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1. INTRODUCTION

Let n be a positive integer and M E Rnxn a real n
by n matrix. The only bound for the absolute value
of the determinant d of M of which we are aware
is that due to Hadamard (see [Horn and Johnson
1985], for instance):

H = f[\Vi\>\d\,
2 = 1

where Vi is the vector whose coordinates are given by
row i of M, and \v\ represents the euclidean length
of the vector v. We can equally well use the columns
of the matrix instead of its rows. Indeed, the smaller
of these two possibilities is still a valid upper bound.
Empirically we have observed that the row and col-
umn bounds rarely differ by a factor greater than 2
for matrices with independent uniformly distributed
entries in some fixed range. Nonetheless there do
exist cases where the two values differ significantly,
such as an identity matrix with all entries in one col-
umn replaced by a large integer K. So, in practical
applications, since both versions of the bound can
be computed cheaply it is worth doing so, and then
using the smaller.

For the analysis in this paper we shall assume that
just one of the versions of Hadamard's inequality is
used, say the "row" version. Hadamard's bound is
tight if and only if the rows of the matrix are orthog-
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H/\d\ is sometimes referred to as the orthogonal- n-sphere. Our assumed distribution is that these
ity defect (see [Clarkson 1992], for example). How- points are independently and uniformly distributed
ever, to avoid difficulties which arise when d = 0 on the surface of the sphere. Thus our study be-
we shall work instead with \d\/H. In particular, comes that of the random variables \d\ and log|d|.
we shall determine the expectations and variances Now, viewing the absolute value of the determi-
of the random variables \d\/H and \og(\d\/H) for nant as the volume of a parallelepiped we see that
matrices whose rows are random vectors uniformly it can be computed as a product of sines of certain
distributed on the surface of a sphere. The former angles. We define n — 1 angles as follows: let cpi
random variable takes values in the interval [0,1] be the angle between vi and v2, let (p2 be the angle
while the latter is nonpositive. between span(^i,^2) and v3, and in general let (pk

The interest in the tightness of Hadamard's bound be the angle between span(i>i,..., vk) and vk+1 for
is stimulated by algorithms for computing exactly k up to n — 1. It is clear that
the determinant d of an integer matrix. One way \A\ -
is to use Chinese remaindering: compute a modulo
several distinct primes, pup2,... ,pfc, and then com- W e focus o u r attention on (pk for the moment. We
bine these modular images of d [Bareiss 1972]. We b e S i n hY finding the density function for tpk, and
obtain the correct answer provided that UieiP* > b y s ^ m m e t r ^ w e c a n s u P P o s e t h a t Vk G [<W2].
2|d|, but since we do not generally know \d\ in ad- L e t Wk = s p a n ^ , . . .,!;*), a subspace of dimen-
vance we use instead the sufficient condition that s i o n k- T l i e vector vk+i can be written uniquely
UieiPi > 2H- T h u s ^g(H/\d\) is a measure of the a s t h e s u m o f t w o components: vn lying in Wk and
"wasted effort" using this method. v± perpendicular to Wk. Furthermore |^||| = costpk

Another way of computing d is given in [Abbott a n d K l = sin¥>* by definition. Thus all unit vec-
et al. 1999] and works by computing quickly some t o r s forming an angle yk with Wk are generated as
(probably large) factor D of |d|, and then using Chi- t h e s u m o f a v e c t o r lying on the ^-sphere of radius
nese remaindering to find the value of d/D. A suit- C O S ( ^ i n s i d e W* w i t h another vector lying on the
able D arises as the least common denominator of ( n ~ fc)-sphere of radius s i n ^ inside W£. Whence
the solution of a linear system Mx = b for a random w e s e e t h a t t h e density of <pk as a function in 0 is
integer vector b. Once again \og(H/\d\) is related proportional to (sinfl)"-*"1 (cos^)^1 .
to the "wasted effort", and the same article gave
asymptotic upper and lower bounds for its mean. 3. ANALYSIS OF |d|/H
In this paper we improve these bounds and give ex- n. TT . r J J - X - T _ X - J

.. . r , r , , , . M J I / r r Since H = 1 tor our assumed distribution, we need
plicit formulae for both mean and variance of \d\ H , , , , ,, Tltr , x . n , .̂  , ,.on^y study \a\. We determine first its expectation,

