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CONTENTS
Kigami has shown how to construct Laplacians on certain self-

1. Introduction similar fractals, first for the Sierpinski gasket and then for the
2. Construction of Dirichlet Forms class of postcritically finite (pcf) fractals, subject to the solu-
3. Harmonic Functions tion of certain algebraic equations. It is desirable to extend this
4. Existence Proof method to as large a class of fractals as possible, so in this paper
Acknowledgements w e e x a m ' n e a specific example that exhibits features associated

- with finite ramification, but which does not fall into the class
of pcf fractals. We show by a method of deconstruction that
this fractal is a member of a family of three fractals for which
the pcf condition holds in a generalized sense. We then study
the algebraic equations whose solution is required for the actual
construction of the Laplacian. We obtain experimental evidence
for the existence and uniqueness of solutions. This experimental
work uncovers two symmetries that were not initially apparent,
only one of which has a natural explanation. By exploiting the
symmetries, we give a nonconstructive proof of existence.

1. INTRODUCTION

Analysis on fractals has been extensively developed
on a restricted class of fractals. This theory, which
centers around the Laplacian and its associated Di-
richlet form, now includes such topics as linear and
nonlinear differential equations, Brownian motion
type processes, gradients and Taylor approximation,
Weyl-type spectral asymptotics, and splines. See
[Barlow 1998; Kigami 2001] for references. A ma-
jor priority for this field is to enlarge the class of
fractals that can be included. We are especially in-
terested in methods of defining the Dirichlet form
and Laplacian that are direct and constructive, in
the spirit of the work of Kigami [1989; 1993] on the
Sierpinski gasket and the class of postcritically finite
(pcf) self-similar fractals, which includes the nested
fractals of [Lindstr0m 1990]. Beyond the pcf frac-
tals, the only other ways of obtaining Laplacians are
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On the unit interval, the Laplacian is just the sec- relies on adjoining two equations to the system ex-
ond derivative, and the Dirichlet form, which acts on pressing hidden symmetries of the problem that only
a suitable space of functions, is given by 8,(u,v) = became apparent upon examining the experimen-
^u\x)v'(x)dx. The usual approach is to define tally obtained numerical values,
both in terms of the first derivative, although to be In order to explain our results, we begin with a
precise the derivatives that enter into the Dirichlet brief summary of the definition of pcf fractals and
form must be allowed to be weak derivatives, and the results of [Kigami 1993]. We will make a few
the domain of £ is the Sobolev space H1. On the simplifying assumptions to aid the exposition. The
unit interval, functions in the domain of £ must be pcf fractals K we deal with will be compact subsets
continuous (but this is no longer true in higher di- of some Euclidean space, and will be the attractor
mensions or on manifolds, where the Dirichlet form of an iterated function system (ifs) of contractive
is the integral of the length of the gradient squared). similarities FU...,FN, meaning
It turns out to be possible to define £ directly by
setting £(u,v) equal to R = ^ \ p K (1_1}

lim n± (u(k-) - u(*=±)) (v(k-) -v(±±S\
n^°° fr̂  \ \nJ \ n J) \ \n/ \ n J J The main assumption is that K is connected, but

just barely; in particular, the image sets FiK may
and then to define the Laplacian via the weak for- intersect only at a finite number of points. More
mulation precisely, we assume that there are a finite number

/

i of points (gi, . . . , qm) = Vo, forming the boundary of

(Au) vdx = -£(u, v) if v(0) = v(l) = 0, K, such that F& = q5 for j < m, and FjKnFkK C
FjVo fl FkV0 for any distinct j , k.

thus bypassing the first derivative. This may seem A pcf fractal is in a natural way the limit of an
excessive for the interval (though it does avoid a bit increasing sequence of finite graphs Fo, I \ , . . . . The
of functional analysis that usually is involved in the vertices of Fo are Vo, and in general the vertices of
definition of Sobolev spaces), but it is absolutely Fm , denoted Vm, are defined recursively by
essential on fractals where there is no reasonable
analog of the first derivative. I I

