
Mordell-Weil Lattices in Characteristic 2,
111: A Mordell-Weil Lattice of Rank 128
Noam D. Elkies

CONTENTS
We analyze the 128-dimensional Mordell-Weil lattice of a cer-

1 . Introduction j -a jn elliptic curve over the rational function field k(t)f where k is
2. Statement of Results a finite field of 212 elements. By proving that the elliptic curve
3. Proof of Rank, Discriminant and Tate-Safarevic Group has trivial Tate-Safarevic group and nonzero rational points of
4. Proof of Minimal Norm, Density, and Kissing Number height 22, we show that the lattice's density achieves the lower
5 Remarks and Questions bound derived in our earlier work. This density is by a consider-
A , , , . able factor the largest known for a sphere packing in dimension
Acknowledgements , & , , , , , , , ,

. 128. We also determine the kissing number of the lattice, which
References
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dimension.

1. INTRODUCTION

In [Elkies 1994], the first paper of this series — from
now on referred to as Part I — we constructed a fam-
ily of lattices in dimensions 2n+1 for positive inte-
gers n. From the theory of elliptic curves over func-
tion fields we obtained upper bounds on the discrim-
inants and lower bounds on the minimal norms of
these lattices, showing that their associated lattice
packings of spheres equal the previous records for
n ^ 4 and exceed them for 5 ^ n ^ 9. We then
showed, for n = 5 (the first case of a new record),
that our lower bound on the density of the lattice
packing in R64 is sharp, and reported on the com-
putation of the kissing number of the lattice, which
was at the time the largest kissing number known
in R64. Both of these records have since been su-
perseded by G. Nebe [1998], and the kissing num-
ber was pushed still higher by a nonlattice packing
[Edel et al. 1998]. Thus n = 6 is now the first case in
which the construction of Part I yields a previously
unknown lattice of record density.

In this paper we analyze this 128-dimensional lat-
tice MWi28- We determine its density, again show-
ing that the lower bound from Part I is sharp by
proving that the elliptic curve (see (2-1) below) has
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trivial Tate-Safarevic group and nonzero rational y2 + y = x3 + t65.) Let M be the Mordell-Weil
points of height 22, as small as possible by Proposi- group of E, consisting of 0 together with solutions
tion 2 of Part I. We then report on a computation (x,y) £ K x K of (2-1). The map
that determined all the rational points of that min- ± •& n / \ , / 2 2 , .65 , \
• i u • u. .1 u, • • .u 1 • • u r < />:£->£, (x,y) K> (x ,?/ +«° + a 6 )
imal height, thus obtaining the kissing number of
MW12S. Like the packing density, the kissing num- is an inseparable 2-isogeny whose square is multipli-
ber of MW128 is by a considerable factor the largest cation by - 2 . By Theorem 2 of Part I, the image
known kissing number of a lattice in this dimension, of </> on E(K) is the kernel of the map
though once more [Edel et al. 1998] gives a much e . E ^ _> K/K2, 0 ^ 0 , (x,y) ^ x mod K2

larger nonlattice kissing configuration.
MW128 is the Mordell-Weil lattice of an elliptic i n w h i c h K a n d K* h a v e t h e structure of additive

curve (2-1) over the rational function field fc(t), for groups.
k a finite field of 212 elements. To compute the min- Theorem, (i) M has rank 128 and trivial torsion.
imal vectors of MWi28 we listed all solutions in k of ,..>. rril . 7 7 . 7 , f ,^ . . L ? /n\

_ . _. . . (11) i/ie canonical height a on M is given by nlu) —
a system of simultaneous nonlinear equations in sev- _ - , . . ±1 . , ,.