^ ' " , „ , . then its variance. Thanks to the symmetry of the
Henceforth we snail assume that the matrix cli- , ,, , , n . -,

_ . . . . . . , sphere, the angles ^ i , . . . ,¥? n - i a r e mutually mde-
mension n is at least 2, the case n = 1 being trivial. , x ,

pendent, and so
n - l

2. DISTRIBUTION E(\d\) = JJ E{simpk). (3-1)

The first point to establish is our assumed distri- ~
bution on the matrices. We regard the matrix di- L e t T b e t h e u s u a l S a m m a function and let B be
mension n as being arbitrary but fixed. We shall t h e b e t a f u n c t i o n > defined by
avoid all matrices containing a row of zeroes be- f1 _ _ r(p)T(q)
cause they give d = H = 0. Now, the value of B M = JQ & ^ " x)q dx = T(p + q) (3"2)

\d\/H is unaffected if we scale any row of the ma- r ^ r! 7 , i xi XT x Grobner and Hofreiter 1961, 421.1 . Then, for non-
trix by a nonzero value; thus we may assume that . . J .

, , Ti i ,i -, i i negative integers r, s, we nave
each row has euchdean length 1, and consequently
that H = 1. Such matrices can be viewed as speci- r/2 . x D / r + 1 s + n ._ ox
r - - x xi r m -x / ( s m 0) ( c o s ^) ^ = ^ ̂  ( ^ , ^ ) 3-3
fymg n points, vu . . . , vn, on the surface of the unit Jo
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[Grobner and Hofreiter 1961, 331.21]. (The facts we Again, since the tpk are mutually independent, we
will need about special functions can also be found have
in [Abramowitz and Stegun 1972; Gradshteyn and "_^
Ryzhik 1980; Luke 1969].) E(\d\2) = HE ( ( s i n ^ ) 2 ) • (3"4)

Using (3-3) and (3-2) to integrate our density k=1

function, we get As before we use the density function and equations
«TT/2 (3-3) and (3-2), together with the functional rela-

/ (sinfl)"-* (cosfl)*-1 d6 tion T(x + 1) = xT(x), to get

/ (sine)"-*"1 (cosO)1*-1 d6 / (sine)"-"*1 (cos O^dO
Jo E(sm2 <pk) = ̂

= B(*=p±, |) /B(*±, |) V (smey-^(cose)^de

= r( f)r(^p) = B {*=**, |) /s(*=*, |)
r (n±l ) r (n^j - = n - f c

By substituting this in (3-1) and telescoping the n

product we get Substituting this in (3-4) we get

Applying the asymptotic expansion for the loga-
The asymptotic behaviour of E(\d\) can now be de- r i t h m o f t h e g a m m a function we obtain:
rived easily from the equality F ( | ) = ^ and from
the asymptotic expansion of the logarithm of the E{\d?) = e~n^/27^n (l + O(n~1)) .

gamma function, which is Combining this with Lemma 3.2 we get the asymp-
, j^( x / n i . log(27r) 1 _2 totic behaviour of the variance:
logr(a?) = (x-\)\ogx-x+— + —-+O[x )

Lemma 3.3. varldl = e-n(v /27rn-\/4e)(l + O(n-1)) .
for x > 0. After suitable simplification we obtain x 7

the following lemma. Chebyshev's Inequality [Lukacs 1971] relating vari-
„ , . ,1N /o 4/T- /H ^ / iw ance to probable deviation from the mean now tells

Lemma 3.2. E(\d\) = e~n/2\/4e(l + O^n-1)). F , . . . f f
Vl Iy v us that indeed |a| is unlikely to stray too tar trom

Informally, this means that for large n on average the expected value: with a probability of at least
det M is smaller than Hadamard's bound by roughly 95% we have that |d|/-B(|d|) does not exceed 4n1//4

a factor of e~n/2 \fAe. for large n, though we get no information about how
We cannot compute E(l/\d\) since we encounter much smaller than its mean \d\ might be in multi-

an unbounded integral: plicative terms.
r/2 (cosfl)-2

J sine
 M 4. ANALYSIS OF Iog(|d|/H)

-Bf l /sm^^. i ) = u ,2 = oo.