In this paper we study an example that does not m ~ KJ j m~1*
immediately fit into the framework of pcf fractals.
We show that by performing a "deconstruction" we The edge relation x ~ m y for x, y G Vm is defined
can bring it into a slight generalization of this frame- by the existence of a word w = (u>i,... ,wm) of
work. The real work is the construction of the Lapla- length \w\ = m on the letters { 1 , . . . , N} such that
cian, and its associated Dirichlet form. We are able x and y are both in FwVo, where Fw denotes the
to obtain explicit formulas that involve constants iterated mapping FWl o • • • o FWrn. Note that Fo is
solving a system of algebraic equations. The con- just the complete graph on Vo, and Fm reflects the
stants are determined experimentally, and may be connectivity structure of K at resolution ra, treat-
easily computed to any desired accuracy. We also ing each cell FWK for |w\ = m as an undifferentiated
give a proof that the system of equations has a so- smudge. Dirichlet forms and Laplacians on K are
lution, but the proof is nonconstructive, relying on defined as limits of Dirichlet forms and Laplacians
Brouwer's fixed point theorem. In particular, the on Tm. Functions on K give rise to functions on
proof does not show that the numerical values we each graph by restriction, and since |Jm Vm is dense
have found are close to the values of an actual solu- in K, continuous functions on K are uniquely deter-
tion. The proof does not give uniqueness, although mined by their restriction. The Dirichlet forms con-
the experimental evidence suggests that the solution sidered usually give positive capacity to points, so
is unique. Moreover, the proof would not have been the domain is naturally contained within the space
discovered without the experimental work, since it of continuous functions.
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We are interested in Dirichlet forms £(u, i>), where
u and v are real valued functions on K belonging to
a subspace dom £ of the continuous functions, that
are self-similar in that

N

v) = (1-2)

for certain constants Vi (implicit in the definition is
that dom£ is preserved by the mappings Fi). We
will make the further regularity assumption

0 < r{ < 1 for all i.

To obtain (1.2) we are more or less forced into con-
sidering a sequence of Dirichlet forms on Tm defined
inductively by

N

This leaves only the choice of Dirichlet form £0 on

- u(qk))(v(qj) - v(qk)),

for nonnegative conductance constants Cjk (the re-
ciprocals cj£ have the interpretation of resistance for
an electrical network). We call £0 nondegenerate if
enough conductances are nonzero that 8,0(u,u) = 0
only for u constant on Vo.

Not every choice of £0 will lead to a meaning-
ful limit of £m as m —>• oo. On the contrary, only
a very careful balancing of the choice of £0 and the
constants {r^} will do the trick. We require a consis-
tency condition. If u is defined on Vm-i, let u denote
the extension of u to Vm that minimizes the energy
£m(£t, u), called the harmonic extension (unique un-
der the nondegeneracy condition). We require

£m(fi,£t) = for all u.

It suffices to have this condition hold for m = 1;
it follows that it holds for all m > 1. A harmonic
structure is a choice of nondegenerate £0 and {r^}
such that the condition holds. It is a nontrivial prob-
lem to find harmonic structures (see [Sabot 1997] for
an extensive discussion of this problem). In partic-
ular, it is not kown whether every pcf fractal has a
harmonic structure, and it is known that harmonic
structures do not exist for every choice of {r\}. Once

a harmonic structure is found, it is easy to see that
£m(u, u) is an increasing function of m, so

£(n, u) = lim 8.m(u,u)

is well-defined in [0, oo], and we can define dom £ to
be the set of u for which £(u,u) < oo. It is shown
in [Kigami 1993] that dom £ modulo constants is a
Hilbert space under the norm £(^x,u)1/2, and dom£
is contained in the space of continuous functions.
Furthermore,

£(u,v) = lim £m(u,v) for u,vGdom£

is a regular, local Dirichlet form for any reasonable
measure on K. We consider self-similar measures fi
which satisfy the identity

N

or
N

"1f
for some probability weights {/î }.

