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Abstract. In this paper, we consider the multiplicity of homoclinic solutions for the
following damped vibration problems

ẍ(t) + Bẋ(t)− A(t)x(t) + Hx(t, x(t)) = 0,

where A(t) ∈ (R, RN) is a symmetric matrix for all t ∈ R, B = [bij] is an antisymmetric
N × N constant matrix, and H(t, x) ∈ C1(R × Bδ, R) is only locally defined near the
origin in x for some δ > 0. With the nonlinearity H(t, x) being partially sub-quadratic at
zero, we obtain infinitely many homoclinic solutions near the origin by using a Clark’s
theorem.
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tion.
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1 Introduction

The homoclinic orbit is an important kind of trajectory in dynamical systems recognized by
Poincaré at the end of the 19th century. Their presence often means the occurrence of chaos
or the bifurcation behavior of periodic orbits, see [4, 7, 10, 12, 14] and references therein. In
recent decades, the existence and multiplicity of homoclinic orbits has been studied in depth
via variational methods. In this paper, we consider the existence of infinitely many homoclinic
solutions for the following damped vibration problems

ẍ(t) + Bẋ(t)− A(t)x(t) + Hx(t, x(t)) = 0, (1.1)

where x(t) ∈ C2(R, RN), A(t) = [aij(t)] is a symmetric and positive N × N matrix-valued
function with aij ∈ L∞(R, R)(∀i, j = 1, 2, . . . , N), B = [bij] is an antisymmetric N × N constant
matrix, H(t, x) ∈ C1(R × Bδ, R) with Bδ = {x ∈ RN | |x| ≤ δ} for some δ > 0, Hx(t, x) denote
its derivative with respect to the x variable.
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When B = 0, the system (1.1) is the classical second-order Hamiltonian systems which has
been extensively studied in the past, see [1, 5, 6, 8, 11, 13, 15, 16] and references therein. When
B ̸= 0, many authors have studied the existence and multiplicity of homoclinic solutions for
(1.1) under various growth conditions, see [2,3,17–19] and references therein. In [17], Wu and
Zhang obtained the existence and multiplicity of homoclinic solutions by using a symmetric
mountain pass theorem and a generalized mountain pass theorem under the local (AR) su-
perquadratic growth condition. In [2], by using a variant fountain theorem, Chen obtained
infinitely many nontrivial homoclinic orbits for non-periodic damped vibration systems when
H(t, x) satisfies the subquadratic condition at infinity. In [19], Zhang and Yuan studied the
existence of the homoclinic solutions via the genus properties in critical point theory when
H(t, x) is of subquadratic growth as |x| → +∞. In [3], Chen and Tang obtained infinitely
many homoclinic solutions for (1.1) by using a fountain theorem when H(t, x) satisfies a new
subquadratic condition. In [18], Zhu obtained the existence of nontrivial homoclinic solutions
using the mountain pass theorem when H(t, x) satisfies asymptotically quadratic condition.

In this paper, we study the existence of homoclinic solutions for (1.1) when the nonlinearity
H(t, x) is only defined near the origin with respect to x and H(t, x) is partially subquadratic
at zero. To the best of our knowledge, the existence of homoclinic solutions for damped
vibration systems in this case has not been considered before. Our work is motivated by [9],
where the authors improved and extended Clark’s theorem and applied it to the problems on
solutions of elliptic equations and periodic solutions of Hamiltonian systems. Here by using
the Clark’s theorem in [9], we prove that (1.1) has infinitely many homoclinic solutions near
the origin. Furthermore, we make the following assumptions:

(H1) H(t, x) ∈ C1(R × Bδ, R) is even in x, H(t, x) = H(t,−x) for all t ∈ R and x ∈ Bδ, and
H(t, 0) = 0 for all t ∈ R;

(H2) There exists constants α > 0, such that (A(t)x, x) ≥ α|x|2 and ∥B∥ < 2
√

α for all
(t, x) ∈ (R, RN);

(H3) There exist t0 ∈ R and r > 0 such that uniformly in t ∈ [t0 − r, t0 + r],

lim
|x|→0

H(t, x)
|x|2 = +∞;

(H4) For all (t, x) ∈ R × Bδ,
|Hx(t, x)| ≤ b(t),

where b(t) : R → R is a function such that b ∈ Lξ(R) for some 1 ≤ ξ ≤ 2.