, . , , . , m • , r 1 - i 0 ana n(x,y) = degx, the deqree of x as a ratio-
eral variables (the coemcients or x as a polynomial . p . ' S,, . , . , . . ,,r ,7

lN TTT i 1 i T i . i ^flt function oft. This heiqht owes M the struc-
111 £). We reduced the search space by using the _ . . . . . _ ,. 7, . r , ,T I . , -i 1 • T̂  x. T i ^^e of an even integral lattice in hucliaean space
automorphisms of MW128 described in Part I and , .. . - o o, . r r ,, . , T ^T . -, Cl , of dimension 128.
solving for some of the variables. This left about
2 • 1012 possibilities on which to check the remain- ("0 The Selmer group for 0 is the subspace S of
ing, now much more complicated, equations. An KIR2 represented by the polynomials of the form
exhaustive search over this space would still take (x t21+x

4 £19+X
16£11N) + (x t17+x4 t3)

months on a single fast computer. Fortunately the 13 9 5
n i f i i i« u -ii. i i- 1^13^ +3^9^ +3^5^ ~T Xit (2—2)

first or these equations can be written as a quadratic
in one of the variables; this reduced the search space with
by three orders of magnitude, to the point that the # . (= fc, x\l = x13; (2-3)
computer time was comparable to the time it took _ . . 7 7. ^ r 7

,, i mi i ,• i • i r b is an elementary abelian 2-qroup of rank
to program the search. The relatively simple form
of that equation, though welcome, was unexpected 12 + 12 + 4 + 12 + 12 + 12 = 64.
and is still unexplained. This is one of several open ( .y) Th& Tate_safarevi6 group ofE/K is triviaL The

questions we raise in the concluding section of the discriminant of M is 2120.
present paper.

(v) The minimal norm of M is 22, attained by (x,y)
if and only if x,y are polynomials in t of degrees

2. STATEMENT OF RESULTS 22 and 33 respectively. There are
To simplify notation we henceforth denote the lat- 218044170240 — 217 3 5 13 19 449 (2-4)
tice MWi28 by M. We refer to the earlier papers in
this series [Elkies 1994; 1997] as Parts I and II. vectors of this minimal norm in M.

Let fcbea finite field of 212 = 4096 elements, let (vi) The normalized center density of M is
K be the rational function field k(t), and let E/K H64/2124 - 29 7 4 0 3 6 + (2-5)
be the potentially constant elliptic curve ' ~~

y
2 + y = x3 + t65 + a6 , (2-1) 3# PROOF OF PARTS (i)-(iv): RANK, DISCRIMINANT,

, r n on 1 x c 7 1. u AND Tate-Safarevic GROUP
where a6 is any 01 the 2 elements 01 k whose abso-
lute trace Ylm=oalT equals 1. (As noted in Parts Each of (i), (ii), and the implication (iii)=>(iv) is
I and II, all these choices of a6 yield isomorphic contained in the special case (n, q) = (6,64) of the
curves; if we worked over k — F2 instead of fc, we results in Part I. We briefly go over these in the next
could drop a6 and simplify the equation of E to two paragraphs.
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Define curves C, Eo over k by

C : u2 + u = £65, Eo : Y2 + Y = Xs + a6.

Then Eo is a supersingular elliptic curve, and C is
a hyperelliptic curve of genus 32 whose Jacobian
Jac(C) is isogenous with E32 (Part I, Proposition
1). The ^-rational points of E correspond bijec-
tively with maps from C to Eo that take the point at
infinity of C to the origin of Eo: such a map is either
constant or of the form (£, u) (-)• (x(t),y(t) + u) with
(x,y) a nonzero point of E. This correspondence
respects the group laws on E and Eo, and yields an
identification of M with Hom(Jac(C),E'o), a group
of the same rank as Rom(E32,E0) = End(£0)32-
Thus M has rank 4 • 32 = 128, as claimed in (i).
The formula for h and the fact that h(P) G 2Z for
all P G M are the case (n, g) = (6,64) of Part I,
Proposition 2.