Given a Dirichlet form and a self-similar measure,
we can define a Laplacian A as follows: u G dom A
and Au = f if u G dom £, / is continuous, and

£,(u,v) = — fvdfi,

for every v G dom£ vanishing on the boundary Vo.
There is also a pointwise limit formula for Au, but
we will not give the general formula.

Next we discuss the deconstruction idea we will
use in the study of the diamond fractal. It is well
known that different choices of ifs may lead to the
same fractal, and sometimes there are consequences
to which choice is made. For example, the hexa-
gasket (or fractal Star of David) shown below can
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be generated by six simple homotheties with con-
traction ratio | and fixed points the vertices of a
hexagon (or star). This is a pcf fractal with bound-
ary consisting of the six vertices. However, by in-
cluding rotations in the similarities we can arrange
that the boundary consist of just three of the ver-
tices (every other one). In this case there is not a
drastic difference between the two choices. In many
cases, however, the new ifs must be interpreted in
the more general sense of [Mauldin and Williams
1988]. Instead of a single self-similar fractal K sat-
isfying (1-1), we will have a self-similar family of
fractals Kj, each of which is a union of images under
contractive similarities of all the sets in the family.
It is a routine matter to extend the definitions and
results of [Kigami 1993] to this more general con-
text. The point is that there are many interesting
examples where the new self-similar family (contain-
ing the original fractal) with its ifs will be pcf, while
the fractal with its original ifs was not.

We will refer to the process of finding a new ifs
as deconstruction, in a nod to our colleagues in the
humanities who have used the same term for a sim-
ilar analysis of literary texts (with perhaps more
questionable justifications). In fact this idea has
been used many times before in the study of self-
similar fractals, usually for the purpose of elimi-
nating overlaps to compute dimensions (see [Edgar
1991; Strichartz et al. 1995; Strichartz and Wang
1999], for example).

Even when a deconstruction is found that restores
the pcf condition, it is still necessary to find the cor-
rect conductance coefficients to construct a Dirichlet
form. In this paper we carry out such a construction
in one particular example, the diamond fractal In
this example the deconstruction leads to a family of
three sets, which we call the diamond, the chevron
and the crown. These sets possess obvious geomet-
ric symmetries, and we demand that the Dirichlet
forms also possess the same symmetries. The pro-
cedure we followed in studying this example was to
first use experimental methods to produce numer-
ical approximations to the conductance constants.
We then observed (by playing around with the num-
bers) that these constants satisfied two simple linear
identities. (One of these identities can be explained
as a further symmetry of the fractal, while the other
awaits explanation.) By imposing these identities as

a priori constraints, we were then able to give a non-
constructive proof of the existence of a nondegener-
ate Dirichlet form satisfying these constraints. The
experimental evidence strongly supports the unique-
ness of this Dirichlet form.

The success of the method of deconstruction for
this example suggests that it will be possible to de-
scribe a class of fractals for which it will also work.
The main problem is to find a criterion for the ex-
istence of a pcf deconstruction. The fact that it is
necessary to actually construct a harmonic struc-
ture is not new, since one faces the same require-
ment for ordinary pcf fractals. Perhaps some of the
ideas used in the existence proof for this example
will be useful more generally. Hambly and Nyberg
[1999] have studied self-similar Laplacians on a class
of self-similar sets which allow pcf deconstructions.
Under the assumption of the existence of a Lapla-
cian, they obtained the asymptotic behavior of the
eigenvalue counting function. They also obtained an
existence theorem for a Laplacian, which cannot be
applied to our example.

We now give a description of the diamond fractal.
This is a self-similar fractal that is not pcf, gener-
ated by six contractive similarities in the plane with
contraction ratio | , as indicated in Figure 1. The
convex hull of the fractal is a diamond (the union
of two equilateral triangles), and two pairs of im-
ages of the diamond intersect along an edge. The
images of the fractal in fact intersect in a Cantor
set. However, the fractal appears to be finitely ram-
ified, in that it becomes disconnected with arbitrar-
ily small components upon the removal of suitable
finite sets of points. This suggests the possibility
that we can restore the pcf condition by perform-
ing a deconstruction. In fact this is possible only
if we allow a slight generalizaiton of pcf to include
self-similar families of sets (or "graph directed frac-
tals" in the terminology of [Mauldin and Williams
1988]).