/
/ Mn-2 jn Once again recall from section 2 that we have H — 1

for our assumed distribution, so in fact we need only
study log|rf|. In [Abbott et al. 1999] bounds for its

Variance of |d| expectation were obtained using Jensen's inequality
Further understanding of the behaviour of |d| comes [Breiman 1968]. Here we obtain an exact formula as
from knowing its variance. We shall use the well- well as the first terms of its asymptotic expansion
known formula var |d| = E(\d\2) — (E(\d\))2 for our (using elementary functions). Afterwards we ascer-
computation. We have obtained .E(|d|) above, so tain the variance finding both exact and asymptotic
turn immediately to E(\d\2). formulae.
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The mutual independence of the angles (/?i, . . . , Lemma 4.2. The expectation of\og\d\ is given by
(pn-i allows the simplification n \Ogn 7 + log2 - 3

" 2 " ~ 1 4 + °{n~1]-
E(\og \d\) — ̂  JE(log sin (/?/,). (4-1) Notice that -E(log |d|) is similar to but not equal to

k=i log(,E|d|). We have

To write this in closed form we use the logarithmic , (jp(\j\\\ w>(] \j\\ — ̂ ° § n , n(i\
derivative of the gamma function, denoted by \I/; we 4
have, for nonnegative integers r, s: Of course, that log(25(|d|)) > E(log \d\) follows qual-

,2 itatively from Jensen's inequality [Breiman 1968].

/

(sin9)r (cos 0)s log sin 6 d9 Informally, this lemma states that the "wasted
effort" mentioned in the introduction is linear in the

- \B(^, s-f-) (*(^) - ^i^^)) (4-2) dimension n of the matrix and is independent of the
r_ , size of entries of the matrix.
[Grobner and Hofreiter 1961, 338.6c].

Much as before, writing the expectation as an in- Variance of log Id I
tegral using the density function for (pk and then TTr , . r, , 7I , r. , ° n, i / / r . \ We now compute the variance of log a . Yet again
employing (3-3) and (4-2) we get J_. * \ , . , , /y, ' x .

y v / o w e u s e fae mutual independence of the cpk to sim-
l / / n _ ^ \ /n\\ plify the computations: the variance of a sum of in-

E{\og sin (pk) = -^S {—^-) ~ * { g ) J - (4"3) dependent random variables is just the sum of their
individual variances, so

We reduce the sum to a single closed form expres-
n—1

S i O n : varlogM = ^ ( £ ( ( l o g s i n ^ f c ) 2 ) - ( £ ( l o g s i n ^ 0 ) 2 ) -
Lemma 4.1. The expectation 0/ log |rf| equals k=1

2 - 7 - 2 1 o g 2 _n_n^/n\ n-1^ fn + 1\ We express the expectation of (log sin <pfc)
2 as an in-

4 2 4 V 2 / 4 V 2 / tegral, and then simplify using (3-3) and the for-
Proof. Substituting (4-3) into (4-1) and inverting mula
the summation order we get r^/2

/ {smOy {cos6)s{logsm6)2 d6 = I B(r-^,^)

^(Iog|d|) = j E ( * ( a ) - * ( ? ) ) • (4"4) x (*'(r±l) _ * ' ( r ^ ) + (*(r±l) -*(^f^))2) ,

T . . / X - , , ,, . . , - , , , . £ valid for nonnegative integers r, s (this follows from
Let tin) denote the expression m the statement of , , r

 to ° v

the lemma and 9(n) the sum in (4-4). A straight- ^ J ^ [G r 5 b n e r a n d H o f r d t e r 1 9 6 1 ' 3 2 4-8 aD- W e

forward computation, using the value for \I/(|) = n

- 7 - 2 log 2 (where 7 is Euler's constant) and the ^ ( ( logs in^) 2 )
functional equation _ I (\$'(n-k\ _ ^(n\ _(_ (\jf(n~k) — \$(ik\)2\ .