The discriminant of the Mordell-Weil lattice of an
elliptic curve over a global field is related to the or-
der of the curve's Tate-Safarevic group by the con-
jecture of Birch and Swinnerton-Dyer. In our case of
a curve over a function field, this conjecture was for-
mulated by Artin and Tate [Tate 1968] and proved
under certain hypotheses by Milne [1975].1 In The-
orem 1 of Part I we observed that these hypotheses
were satisfied by each of our curves E, and com-
puted the resulting relationship between the order
of the Tate-Safarevic group JJI(E) and the discrim-
inant A of its Mordell-Weil lattice. Their product
is always a power of 2, so III(.E) is a 2-group, and
is trivial if and only if III^ is trivial; that is, if and
only if E(K)/(t)(E(K)) is all of the Selmer group
for (f). Now E(K)/(f)(E(K)) is an elementary abelian
2-group whose rank is half the rank of E(K), be-
cause 4>2 — — 2. In our present case of q = 64, we
already know that the half-rank is 128/2 = 64, so
once we prove (iii) the triviality of U1(E) will follow.
The formula of Theorem 1 of Part I gives

for q — 64, so the discriminant claim of (iv) will
follow as well.

It remains to verify that the </>-Selmer group is
given by (2-2), (2-3). The analysis proceeds as in

1 As noted in Part II, Milne had to also assume odd characteristic,
but this assumption was later eliminated by work of Illusie [1979],
so we may use Milne's results also in our characteristic-2 setting.

Part I (for y2 + y = x3 + t33) and Part II (for y2 + y =
x3 + t13 + a6), but takes more steps to complete.
As happened there, it is enough to show that S is
contained in the Selmer group, because it has the
correct size 2128/2. The Selmer group consists of 0
together with all elements of K/K2 that represent
the ^-coordinate of a solution of (2-1) with x, y in
fc((t-1)), the completion of K at the place t — oo.

By Theorem 2 of Part I, every element of the </>-
Selmer group has a unique representative £ that is
an odd polynomial in t (that is, a fe-linear combina-
tion of P for odd positive integers j) whose degree d
satisfies 3d < 65 and d = 65 mod 4. Thus d is one
of 1,5,9,13,17,21. We give the proof in the case
d = 21, which is also relevant to our computation of
the minimal vectors. The other cases are similar but
easier. Alternatively, once we find a single Po G M
with h(P) = 22, and thus with e(P0) represented
by a polynomial of degree 21, we know that for any
other point P at least one of e(P) and e(P + P0) has
d = 21; so once we have done d = 21 the other cases
will follow.

Suppose x — ̂ 2 =-oo xfl ^s ^ e ^-coordinate of a
point of E over fc((t-1)), with x2\ 7̂  0. Necessarily
d! = (65 - d)/2 = 22. Let

66

since
22

j=-oo

2 2

J—-00

we have r]65 — x21x\2 + 1 and

n,- E
for all j / 0,65. By the Lemma in Part I, if rj is of
the form y2 + y for some y e then

(3-1)
ra=O

for each odd j0 > 0 (note that this sum is finite, and
the fractional exponents make sense in k). Taking
j0 = 65,63,61, . . . in (3-1), and using MACSYMA to
simplify the resulting equations, we find the results
shown at the top of the next page.
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Jo — 65 : #22 — £21

Jo = bo '. ^19^22 ~^~ X2\ = ^ = =^ ^19 — ^21

Jo == Ol I X1y3^22 ~r ^19^21 ' "̂ 21*̂ 20 ~ ^ —** ^20 = \*^21 \^21 *̂ 17 •" X2l)) ~ ^21 ~"~ ̂ 21 "̂ 17

Jo = ^y '. £ 1 5 = £ 2 1 (^17^21 ' 1^21 •" X2\XYl) "t~ ̂ 21 / == ^

Jo == 57 : £ 1 8 = a 2 i + &2i.tt17 "^ tt2i ^17 ~^~ a 2 i ̂ 13

JO = 3d '- xn = ^21 (^13^21 1 ^17^21 ' ^21^18 "I" X2\XYl) = ^21

jo = 53 : x16 = a£ /2 + <4al(2 + a^a?/2 + a\xa
x£ + o^aj72

21

Jo = 51 : x7 = x21 Y2 x2jx5i-2j = • • • = 0

22
• _ A Q • — ~ 1 / 2 \ ~ ^ -̂Z2 — 2 3 / 2 J_ 8 V 2 I 9 / 2 I ~ 5 / 2 2 _|_ —2 1/2 . 5 I / 2

JO — ^ ^ : ^14 — ^21 / v %j%49—2j — ^21 i ^21^17 ' *^21 *^17 "•" ̂ 21 ^17 ' ^21 ̂ 13 ^17 "•" ̂ 21*^13
i=15 - 3 / 2 2 I / 2 , - 1 I / 2