Thus we embed the diamond into a family of three
sets, which we call the diamond, the chevron and the
crown (Figure 2). The diamond is a union of two di-
amonds and two chevrons, the chevron is the union
of two diamonds, three chevrons and one crown,
while the crown is the union of four diamonds, two
chevrons and four crowns. All these components in-
tersect at isolated points, so we have a pcf structure.
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ftf Jiff ^ is ,H : ̂  fs *' tuil "I*

FIGURE 1. The fractal diamond and its six similarity images.

^ a ^ The diamond and chevron have two boundary points
^ ^ ^ ^ and the crown has four (labeled x0, X\ for the dia-

xo ̂ S^^^^^^S^^i mond, y0, y1 for the chevron, and z0, zu z2, z3 for

^^^^^%^^ the C r ° W n ' in FigUie 2 *̂
^ ^ 2. CONSTRUCTION OF DIRICHLET FORMS

z\ ? ^ R ^ 2̂ Our goal is to construct a self-similar family of Di-
^ * O ^ ^ T J ^ ^ & ^ richlet forms on the diamond, chevron and crown,
StjH ^ ^ ^ S KJ& having all the symmetries of the fractals. We begin
^ ^ ^ ^ ^ ^ & ^ > ^ ^ ^ with Dirichlet forms on the graphs of level 0 con-
^ ^ v ^ ^ ^ ^ - ^ ^ v ^ w sisting of the boundary points; abbreviating u(x0)
B ^ ^KJ as x0 and so on for compactness, we can write

£J0 — CI^XQ — XX) ,

Zl ^ (2) - - 2

f^^gS^^O +c5((z0-z2)
2 + (z1-z3)

2) +c6(z0-z3)
2.

^ ^ " ^ ^ ^ v T J^^^S^®^\ Note that we have imposed two symmetries re-
^ ^ S p V5 ^^m% V6 H ^ S ^ lating the pairs (zo,£i) and (z2,z3), and the pairs

ZQ ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ S ^ ^ ^ ^ ^ S ^ ZS ^°'Z<2^ a n d ^ l 5 Z^' W e m a y a s s u m e without loss of
^^^f^>few^r \ ^ ^ ^ ^ ' ^ ^ ? ^ ^ ^ < \ ? ^ ^ generality that cx = 1, since we can always achieve

^W!^ x y ^ this by multiplying E ^ ? £^o2) a n d ^o3) by the same
constant; this amounts to a normalization decision.

FIGURE 2. Top: the diamond. Middle: the chevron. Next we assume that there is a fixed scaling fac-
Bottom: the crown. The decompositions are indi- tor r, with 0 < r < 1, for comparing the Dirichlet
cated, and intersection points are labeled.
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Z\ C2+C4 z2

C2+C3/ ^ ^ / \ V2+C3

O\ C2+C2 O\ l ^ ^6 ^ \

*0> gg ^ •*! fc ^
Cl/ \ci

/ \ \? c^^ / \
/ ^03+03^^^03+03/ \

CQ/ Cr, \t— - ^ / 0^ \C6

/ / / A3+C4 C3+c\ \v^^ \

Z° Ci ^0 c 2 + c 3 ^4 C6 V7 C 2 + C 3 V3 Ci ^3

FIGURE 3. Graphs of boundary points for the first-level decomposition of the diamond, the chevron, and the crown.
Thicker lines mean there are two edges between the given vertices. The labels c i , . . . ,C6 give the conductance
coefficients; double edges are labeled by the sum of the conductances of the individual edges.

forms on the images of the fractals with the origi- and

nal. This is again a symmetry assumption, that all ^ = ̂  n-^-^^-^ztf + fr-ztf+(%-%)*
the sets in the decompositions nave the same rel-
ative "size". We then obtain Dirichlet forms E^, + c2((v0-v4)

2 + (v3-v2) )
E[2\ E[3) on the graphs consisting of the boundary + C3((vo-v4)