J^.^U^ (4-6)
The sum representing the variance of log \d\ can

shows that / ( I ) = g(l) and that f(n + 1) — f(n) = now be telescoped to produce a more compact form
g(n + 1) — g(n) for all n > 1. Whence the lemma for which we will afterwards show the asymptotic
follows. • behaviour. A closed form is given by the following

result*
To get a better idea of the magnitude of 25(log |d|)
we use the asymptotic expansion of *(#) , which is Lemma 4.3. The variance of log \d\ is given by

logx-l/(2x) + O(x-2) for x>0. After simplifica- 87 + TT2 * ( n ) n - 1 , / n + l \ n
iS)>(n\

t ion we get: 16 + ~~2~ + ~ 8 ~ \~^2~~) ~ 8 U / '



Abbott and Mulders: How Tight is Hadamard's Bound? 335

Proof. Putting together formulae (4-5), (4-6) and Predicted Experimental
(4-3) and inverting the summation order we obtain E var mean var

n-i 2 10000 -0.693 0.822 -0.690 0.791

varlog|d| = - y " ( V ( - ) -*'(-)) <4"7) 3 1000° " L 3 0 7 L178 " L 2 9 7 L 1 4 1

4 ^ V V 2 y K2JJ 10 2000 -5.131 1.979 -5.117 1.916
20 2000 -10.310 2.365 -10.379 2.464

Let f(n) denote the expression in the statement of I ' ' ' '
the lemma and g{n) the sum in (4-7). A straight- TABLE 1. Comparison of theoretical and experimen-
forward computation, using the values \P(1) = —7, tal results for log |d| (mean and variance). The val-
^ 7 ( | ) = |?r2 and the functional equations u e s u n d e r "Predicted" come from the formulas of

Section 4, and those under "Experimental" are the
T , . N -r / \ 1 i - r / fu+2\ . fn\ 4 statistics for a sample of N matrices of size n x n.
tf(n+l) = * ( n ) + - and * ' — - = * ' - -, p

shows that / ( I ) = g(l) and that f(n + 1) - f(n) = T a b l e * l i s t s t h e r e s u l t s o f t h e s e experiments. We
g{n + i) _ 5 ( n ) for all n > 1. Whence the lemma s e e t h a t t h e r e i s g ° o d a c c o r d w i t h t h e theoretical
follows • results; The expected value of log(|d|/ff) and the

experimental mean differ by less than 1%, and the
Directly applying the asymptotic expansions of *(x) theoretical and experimental variances differ by less
(given after the proof of Lemma 4.1) and of \l/'(x), than 5%.
we get

Lemma4.4. varlog \d\ = ±{^+ir2)+\ logn+O(n~1). 6. CONCLUSIONS

Here again Chebyshev's Inequality shows that for W e h a v e derived formulae for the expected values
a given probability e > 0 actual values of log \d\ will a n c j variances of \d\/H and log(|d|/JJ) for a random
lie within an interval of size O(Vlog^) with proba- m a t r i x M ) w h e r e H i s Hadamard's bound for M
bility 1 - s. In contrast with what we could deduce a n d d i s i t s determinant. For all these quantities we
from our analysis of \d\, here the interval gives us h a v e a l s o g i v e n a s y m p t o t i c expansions in terms of
both upper and lower probable bounds for |d|. Fur- t h e m a t r i x dimension n. These results improve the
thermore, for sufficiently large n the upper bound bounds given in [Abbott et al. 1999].
obtained here is tighter than the one derived ear- O u r results give an idea of the tightness of Hada-
n e r - mard's bound in the average case. Moreover, the

small variances, particularly that of \og(\d\/H), in-
5. EXPERIMENTS dicate that observed values should normally lie close

to the average.
We have compared the theoretical results of Section T h e y a l u e l o g ( f f / | d | ) = _ io g( |d | / t f) is a measure
4 with practice by performing some experiments. rf ^ . . ^ ^ ^ ^ ^ w h e Q c o m p u t i n g t h e d e t e r .
For this we have computed the determinant and m i n a n t o f &Q i n t e g e r m a t d x u g i n g & C h i n e s e r e m & i n_
Hadamard's bound for many matrices. The rows d e r i n g m e t h o d W e h a y e g e e n ^ ^ V a s t e d rf_
of the matrices were constructed as follows: fort,, ig Q n a y e r a g e ^ ^ i n n ^ ^ t y p k a l d e y i a t i o n

1. Determine a random vector on the unit sphere of size O(y/\ogn) which is negligible in comparison,
(uniformly distributed); Observe also that the "wasted effort" is independent

2. Multiply the vector by 106; of the size of entries in M.
3. Round every entry of the vector to an integer.

In this way the rows of the matrices approximate REFERENCES
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