Now, we state the main result as follows.

Theorem 1.1. Assume that (H1)–(H4) hold, then (1.1) has infinitely many homoclinic solution xk
with ∥xk∥L∞ → 0 as k → ∞.

Remark 1.2. Now we give some comparisons between our result and other results on the sys-
tem (1.1). Firstly, in the previous works [2,3, 17–19], the authors needed to make assumptions
about the behavior of the nonlinearity H(t, x) as |x| → +∞. They assumed that H(t, x) satis-
fies the subquadratic condition, superquadratic condition or asymptotically quadratic condi-
tion at infinity. Compared with these works, we do not need the behavior of the nonlinearity
H(t, x) for |x| large. Secondly, our subquadratic conditions near zero are also weaker than the
related papers [2,3]. In [2,3], the authors assumed that H(t, x) satisfies lim|x|→0

H(t,x)
|x|2 = +∞ for
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all t ∈ R. By contrast, we only assume that lim|x|→0
H(t,x)
|x|2 = +∞ in a interval t ∈ [t0 − r, t0 + r].

Thirdly, in the literature [2,3,17–19], the authors did not give the information for the obtained
homoclinic solutions. However, we can prove that the homoclinic solutions found here con-
verge to the null solution in L∞ norm.

Example 1.3. Let H(t, x) = η(t)|x|µ, where 1 < µ < 2, η(t) ∈ C∞(R, R) satisfies that η(t) = 1,
∀|t| ≤ 1, and η(t) = 0, ∀|t| ≥ 2. It is not difficult to see that H(t, x) satisfies all conditions
of Theorem 1.1. It is worth noting that H(t, x) does not satisfies lim|x|→0

H(t,x)
|x|2 = +∞ for all

t ∈ R.

The remainder of this paper is organized as follows. In Section 2, we give the variational
framework for (1.1). In Section 3, we prove our main result in detail.

2 Preliminaries

In this section, we establish the variational framework for (1.1) and give a preliminary result.
Let E = H1(R, RN) be a Hilbert space where the function is from R to RN with the inner

product

⟨x, y⟩0 =
∫

R

(
(x(t), y(t)) + (ẋ(t), ẏ(t))

)
dt, ∀x, y ∈ E0, (2.1)

where (·, ·) means the standard inner product in RN . The corresponding norm is

∥x∥0 =

( ∫
R
(|x(t)|2 + |ẋ(t)|2)dt

) 1
2

, ∀x ∈ E0. (2.2)

For simplicity, we define a new norm on E. Let

∥x∥ =

( ∫
R
[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

) 1
2

, ∀x ∈ E. (2.3)

And the corresponding inner product is denoted by ⟨·, ·⟩. Now we show that the norms ∥ · ∥
and ∥ · ∥0 are equivalent. Since ∥B∥ < 2

√
α from (H2), then ∥B∥2

2α < 2. Hence we can choose a
constant ε0 such that

∥B∥2

2α
< ε0 < 2. (2.4)

Set

C0 = min
{

1 − ε0

2
, α − ∥B∥2

2ε0

}
. (2.5)

By (2.4), we see that C0 > 0. Then by (H2) and mean inequality, we have

∥x∥2 =
∫

R
[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

≥
∫

R
[(1 − ε0

2
)|ẋ(t)|2 + (α − ∥B∥2

2ε0
)|x|2]dt

≥ C0∥x∥2
0.

(2.6)
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On the other hand,

∥x∥2 =
∫

R
[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt

≤
∫

R
[|ẋ(t)|2 + ∥A(t)∥L∞(R)|x|2 + ∥B∥(|ẋ(t)|2 + |x|2)]dt

≤ C1∥x∥2
0,

(2.7)

where C1 = (1 + ∥A(t)∥L∞(R) + ∥B∥) is a constant. Therefore, the norms ∥ · ∥ and ∥ · ∥0 are
equivalent.