2 + 2(v1-v5)
2 + 2(v2-v6)

2

points of the components of the first level decompo _l_ (^3—y7)
2 + (VA—VK)2 + (va—v7)

2)
sition of the diamond, chevron and crown (Figure 3) ,, , 9 n / , 2 , xox
by summing original level 0 Dirichlet forms on the vv J v J v / y

components, multiplied by r"1. Explicitly, in the + c5((^o-^)2 + ( ^ i - ^ ) 2 + (^i-^e)2 + {v2-vb)
2

notation of Figure 3, we have + (v2-v7)
2 + (v3-v6)

2 + (v4-v6)
2 + (v5-v7)

2)

+ c6((^o-^i)2 + (^i-^2)2 + fe-^3)2 + (v4-v7)
2)).

E[1] = ^((xo-yo)2 + (^i-^i)2 + 2c2(y0-yi)2), (2-4)

(2—2)
Next we define the harmonic extension to be the

^(2) _ r~
1((y —z )2 _i_ (y —z )2 energy minimizer subject to the boundary values

/t NO / \2 / \2\ ^eld constant. So for the diamond, we fix x0 and
+ C2((ZQ-Zl)

 2 + {z1-Z2)
 2 + (z2-Z3)

2) _ , , _ , _ , . . . „(!) „
vv y v J v J ' xi and choose y0 and y1 to minimize E\ J. For

+ C3((zo—z1) + (z2—z3) ) + CA(ZI—Z2) the chevron it is y0 and yx that are fixed, and Zj,
+ c^((zo—z2)

2 + {z\—Z3)2) + c6(^0~^3)2)5 (2-3) j = 0,1,2,3, that are chosen to minimize E{ \ For
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the crown we simplified the problem by separating The equation E[^ — E^ is just
the even and odd parts of u with respect to the re- 2C

Sectional symmetry. It is easy to see that the even (#o — #1) = ~77T7—\ (^° ~ ^1) >
and odd parts are orthogonal with respect to en-
ergy, so the harmonic extension may be computed a n d t h i s l e a d s t o t h e requirement
by minimizing the energy of the even and odd parts 2c2

separately. For an even function z3 = z0 and z2 = Zi, r ~ \ _|_ 4C ' ~

We substitute this into the remaining three equa-
Eo = (2c3 + 2cb)(z0 - zx) . (2-5) t i o n g o f (2_g^ T h e r e g u ] [ t .g & s y s t e m o f five p o i y n o _

Also v2 = vu v3 — v0, v6 — vs and v7 = vA, so mial equations in the five coefficients c2, c3, c4, c5,
r-,4. o - 1 / / - - \2 , /- - \2 . /- - \2 c6. From the numerical solutions we observed two
Ef = 2v {(vo-zo) +(v1-z1)

 z + c2 {vo-v4y .° .
v identities relating the coefficients:

+ c3((v0-v4)
2 + 2 (^ - i ; 5 ) 2 + (v4-v5)

2)
+ c4(v4-v5)

2 c2 = c3 + c5, (2-11)
+ c5((v0-v5)

2 + ((Vi-v,)2 + {v.-v,)2 + (v,-v5)
2)) c3 = c4 + c5 - c6. (2-12)

+ C6{vo—Vi) J. (2-6) j n faĉ ? We can prove that those relations are con-

Similarly, for odd functions, sistent with the original five polynomial equations.
__ _ , _ N2 rt f_ _ x2 . _2 . _2 (There are also degenerate solutions, with some co-
Eo =2c3(z0-ziy + 2c5(z0 + zxy + 4,c4zf + 4cC6zi V_ . . , . f w u m M\ A

0 v y v y x u efficients equal to zero, for which (2-11) does not
and hold.) Now using (2-11) and (2-12), we introduce
E~ - 2r-1((^o-^o)2 + (^i-^i)2 + c2(^o-^4)2 n e w v a r i a b l e s ai = C2, a2 = 4c4 + 2c2, and a3 =

. //_ _ x2 . o/_ _ x2 . /_ _ x2x 4c5 —4c3. Note that
+ c4((^4-^5)2 + Avl) Eo = o.2zl + a3zxz0 + (4c6 + 2c3)z

2.