2i "•" ̂ 21 ^13 "T" ̂ 21^9 ' *^21 *̂ 5

JO — 47 : X3 = X21 2^ XjX47-2j = ' ' ' = ^17
j=13

In particular, for each odd j the coefficient â  binations of x(at) with a65 = 1 to obtain a solution
depends on the £ coefficients #1,£5,£9,#13,#17,#21 in ^((^~1)) °f (2-1) with x a square plus a polyno-
according to (2-2). To finish the proof of (iii) we mial of degree 19 or 15, contradicting Theorem 2 of
must also show that £13 is in the 16-element sub- Part I. (Similar arguments arise in Dummigan's in-
field of k. Continuing our computation we find that vestigation [Dummigan 1995] of the Tate-Safarevic
the conditions (3-1) with j 0 = 45,41,37 yield (in- groups of certain constant elliptic curves related to
creasingly complicated) formulas for £i2,£io>£8 in those of Part I.) The even-order coefficients need
terms of the £ coefficients, while the conditions with not constitute a group, but are still constrained by
jo = 43,39,35 are satisfied automatically. When the invariance under the 65 • 212 transformations
j0 — 33? the first case in which the sum in (3-1) t i-> at + 6; this provides a sanity check on our for-
has more than one term, we obtain a much longer mulas for those coefficients,
expression for £6. When this and our previous for-
mulas are substituted into the j 0 = 31 condition 4# P A R T S (v)_(vi): MINIMAL NORM, DENSITY, AND
^31 = %25 an< b u t t w o of the terms cancel, leaving KISSING NUMBER
only x\\ + x13 = 0, and we are done.

m,. . „ ,. 1 , 1 - 1 By Theorem 1 of Part I, any nonzero (£, y) G M has
Inis massive cancellation and the simple equa- J \ \, .r

,. c j_ -i • height at least 22, with equality 11 and only 11 £, y are
tions for £3, £7,£11, £15,£19 are in striking contrast & . . ' OO

J , OQ T ;
, , 1 . . , r , , r i r .,, polynomials in t of degrees 22 and 33. Thus we can
to the increasingly complicated rormulas tor £7 with -. *,, , , ,.

D , ,, ffi • , r Ti 1 prove that M has minimal norm 22, and normalized
j even. But the coemcients 01 odd order are con- ^ ' .
x • J u IL • x IL x M x-x x norm density given by (2-5), by finding a single such

strained by tne requirement that they constitute / N f z , r i i i 1
A4- xi o i • 1 -x xi pair (x.y). To verify that the kissing number is

a group. Moreover, the belmer group inherits the \ ; x ! ^
, . r n/r £ xi x i • given by (2-4) we must enumerate all (x.y) of tha t

symmetries of M coming from the automorphisms *?
of C noted in Equat ion 10 of Par t I. Namely, if

/,x , Ty2 • • n o 1 xi / ^ , To find these (x.y), set £7 = 0 for all 7 < 0, write
xlt) mod iv z is in the Selmer group, then so is x(at+ , ^.K *>vn . , .
n J TS2 r 11 L ̂  7 1, xu x 65 1 Ti,- Vi (0 ^ J ^ 66) as polynomials m £ 0 , . . . , £22? and
0) mod Kl for all a,b e k such tha t a°b — 1. This ° 1

 v /* J
 r

 J K / ' ' '
T x • xi . i T i . r xi o 1 solve (3-1) for each odd 70 ^ 65 together with the