To obtain the homoclinic solution of (1.1), we consider the following systems

ẍ(t) + Bẋ(t)− A(t)x(t) + Ĥx(t, x(t)) = 0, (2.8)

where Ĥ ∈ C1(R×RN , R) satisfies that Ĥ is even in u, Ĥ(t, x) = H(t, x) for t ∈ R and |x| < δ
2 ,

and Ĥ(t, x) = 0 for t ∈ R and |x| > δ.
Define the functional Φ on E by

Φ(x) =
1
2

∫
R
[|ẋ|2 + (A(t)x(t), x(t))− (Bẋ(t), x(t))]dt −

∫
R

Ĥ(t, x(t))dt

=
1
2
∥x∥2 −

∫
R

Ĥ(t, x(t))dt.
(2.9)

By (H1), Φ ∈ C1(E, R) and the critical points of Φ correspond to the homoclinic solutions of
(2.8) (see [17]). We can get that

⟨Φ′(x), y⟩ =
∫

R
[(ẋ(t), ẏ(t)) + (A(t)x(t), y(t))− (Bẋ(t), y(t))]dt

−
∫

R
(Ĥx(t, x(t)), y(t))dt.

(2.10)

Now we introduce a Clark’s theorem established by Liu and Wang [9]. Clark’s theorem
is a classical theorem in the critical point theory and has a large number of applications in
differential equations. In [9], Liu and Wang improved and extended Clark’s theorem, and
applied it to elliptic equations and Hamiltonian systems.

Let X be a Banach space, Φ ∈ C1(X, R). We say that Φ satisfies (PS) condition if any
sequence {xj} such that Φ(xj) is bounded and Φ′(xj) → 0 as j → ∞ contains a convergent
subsequence.

Theorem 2.1 ([9]). Assume Φ satisfies the (PS) condition, is even and bounded from below, and
Φ(0) = 0. If for any k ∈ N, there exists a k-dimensional subspace Xk of X and ρk > 0 such that
supXk ⋂ Sρk

Φ < 0, where Sρ = {x ∈ X | ∥x∥ = ρ}, then at least one of the following conclusions
holds.

(1) There exists a sequence of critical points {xk} satisfying Φ(xk) < 0 for all n and ∥xk∥ → 0 as
k → ∞.

(2) There exists r > 0 such that for any 0 < a < r there exists a critical point x such that ∥x∥ = a
and Φ(x) = 0.

Remark 2.2. Clearly, under the assumptions of Theorem 2.1 there exist infinitely many critical
points xk of Φ that satisfies Φ(xk) ≤ 0, Φ(xk) → 0 and ∥xk∥ → 0 as k → ∞.



Infinitely many homoclinic solutions for a class of damped vibration problems 5

3 Proof of the main result

In this section, we use Theorem 2.1 to prove the main result of this paper.

Proof. Step 1. We prove that Φ is bounded from below. Let ∥ · ∥Lp(R) denote the norm of
Lp(R, RN)(1 ≤ p ≤ ∞). By (H4), we have that

|Ĥ(t, x)| ≤ b(t)|x|, ∀(t, x) ∈ R × RN , (3.1)

where b ∈ Lξ(R) is from (H4). If ξ = 1, we have∫
R

Ĥ(t, x(t))dt ≤
∫

R
b(t)|x|dt ≤ ∥x∥L∞(R)

∫
R

b(t)dt ≤ C′
1∥x∥∥b(t)∥L1(R), (3.2)

where the Sobolev inequality ∥x∥L∞(R) ≤ C′
1∥x∥ has been used. If 1 < ξ ≤ 2, by the Hölder

inequality and the Sobolev inequality, we have

∫
R

Ĥ(t, x(t))dt ≤
( ∫

R
(b(t))ξ

) 1
ξ
( ∫

R
|x|

ξ
ξ−1 dt

) ξ−1
ξ

≤ C′
ξ∥x∥∥b(t)∥Lξ (R). (3.3)

Then, by (3.2), (3.3) we can see that

∫
R

Ĥ(t, x(t))dt ≤ C′
ξ∥x∥∥b(t)∥Lξ (R). (3.4)

Therefore by (2.3) and (3.4), we have

Φ(x) =
1
2

∫
R
[|ẋ|2 + (A(t)x(t), x(t)) + (Bx(t), ẋ(t))]dt

−
∫

R
Ĥ(t, x(t))dt

≥ 1
2
∥x∥2 − C′

ξ∥x∥∥b(t)∥Lξ (R).

(3.5)

Consequently, Φ is bounded from below.