+ c5((^o-^5)2 + ( ^ i - ^ ) 2 + (^i+^5)2 + (V4+V5)2) T o obtain a set of equations for (aua2,a3) equiva-
// x2 0 2 , o«i2\\ n 7A lent to the equations for the c7 coefficients, first let

2/0 = 3 ' J/l = - 2 ' ^0 = a P ' ^ l = 2? ' ^ = - 2 « a i l d

In both cases we fix z0 and Zl and choose ^ for ^ = _ , ^ ( 2 _ 3 ) ( T h i g ig t h e o d d p a r t o f Ew^
j = 0,1,4, 5 to minimize Ex and 25f. T h i s polynomial of p and g is denoted by Q, (p, g).

For the diamond, the minimization problem i s A T , i , - , _
' ^ Next, let z0 = 0, Zi = a, i>0 = 2:, Vi = x, ^4 = w,

** ' and ̂ 5 = y in ^ . This polynomial of a, 6, x, y, z, iy
_ _ xo + 2c2(xo+x1) _ _ x1 + 2c2(x0+x1) is denoted by Q2(a, 6, x,y,z,w). Set
^y_ ^ y ^ ^

l + 4 c 2 l + 4 c 2 /O ox ^ / i\ ^ / 7 \
(2-8) g3(a,6)= mm Q2(a,b,x,y,z,w).

x,y,z,w
The other minimizations lead to more complicated
solutions involving polynomials in the Cj coefficients. D e f i n e a map i? : R -+ R with coordinate func-
We then substitute the solutions of the harmonic tions
extension problem into the expressions (2-2), (2-3), Ri{aua2i a3) = mmftfe g),
(2-6), (2-7) for E?\ E[2\ S+, E~. The resulting ! d2Qs

quadratic forms, denoted E[X\ E[2\ Ef, Ef are i?2(ai,a2 ,a3) = g " ^ " '
expressed in terms of the values of n on the level 0 o 2 ^
graph. The compatibility conditions that we need ^3(^15^25^3) — ^ ^, •
in order to have a harmonic structure are that these
are equal to the original energy: T h e n t h e e <l u a t i o n s a r e s i mP!y t h a t («i. °2, «3) is a

fixed point of R. They are too complicated to solve
Ex — Eo , li^ = Eo , E^ = EQ , J57]" = £̂ o". algebraically, but can be solved numerically by using

(2-9) the iteration of the map R. We used Maple V to
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compute R symbolically and iterate R numerically, where

and found bo =0.5399160321, b± =0.2016794364,

c2 = 0.87433356450232153555, b2 = 0.1382815883, b3 = 0.1201229427,

c3 = 0.51869210797723658737, b4 = 0.4765181840, b5 = 0.1835207909,

c4 = 0.47199053889709250095, b6 = 0.3556777973, b7 = 0.2617128040,

c5 = 0.35564145652508494819, (2~13) b8 =0.2009059485, b9 =0.1817034495,

c6 = 0.30893988744494086177, b10 = 0.2948709419, bn = 0.2425103052.

r = 0.38882302908449559258. The b5 satisfy certain identities. From the fact that

Since these equations are of fixed point form, we c o n s t a n t s a r e harmonic we obtain
tried iterating from many different starting values, b0 + &i + b2 + b3 = 1, &i + b2 + b4 + b5 = 1,
and the iterations converged rapidly to this solution b6 + b7 + b8 + b9 = 1, b7 + b$ + &i0 + bn = 1,
in all cases. Thus we have some experimental evi- w M c h i m p l y ^ _ &4 = 6|5 _ 6 s a n d 6g _ 6 l 0 = bu _ 6g.
dence that the system has a unique positive solution. R t ' f t
Later we will give a proof of existence.

b0 — b4 = fe5 — o3 = 61 — &2,
&6 — &10 — bn — 69 = b7 — 68.

