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1. INTRODUCTION

Much is known about the irrationality and transcen-
dence of classical arithmetical constants such as TT,
e, and £(n) for n > 2. There are general meth-
ods which in many cases establish irrationality or
transcendence of such numbers. In contrast, al-
most nothing is known concerning the question of
whether arithmetical constants are normal numbers
to a fixed base, say 6 = 2. It is unknown whether
any algebraic number is normal to any integer base
b > 2. Even very weak assertions in the direction
of normality are unresolved. For example, it is not
known whether arbitrarily long blocks of zeros ap-
pear in the binary expansion of y/2.

Bailey and Crandall [2001] formulated what they
called "Hypothesis A", which provides a hypothet-
ical general principle to explain the (conjectured)
normality to base 2 of certain arithmetical constants
such as 7T and log 2.

Hypothesis A. Consider a positive integer b > 2 and

^ e ^ D O ^ ! ^ 8 ^ 1 ^ P r imary ' U K 1 6 ; SeC°ndary ' a raUonal function RW = P(x)/q(x) E Q(x) sueh
Keywords: dylamical systems, invariant measures, G-functions, that degp(z) < deg q(x) and that g(x) has no non-
poiyiogarithms, radix expansions negative integer roots. Let 6 = X^oP(n)IQ(n)b n,

© A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 10:3, page 355



356 Experimental Mathematics, Vol. 10 (2001), No. 3

and define a sequence {yn : n > 0} by setting y0 = 0, We now summarize the contents of the paper in
more detail. In Sections 2 and 3 we give the dynam-

y —by | ^n' (mod 1) (1-1) *ca* c o n n e c t i on underlying Hypothesis A. In Sec-
Q\n) tion 2 we review radix expansions to an integer base

m^ ,1- ,7 7 n -, 7 ,. ., 6 > 2 treated as a discrete dynamical system acting
lhen this sequence either has finitely many limit ~ , J J

 r °
. . • •/. 7 j • , 7 . i 7 1 on the interval 0,1 . The radix expansion of a real

points or is uniformly distributed mod 1. * ->•><, r

number 9 is described by an orbit or a dynamical
This hypothesis concerns the behavior of a partic- system, the ^-transformation Th(x) = bx (mod 1),
ular orbit of the discrete dynamical system (1-1). studied by Renyi [1957] and Parry [I960]. For a
Assuming Hypothesis A, Bailey and Crandall de- given number 9 its 6-expansion can be computed
duced that the number 9 either is rational or else is from the iterates of this system
a normal number to base b\ these correspond to the
two possible behaviors of the sequence {yn : n > 1} Xn+1 = bXn ( m o d ^
allowed by Hypothesis A, see Theorem 4.2 below. w i t h ini t iaj[ condition x0 = 9 (mod 1). The b-expan-
Proving Hypothesis A appears intractable, but it sion of a r e a i n u m b e r 9 G [0,1] is
seems useful in collecting a number of disparate phe-

oo

nomona together under a single principle. A formu- a _ v~^ , , -j
lation in terms of dynamical systems is natural, be- ^ J

cause the property of normality is itself expressable
in terms of dynamics of an orbit of another dynami- i n w h i c h t h e . H h digit is defined by dj := L^j-iJ •
cal system, the 6-transformation, see Section 2. The I n Section 3 we suppose the given real number 9 is
basic mechanism rendering Hypothesis A useful is a expressed as
relation between particular orbits of these two dif- J ^
ferent dynamical systems. 2^Sn ' 0-^)

This paper provides some complements to the re- n=1

suits of Bailey and Crandall. It shows that the re- in which en is any sequence of real numbers with
lation between particular orbits of two discrete dy- sn —> 0 as n —> oo. To this one can associate a
namical systems underlying Hypothesis A is valid perturbed b-expansion associated to the perturbed b-
very generally, in that it applies to expansions of transformation
real numbers of the form, 9 = Y^=ienb~n, with
en arbitrary real numbers with en ->• 0 as n ->• oo; 2M+1 = hyn + £^+1 ( m o d *)' (1~3)

see Theorem 3.1. Every real number has such an s t a r t i n g w i t h a n i n i t i a l condition y0 G [0,1). The re-
expansion. Hypothesis A is not true in such gen- c u r r e n C e (1-3) is an infinite sequence of maps which
erality, so in order to be valid Hypothesis A must change at each iteration. Associated to this recur-
be restricted to apply only to expansions of some r e n c e i s t h e perturbed b-expansion
special form. Bailey and Crandall do this, formu-
lating Hypothesis A only for a countable class of 4_ /9 — V^ J h~i
arithmetical constants which in the sequel we call ^ 3