Step 2. We prove that Φ(x) satisfies the (PS) condition. Let {xn} be a (PS) sequence, that
is Φ(xn) is bounded and Φ′(xn) → 0 as n → ∞. By (3.5), we see that {xn} is bounded in
E. Hence, there exists a subsequence of {xn} (for simplicity still denoted by {xn}) and some
x0 ∈ E such that xn ⇀ x0 in E, and xn → x0 strongly in Cloc(R

1) as n → ∞. Then Φ′(x0) = 0.
Notice that

∥xn − x0∥2 = ⟨(Φ′(xn)− Φ′(x0)), (xn − x0)⟩

+
∫

R

(
(Ĥx(t, xn)− Ĥx(t, x0)), (xn − x0)

)
dt (3.6)

Since xn ⇀ x0 in E and Φ′(xn) → 0 as n → ∞, we have

⟨(Φ′(xn)− Φ′(x0)), (xn − x0)⟩ → 0 as n → ∞. (3.7)
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By (3.1), the Hölder inequality and the Sobolev inequality, for every R > 0 we have∣∣∣∣∫
R

(
(Ĥx(t, xn)− Ĥx(t, x0)), (xn − x0)

)
dt
∣∣∣∣

≤
∫

R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤
∫

R\[−R,R]
|Ĥx(t, xn)− Ĥx(t, x0)|(|xn|+ |x0|)dt

+
∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤ 2
∫

R\[−R,R]
b(t)(|xn|+ |x0|)dt +

∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt

≤ 2∥b(t)∥Lξ (R\[−R,R])(∥xn∥+ ∥x0∥) +
∫ R

−R
|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt.

(3.8)

For any ε > 0, since b(t) ∈ Lξ(R) and {xn} is bounded in E, there exists R0 > 0 large enough
such that

(∥xn∥+ ∥x0∥)∥b(t)∥Lξ (R\[−R0,R0]) <
ε

4
, ∀n ∈ Z+. (3.9)

On the other hand, since xn → x0 strongly in C([−R0, R0]), there must exist n0 ∈ Z+ such
that for n ≥ n0 ∫ R0

−R0

|Ĥx(t, xn)− Ĥx(t, x0)||xn − x0|dt <
ε

2
. (3.10)

Then by (3.8),(3.9) and (3.10), for n ≥ n0 we have∣∣∣∣∫
R
(Ĥx(t, xn)− Ĥx(t, x0), xn − x0)dt

∣∣∣∣ < ε,

which implies that ∣∣∣∣∫
R
(Ĥx(t, xn)− Ĥx(t, x0), xn − x0)dt

∣∣∣∣ → 0 as n → ∞. (3.11)

Hence, by (3.6), (3.7) and (3.11), we have xn → x0 in E as n → ∞. Therefore, Φ(x) satisfies the
(PS) condition.

Step 3. We show that for every k ∈ N, there exists a k-dimensional subspace Xk of X and ρk >

0 such that supXk ⋂ Sρk
Φ < 0. Let Xk be a k-dimensional subspace of C∞

0 ([t0 − r, t0 + r]). Since

Xk is a finite dimensional space and the norms in finite dimensional space are all equivalent,
there exists a positive constant Ck > 0 such that

∥x∥2 ≤ Ck∥x∥2
L2 , ∀x ∈ Xk. (3.12)

By (H3) and the definition of Ĥ(t, x), there exists a constant 0 < δk < δ
2 such that for t ∈

[t0 − r, t0 + r] and x ∈ Bδk , we have

Ĥ(t, x) ≥ Ck|x|2. (3.13)
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Recall the Sobolev inequality ∥x∥L∞(R) ≤ C′
1∥x∥, we take ρk = δk

C′
1
. Then for any x ∈ Sρk , we

have ∥x∥L∞ < δk. Thus by (2.9), (3.12) and (3.13), for any x ∈ Xk ∩ Sρk we have

Φ(x) ≤ 1
2
∥x∥2 − Ck∥x∥2

L2(R)

< −1
2
∥x∥2

= −1
2

ρ2
k < 0,

which implies that supXk ⋂ Sρk
Φ < 0. Now by Theorem 2.1, we obtain infinitely many solu-

tions {xk} for (2.1) such that ∥xk∥ → 0 as k → ∞. By Sobolev’s inequality, we can get that
∥xk∥L∞(R) → 0 as k → ∞. Then there exists k0 ∈ N such that ∥xk∥L∞(R) <

δ
2 , ∀k ≥ k0. Hence

by the definition of Ĥ(t, x), for k ≥ k0, {xk} are also solutions of (1.1).
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