3. HARMONIC FUNCTIONS
Also there are identities

With the determination of the constants given by
(2-13) we can give explicit solutions to the harmonic di = 60 + 61, d2 — 66 + 69 (3-4)

extension algorithm. For the diamond we have relating the coefficients in (3-2) and (3-3).

- _ (-x_rn\?? , - = We can give a simple explanation for the identi-
/- N_ (3-1) ties (2-11) and (3-4). The crown is composed of
v ' l5 two copies of the chevron joined along the line of

as can be seen from (2-8) and (2-10). For the symmetry. If u is an even function on the crown,
chevron the answer turns out to be we can regard the restriction u to either half as a

function on the chevron, and so obtain a one-to-
0 — lyo \ ijuii o n e correspondence between even continuous func-

Z\ — U2II0 + {*-—cl2)yi, (3-2) tions on the crown and continuous functions on the
2̂ — (1—d2)y0 + d2yi, chevron. The symmetry condition we want is that

z3 — (l—di)yo + di^i, the energy of u should be twice the energy of u. At

where dx = 0.6600389747 and d2 = 0.5373812469. ^f ? ™,^Zfv*) ^ ^f^J^l ""j
The form of the solution is clear by symmetry and ^ = (2c3 + 2c5)(uz0) - u(z}) by (2-1 and
. , . . . , . f \ J . J .. (2-5). But u(y0) = u(zo) and u(y±) = u(zi) un-
tne tact that constant functions are harmonic, so it , ' , i ^ • /n 11 \ ^

_ . 7 _ , . der the correspondence, so we obtain (2-11) from
is the computation of the coefficients dx and d2 that _ , , , r>r,(2)/~\ T . P 1 , ,. . .

,, .G i . /o 1Qx ^ ,1 EQ[U) = 2EQ MW. It is clear from the subdivision
requires the specific values in (2-13). For the crown V , 1 i n ,
., , ,. . . , scheme that the same identity persists at all lev-
the solution is given by . , , , .r

els. In particular, u is harmonic on the crown if and
v0 = bozo + b\Z\ + b2z2 + 63^3, only if u is harmonic on the chevron. This means
y — fog _^_ b4zx + b5z2 + b2z3 that (3-3) for even functions msut be the same as
v2 = Mo + M i + hz2 + bxz3\ (3~2) u n d e r t h e correspondence (*0 = z3, zx = z2,
V3 — O3Z0 -f-O2Z1 -\-O1Z2 -\r O0Z3, , . 7 ^

* -hr ±hr ±hr 4-hr ^'^ U(Z<>) M**) M*l) M**)) • ThlS yields (3"4).
7j4 _ D ^ o + 0 ? ^ + Osz2 + 09Z3^ p i g u r e 4 s h o w g t h e g m p h o f a h a r m o n i c function

^5 = 7̂̂ 0 + b10z1 + 6n2;2 + bsz3, o n t h e diamond, obtained by recursive application
6̂ = Mo + bnzi + b10z2 + b7z3, of (3-l)-(3-3). Modulo constants, the space of har-

v7 = b9z0 + b$Zi + b7z2 + 6̂̂ 3> monic functions on the diamond is one dimensional,



Kigami, Strichartz, and Walker: Constructing a Laplacian on the Diamond Fractal 445

^ s
<^ s

^ s

•<> S
^ S
^ s

FIGURE 4. The graph of a harmonic function on the diamond. Bottom left: projection onto the left wall of the
box. Bottom right: projection onto the back wall.
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so this is essentially the general harmonic function. The difficulty is to obtain bounds for all the con-
Paradoxically, the space of harmonic functions on stants, both above and below (away from zero). For
the crown is 4 dimensional, but on any particular example, we can easily modify the computation of
crown in the diamond, there is only a 2 dimensional the degenerate solution just given to prove the a
subspace (containing the constants) of restrictions of priori lower bound
global harmonic functions. By looking at differently \ ( r \
located crowns one can eventually obtain functions °2 — 4 \ v /
spanning the entire 4 dimensional space. A simi- for any solution. Observe that the right side of (4-1)
lar situation also arises in many pcf fractals as well, is always a lower bound for E[2). When we minimize
such as the hexagasket. EW g i v e n b y (2-3) r a ther than (4-1) we will get dif-

ferent values for Zj, but they will produce values for
4. EXISTENCE PROOF the right side of (4-1) that are at least as large as

