — m < 0, which implies that uy # 0. Note that I)(u,) = I (Jus|), we have
uy > 0. Then, by using the strong maximum principle, we obtain that u, is a positive solution
of system (1.1) such that I, (1) < 0. O

Theorem 2.7. Assume that 0 < A < A, (Ax = min{Ao, Asz}). Then the system (1.1) has a positive
solution u, € H}(Q) with I (u) > 0.

Proof. According to the mountain pass theorem [1] and Lemma 2.2, there exists a sequence
{u,} C H}(Q) such that

Iy(up) > ¢>0 and Ij(uy) >0 asn— oo,

where

¢ = inf I t)),
inf max A(r(1))

and

r={yec((0,1], H(€)) : 7(0) = 0,7(1) = e}
From Lemma 2.4, we know that {u,} C H}(Q) has a convergent subsequence, still denoted
by {u,}, such that u, — u, in H(l)(Q) asn — oo,

L\(LI*) = lim IA(un) =c>0,

n—oo

which implies that u, # 0. It is similar to Theorem 2.6 that u, > 0, we obtain that u, is
a positive solution of system (1.1) such that I)(u,) > 0. Combining the above facts with
Theorem 2.6 the proof of Theorem 1.1 is complete. ]
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