severely constrains the possibilities for the Selmer ; J J to

group; for instance, £ i 5 must vanish, and £1 9 mustbe proportional to x\x, else we could use linear com- rj0 = £Q = y(0)2 + y(0) + a6 (4-1)
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for the constant coefficient y(0) of y. We have al- quaternion group acting on Eo also acts on the min-
ready used the equations for j 0 ^ 35 to solve for all imal vectors, but only by permuting the 8 choices
Xj except #0,#2,£4 in terms of the £ coefficients; the of #0 and y(0) associated to each valid sextuple of
jo = 29 and j 0 = 25 equations give us #4 and #2 as £ cofficients. Thus these automorphisms do not fur-
well, and jo = 21 determines #Q + #0. (We already ther cut down our search space, though the condi-
saw in Equation 21 of Part I that, due to automor- tion that #0 and y(0) must be in k will somewhat
phisms of Eo of order 4, if (#,y) G M and cA — c reduce the average work per candidate,
then x + c is also the #-coordinate of a rational point We might now organize the search as follows. Ini-
of E\ thus even once we know all Xj for j > 0 we can tialize various tables for arithmetic in fc, such as
at most determine #Q + # 0 , not xQ.) Meanwhile, the multiplication and multiplicative inverse, squaring,
jo = 23 equation simplifies to #2°95 = 1, which only and exponentiation. (For addition we use the bit-
confirms that #21 G k*. The remaining ten equa- wise exclusive-or operator that is already built into
tions, for j 0 = 19 through j 0 = 1, yield complicated the programming language C.) Using the automor-
polynomial equations in the six £ coefficients. phisms t i-> at, we may assume that x2i is in the

Finding a single solution turns out to be easy: set quadratic subfield F64 of k. Thanks to x i—> ax, we
#21 = 1 and #17 = #13 = #9 = #5 = 0, when the may further limit attention to one representative of
equations for j 0 ^ 25 give each of the 21 cosets of the cube roots of unity in

22 21 20 19 18 16 14 12 n Fg4. Each of these 21 choices of #21 then represents
x = t +t +t +* + * + \ + t +Xl\ +t 3(26 + 1) = 195 choices of x21 in k*. Then, since

+ (#i+l) t + xxt + xit + (#i+l) t t ^ t + b g[xes X21 a n c j translates x17 by

+ x\t2 + x\t + x0, (4-2)
64#2i + &2#l9 — &4#2i + fr2#21

and the j 0 — 19,21 equations yield the conditions _ 7 ,( 2 _3.2 2 _3x
— #21 \[b #21 j + o #21J,

#i + #i + 1 = 0, #o + #0 = x± (4-3)
we may assume that x17 is either 0 or #21 a6, each

on the unknown coefficients #0 ,#i . We calculate possibility representing 211 choices of #17 G k and
that the equations (3-1) for the remaining j 0 are s till invariant under one translation *<->« + #2(2.
then satisfied automatically. This leaves only (4-1), This translation does not affect # i 3 , but (for most
which as expected has solutions y(0) G k. (In all choices of #21 and #13) does move #9. Using this
8 solutions of (4-3), x1 and #0 are of degrees 2,4 translation as well as the 12 field automorphisms
respectively over F2; thus #^ is a fifth root of unity, reduces the 21 • 2 • 24 • 212 = 21 • 217 possibilities for
so its trace as an element of k equals 1, whence x3

0 + (^12j Xl7^ Xl3^ XQ) to slightly over 21 • 217/24 or about
a6 is of the form y(0)2 + y(0) with y(0) G k.) This io5 choices. For each of these, we use the equa-
proves that M has minimal norm 22 and normalized tions at the top of page 470, or the recursion (3-1),
center density 11 /2 . to compute #22,^20,^195^18^165^11, #3- Then loop

Enumerating all the minimal vectors is a more de- Over 224 choices of #5, #1 G k. For each one, solve the
manding task. There are 26 4-25 2 possibilities for the equations (3-1) with j 0 = 45,41,37,33, 29, 25, 21 to
f coefficients, far too many for an exhaustive search. obtain #12, #10, x8, #6, #4, #2, and #*, + xQ. Look up
But our equations have many automorphisms, com- a precomputed table to choose #0 and solve (4-1)
ing from the symmetries of M described in Part I, for 2/(0), if solutions exist in k (if not, proceed to
after the proof of Proposition 2. We saw already the the next (#5,#i) pair). If one of the eight possi-
65 • 2 maps ble (#o?2/(0)) is defined over fc, then all are, but we