T , T . . . , r r the minimum, the right side of (4-2), that we just
In this section we give an existence proof for pos- _ ' -, / \ -, i
... , ,. , > i o ,. o/ \ found. That means that (4-2) bcomes an mequal-
ltive solutions of the 3 equations i?(ai,a2 ,a3) = (2)

 v ,J
{aua2,a3). Before doing this, we note that there ^ £)> a n d s i n c e E^ =Eo for the solution, we
is a degenerate solution to the original system of o b t a m ( u s m g (2~10) f o r r^
equations with c3 = c4 = c5 = c6 = 0, but (2-11) 2c\ 1 / 1 \ 2 c2 / 1 \ 2

does not hold. In effect this makes the energy on 1 + 4C2 ~ 2 V 1 + -c 2 / 3 VI + -c2)
the crown identically zero, so that all paths through n . _

T n , T TT -̂  • i r T^- which simplifies t o
crowns are blocked. However, it is clear from fig-
ure 2 or 3 that there are still two paths joining x0 to 4c2 + 2c2 — 1 > 0,
Xi in the diamond, going along the upper and lower n , . . , A n,
, , . , • i xi • • • x - X T a n d this requires (4-3).
boundaries, and a single path joining y0 to y1 in the _ / o i n\ ux • x- x r i
, • i î i i ^ x i 'rom (2-10) we can obtain estimates tor r, namely

chevron, going along the upper boundary, that never v '
pass through a crown. In place of (2-3) we have —(5 — A/5) < r < - (4-4)
Et = r~x((J]Q—ZO)2 + (yi~z3)

2 the lower bound coming from the lower bound for
+ c2((z0-^i)2 + (zi-z2)

2 + (z2-z3)
2)). (4-1) c2 in (4-3), and the upper bound coming from the

. . . _ limit as c2 —> oo.
Minimizing this energy with y0 and \i\ fixed yields m , , . , , c . ,

° QJ *u * J To obtain an upper bound for c2 we consider an
^o — Zi = Z\ — z2 = z2 — z3 = | ( ^ 0 - z3) odd function on the chevron, with y0 — 1 and y± =

a n ( j —1 to be specific, so E^ = 4c2. Since E[2^ = 4c2

^ _ - _ /j I 2 r V y — v ) minimizes (2-3), it is bounded above by the right
° 3 l 3 2) side of (2-3) with the choice Zj = 0 for j = 0,1,2,3.

and so we find T h i s y i e W s ^ < 2r~\ and using (2-10), 4c2-4c2 -
F(2) 1 / l A 1 \2 i C2( 1 fV?-7 ,-^2 l < 0 , or
E> =M1-l^)+ni^)r-^2) CSK1 + V2). ,4-5,

= -—-—(y° ~ Vi)2- We apply similar reasoning to an odd function on
2 the crown with z0 = z\ = 1 so E$ — 4(c4 + 2c5 + c6),

where we have used (2-10) for r. Setting E[2) = E^2) and we bound Ef from above by choosing ^ = 0
we obtain a quadratic equation for c2 with c2 = for all j on the right side of (2.10). We obtain 4(c4 +
\(y/5 — 1) as the positive solution. (There is also 2c5 + c6) < 4r~1 hence
another degenerate solution with c2 = c3 and c4 =
C5 = c6 = 0 but we will not describe it here.) c4 + 2c5 + c6 < p (4-6)

To prove the existence of nondegenerate solutions, 0 — v 5
we will use the method of [Lindstr0m 1990], which using the lower bound in (4-4). This suffices to
involves applying the Brouwer fixed point theorem. bound from above all coefficients in view of (2-11).
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Now we can give the Brouwer fixed point theo- ACKNOWLEDGEMENTS
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