BBP-numbers. It does not seem clear what should
be the "optimal" class of arithmetical constants for i n w h i c h t h e J - t h digit is defined by
which Hypothesis A might be valid. The remainder T i, , i
of the paper discusses various mathematical topics 3 3 J

relevant to this issue. We relate BBP-numbers to Choosing the initial condition y0 — 0 gives the per-
the theory of G-functions and characterize the sub- turbed 6-expansion of 9. The mechanism underlying
class of BBP-numbers which are "special values" of the approach of Bailey and Crandall is that the the
G-functions. We also compare Hypothesis A to a 6-expansion of 9 and the perturbed 6-expansion of 9
conjecture of Furstenberg in ergodic theory, and this are strongly correlated in the following sense: The
suggests some further questions to pursue. orbit {yn : n > 0} of the perturbed 6-transformation
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with initial condition y0 — 0 asymptotically ap- satisfy all but one of the properties required to be a
proaches the orbit {xn : n > 0} associated to the special value of a G-function defined over the base
6-transformation with initial condition x0 = 0 — [6\ field Q. We then show that a BBP-expansion to
(Theorem 3.1). In particular, the orbits {xn : n > 0} base b corresponds to a special value of a G-series
and {yn : n > 0} have the same set of limit points, at z — 1/b if and only if the denominator polyno-
and one is uniformly distributed (mod 1) if and mial q(x) (in lowest terms) factors into linear fac-
only if the other is. This implies that the per- tors over the rationals (Theorem 5.4). We show
turbed ^-expansion of #, though different from the that if all the roots of q(x) are distinct, then such
6-expansion of #, has similar statistics, in various special values are either rational or transcenden-
senses. This connection is quite general, since every tal, using Baker's results on linear forms in loga-
real number 6 has representations of the form (1-2). rithms, in Theorem 5.5, a result also obtained by

In Section 4 we consider the particular class of Adikhari, Saradha, Shorey and Tijdeman [Adhikari
arithmetical constants treated in [Bailey and Cran- et al. > 2001]. We summarize other known results
dall 2001], consisting of the countable set of 9 given about irrationality or transcendence of special val-
by an expansion (1-2) with b > 2 an integer and ues of G-functions of the type in Theorem 5.4. It is
en — p{n)/q{n), where p(x), q(x) G Z(x) and q(n) ^ interesting to observe that every one of the examples
0 for all n > 0. We call such numbers BBP-numbers, given in [Bailey and Crandall 2001] is a special value
and call the associated formula of a G-function. Many other interesting examples of

00 / \ such constants were known earlier; for example, D.
6 = Yl ~7n)b~n' H* Lehmer t1 9 7 5 ' p* 1 3 9 ] observed that

n=l ^ '

a BBP-expansion to base b of 6. These numbers V^ JL
are named after Bailey, Borwein and Plouffe [Bai- ^ (n+l)(2n+l)(4n+l) 3 '
ley et al. 1997], who demonstrated the usefulness of x _, TX . A . _

, , ,. , , , , y. , , w • In Section 6 we compare Hypothesis A with a con-
such representations (when degp(x) < aegq(x)) in n ̂  . ,.

, 7 ,. i r i 1 lecture 01 Furstenbere m ergodic theory, concerning
computing base 6 radix expansions or such numbers. _ , . - , . . r

^T ., -nn-n u 1. • ^ JJ-X- 1 measures that are ergodic for the joint action of
We consider BPP-numbers having the additional . . .. . _ . . . . .

^ . .̂ , , x , / \ r î • T^- • two multiplicatively independent o-transrormations.
restriction degp(x) < degg(x), for this condition is ^ . : . f .. . . . .