/,\ v / , , 7\ / 7^-7 65 i\ need only try one because they constitute an orbitxit) H-» xiat + 0) O , O G K , a = 1 , , 1 1
under the 8-element quaternion group. Using the

We may augment these by # 1—> ax for a3 (again chosen #0, check whether the conditions (3-1) for
inherited from Aut(£?0)) and by the twelve field au- odd j 0 ^ 19 are all satisfied. The kissing number is
tomorphisms of & (Part I, Equation 22). This lowers the sum of the orbit sizes of the resulting minimal
the total to (63-240)/(3-12) w 2-1012. The 8-element points of E.
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Unfortunately the size 2 • 1012 of the search space where a is a fifth root of unity. This formula shows
is too large for this computation to conclude in rea- three stabilizing automorphisms (from Gal(fc/F16)),
sonable time. Fortunately the j0 = 19 equation, but in fact P is stabilized by two automorphisms for
expanded as a polynomial in the £ coefficients, is a each element of Gal(fc/F2): translating t by either
quadratic equation in x{6, namely a3 or a3 + 1 has the same effect on its ^-coordinate

as applying the Galois automorphism c \-> c2 of k.
Axf + A2x{6 = B, (4-4) T h i g y i e l d s a c y c l i c s t abiliZer of order 24.

w h e r e Can the simple form Ax32 + A2x{6 = B of (4-4)
be explained conceptually? Can the kissing num-

A = xll8x13 + xll2xle + xllxl6 + ^2i6, ber (2-4), and more generally the kissing numbers
u — ( 272 , 64\ 64 , 576 48 of our Mordell-Weil lattices in dimensions 2 n + 1 , be

— V^21 ' ^13*^21 / ^9 ' 21 XQ i i i I T / i i

/ 4«n ifi ssn «79 mn A 48X^9 obtained without such a long computation (which
_l_ / 480 16 _|_ ^880 _|_ ^,672 , 100 . 4 48\ 32 or- \

-h \x21 x5 -t x21 -t- xl3x21 "t- x21 -t- x13x21 )x9 g e e m s Q u t o f t h e q u e s t i o n a i r e a dy for the next case
i / 384 32 | 1184 , 2 7 6 8 ^ 1 6 , 288^48 >r\OT\/r x I L I U X

I Vx2i X5 ~r x 2 1 -t- x13x21 )x9 -f- x21 xb n —i) i Must there always be some nonzero vectors
+ (#2i8 + ^i3^2i°)x52 + (xi3x2i2 + xi3xli6)xl6 m t h e n a r r o w Mordell-Weil lattice whose norm at-
, / 608 , 2 Ti92\ 4 , 3 864 , ,̂708 , .̂5 ̂ ,448 tains the lower bound 2 I (2n+4)/61 of Theorem 1 of
i \«^21 * 13 21 / 5 ~ 13 21 * 21 ' 13 21

2 292 2 97 Part I? Finally, can it be shown that the 4:8n(q3+q2)
13 21 13 21* known automorphisms of MW2n+i constitute its full

Ugly as this may look, it is much better than loop- automorphism group once n ^ 4?
ing over x1 —especially since most of the computa- A final remark: multiplication of t by a fifth root
tion of B can be done independently of x5. Ex- of unity generates an automorphism of M of or-
cept in the rare case that A = B = 0, we are der 5; the sublattice fixed by this automorphism is
thus left with either 2 or 0 choices of xx for each the Mordell-Weil lattice of y2 + y = x3 + t13 + a6,
a2i ,£i7, x13, x9,x5. It is then feasible to test every and is thus homothetic with the Leech lattice by the
possible (x2ux17,x13,x9,x5,x1) as outlined in the results of Part II.
preceding paragraph.
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