, ' . ^ n r, Botn conjectures have similar conclusions, though
necessary and sufficient for en —>> 0 as n —> 00, so . . .. . . . . .
^ i ^ i, r o ,- o i mi 1 there seems to be no direct relation between their
that the results of Section 3 apply. The number- . . . .
,, L. , 1 . - . - . ^ . . , ! , , ! hypotheses. Bailey and Crandall have found exam-
theoretic character of BPP- numbers is that they i P . , . , n - n i i

. , , t i . , . t x r r ,. pies of arithmetical constants which have the prop-
are special values (at rational points) of functions _. . ^ ^ ^ , , . ,. . ,

,. r . 1 T i - r r x - i x- e r ty °f being BBP-numbers to two multiphcatively
satisfying a homogeneous linear differential equation . . . . _ . . . . _.

.^, . ^ , . , rn - x TTT i • n independent bases. 1ms suggests that one should
with integer polynomial coefficients. We derive the . . r r . . . . ° 1 . i 1

,, r r . „ . ~ 1 n ,1 , TT ,i • A • look tor further conditions under which the two con-
result of Bailey and Crandall that Hypothesis A 1m- . 1 . 1 1 1

,. ,, , , ~ .,_, ! T lectures are more directly related,
plies that such 6 either are rational or are normal T n . _ , , , . , TT7, x , , / r n i A n \ ™ • î  ^ In oection 7 we make concluding remarks. We
numbers to base b (lheorem 4.2.) 1 nis result makes . .. . . . _ . . _
.A r- 2- i ,. n 1 -i • i. i / • i T-.T-»I-I describe an empirical taxonomy of various classes of
it of interest to find criteria to determine when BBP- . . . . . r . .

, , , . , . , , arithmetical constants, and formulate some alterna-
numbers are irrational, which we consider next. . . . . _

T n ,. r , , T̂ T̂ T̂  i , ,i ,i tive classes of arithmetical constants as candidates
In bection 5 we relate BBP-numbers to the tne- r . . . . __ . .

r ^ r >- ii ,-,1 ii tor inclusion m Hypothesis A.
ory ot G-tunctions, and characterize tne subclass
of BBP-numbers which are "special values" of G-
functions. The subject of G-functions has been ex- 2. RADIX EXPANSIONS
tensively developed in recent years (see [Andre 1989; W e n Q w c o n s i d e r r a d i x e x p a n s i o n s t o a n i n t e g e r b a s e

Bombieri 1981; Dwork et al. 1994]) and the spe- & > 2 Such expansions are obtained by iterating the
cial values of such functions can often be proved b.transformation

to be irrational [Bombieri 1981; Chudnovsky 1984;
Galochkin 1974]. We observe that BBP-numbers Th{x) = bx (mod 1).
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Given a real number x0 G [0,1), as initial condition, Recall that the uniform measure or Lebesgue mea-
we produce the sequence of remainders sure /iLeb on [0,1] is the unique absolutely continu-

, / , iN ous invariant measure for the ^-transformation Tb.xn+1 = bxn (mod 1),
_n Definition 2.2. A real number 9 G [0,1) is normal

with 0 < xn+1 < 1. That is, , , , ., - . , -,. .,
~~ to base b if tor every m > 1 every digit sequence

xn+1 = bxn - dn+1 (2-1) d±d2 • • • dm G {0, 1, . . . , d-l}m occurs with limiting
frequency 6~~m, as given by the invariant measure

where
MLeb-

dn+i = d n + i0o) = \bxn\ G {0,1 , . . . ,6 - 1} Recall that
is called the n-th digit of 9. The forward orbit of //Leb({^o : di(a0) • • • dn(x0) = did2 • • • dm}) = b~m.
x0 is O+(*0) = {xn : n ^ 0} and we call {xn} the ft .g ^ k n o w n ^ for ^ ft t h f i ^ o f

remainder sequence ot the o-expansion. Iterating n rrk .-, ,, , , . , , , £ ,, T ,
/rk ^ x ^ . . , , a G 0,1 that are normal to base b nas mil Lebesgue
(2-1) n + 1 times yields L J
v y measure.

x n + 1 - 6n+1^0 - dn+1 - bdn 6ndi. (2-2) The properties of the digit expansion {dn{&): n > 1}
can be extracted from the remainder sequence {xn}.

Dividing by bn+1 yields T h e following r e s u l t i s w e l l k n o w n .
n

x = \ ^ db~j — b~n~1x Theorem 2.3. Consider an integer base b > 2 and a
j=1 real number 6 G [0,1].

Letting n -» oc yields the b-expansion of ^0, (1) <̂  is digit-dense to base b if and only if its re-
oo mainder sequence {xn(6) : n > 1} to base b is

x0 = J2dj(xo)b-j, dense in [0,1].
j=i (2) 9 is normal to base b if and only if its remainder

which is valid for 0 < x0 < 1. For 9 G R we take sequence ^ : n ^ ^ to base b is unif°rmlV
xo = 6- [6\ and do(9) = [6\ € Z, thus obtaining , *Mf"6ttted m [0>1]- . ,. , . ., ,
,, , ,. (3) u has an eventually periodic b-expansion if and

only if its remainder sequence {xn : n > 1} to
n J (t\\ . Y^ J /ML-? base b has finitely many limit points. This condi-
v = ao\v) + > dj(v)b , f .

r ^ tzon /zo/as /̂ ana on/y z/ | x n : n > 1} eventually
enters a periodic orbit of the b-transformation,

which is called the b-expansion of 9. Note that (2-2) Le^ Xm = x^^ for some m ? p > L T / i e 5 e e g ^ v .

S l v e s a/en£ conditions hold if and only 9 is rational.

xn = bnx0 (mod 1) = bn9 (mod 1) (2-3) Proof. (1) The set

in this case. J(did2 • • -rfm) := {^G [0,1] :d1{9) • • -dm(e) = d r • -dm}
The following property of 9 concerns the topologi- ig a h a l f . o p e n i n t e r v a l [flj a + 6 - m ) o f l e n g t h 6-m? a n d

cal dynamics of the 6-transformation for its iterates. t h e bm i n t e r v a i s p a r t i t ion [0,1]. Digit-denseness im-
Definition 2.1. A real number 9 G [0,1) is digit-dense P11^ there exists some xk G I{dx • • • dm). This holds
to base b if, for every m > 1, every legal digit se- f o r all m > 1 and generates a dense set of points.
quence of digits of length m occurs at least once as (2) If {xn : n > 1} is uniformly distributed (mod 1),
consecutive digits in the 6-expansion then the correct frequency of points occurs in each

oo interval I(di • • • dm), and this proves normality of 9.
9 = y ^ dn(9)/3~n. For the converse, one uses the fact that I{d\ • • • dm)

n=i is a basis for the Borel sets in [0,1).
The following property of 9 concerns the metric (3) The key point to check is that if the limit

dynamics of the ^-transformation for its iterates. set of {xn : n > 1} is finite, then this finite set
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forms a single periodic orbit of the 6-transformation, where, for n > 0,
and some xn lies in this orbit. We omit details; see ~ _ . .
[Bailey and Crandall 2001, Theorem 2.8]. • n+1 ~ L Vn + £ n + l J G

. , , , . , , nj i i. , ,i is the (n+l)-st digit of the expansion. The digit
Remark. Most ot the results above generalize to the ~ 7 / . , _ r

/^-transformation 7>(*) = /fe (mod 1) for a fixed Sequm'e> = ^ o ) a*d ™ ^ ; se^ence {yn :
, ^ - ,, x v J T- TI r-ir.̂ ^1 n > If depend on the initial condition y0. bmce

real p > 1; these maps were studied by Parry 1960 . ~~ _J „ „ _ . _ _ _ *
A . , , , xl . . ,, ,. r n • £n —)> 0, lor all sufficiently large n, one has
Associated to this map is the notion or a p-expansion
for any real number 0, in which the allowed digits dn £ {—1, 0, 1, . . . , 6—1, 6}.
are {0 ,1 ,2 , . . . , \J5\}. Not all digit sequences are al- .
, j . n - i , n x r n J J- -x Mow (6-2) iterated n + 1 times yields
lowed in p-expansions, but the set of allowed digit v ' J

sequences was characterized by Parry; see [Flatto J2^ „
et al. 1994] for other references. One defines a num- 2/n+i = en+1 + bsn-\ h6ngi + 6n + 17/o-^Jdn + 1_ j6

7 ' .
ber 6 to be digit-dense to base (3 if every allowable fi- j=0

nite digit sequence occurs in its /3-expansion. There . 1
5 \ , , 1 ,. . . , Dividing by 6n+1 yields

is a unique absolutely continuous invariant measure °
d// of total mass one for the /3-transformation, and JltJ; ^ . ^ i
one defines a number ^ to be normal to base (3 if z^ j = 2-^£i + \Vo ~ b J/n+i)«
every finite block of digits occurs in its /^-expansion j=1 j=1

with the limiting frequency prescribed by this invari- Letting n —> oo yields the perturbed b-expansion
ant measure. With these conventions, Theorem 2.3 oo
remains valid for a general base /?, except that The- y0 + 9 = V^ dj(yo)b~j,
orem 2.3(3) must be taken only as characterizing j=i
eventually periodic orbits of the /^-transformation. v a l i d for 0 < y0 < 1. We write yn = yn(y0) for the
That is, the final assertion in (3) that 9 is rational r e m a i n d e r sequence in (3-2)
must be dropped; it does not hold for general (3. T h e perturbed b.expansion {^(0) : n > 1} for ^
For results relating normality of numbers in differ- g i y e n b y ( 3_ 1 } ig o b t a i n e d b y chooSing the initial
ent real bases 0, see [Brown et al. 1997]. condition y0 = 0, i.e., d*n(9) := dn(0). We also have

the perturbed remainders {y^(^) : n > 1} given by
3. PERTURBED RADIX EXPANSIONS y*n(9) = j/n(0).
Let b > 2 be an integer, and let {sn : n > 1} be an T h e m a i n Nervat ion of this section is that the
arbitrary sequence of real numbers satisfying remainders of the perturbed 6-expansion of such 9

are related to the remainders of their 6-expansion.
n->oo n Theorem 3.1. Let b > 2 be an integer and let 6 :=

Set S^Li £nb~n\ where en are real numbers with en —> 0
00 as n -> ex). Let {y*(^) : n > 1} denote the associ-

0 = ^(6, {Sn}) '-= 2_^£n^ - (3-1) atedperturbed remainder sequence of #, and {xn{6) :
n=1 n > 1} /̂ie remainder sequence of its b-expansion.

We can study the real number 6 using a perturbed If
b-expansion associated to the sequence {en}. ~

The perturbed b-transformation on [0,1) is the re- n := 2^ £n+i '
currence j=1

fc+1=%o + £ , + 1 (modi), i . m - A W + t . ( m o d i ) . (3-4,
with 0 < yn+i < 1 and with given initial condition
?/o. That is, The orbits ixn(°) : n > !} a n r f (2/n(#) • ^ > 1}

asymptotically approach each other on the torus T =
yn+i = byn + 6n+i - Jn+i, (3-2) M/Z a5 n -> oo.
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Proof. Since y0 = 0, formula (3-3) gives We next consider perturbed 6-expansions having
n + 1 a finite number of limit points, and show that they

yn+1 = ^ bn+1~jSj (mod 1). correspond to rational 0.
j=1 Theorem 3.3. Let b > 2 be an integer and let 6 =

Now ]C^Li £nb~n with en a sequence of real numbers with
J ^ . ™ en -> 0 as n —> oo. The following conditions are

b-6 = Y, bn^ej = £ ir-'e, + tn. equivalent.
3 = 1 3 = 1

Thus 0) 0 € Q.
(ii) The remainders {y* (0) : n > 1} o/ t/ie perturbed

— Vn -r n vmo j . ) b-expansion of 0 have finitely many limit points
For the 6-expansion, (2-3) gives bn9 = xn (mod 1), in [0,1].
and combining this with (3-5) yields (3-4). (iii) The orbit {y*(0) : n > 1} of the perturbed b-

Since en -> 0 as n -> oo, we have tn -> 0 as transformation asymptotically approaches a peri-
n -^ oo. Thus |xn((9) — 2/*(<9)| —> 0 on T as odic orferf
n -» oo. Note that on T = R / Z the points £ and {xfc : 0 < k < p}

of the b-transformation, with Tb(xk) = x^+i and
Lemma 3.2. Let {xn : n > 1} and {yn : n > 1} be any Tb(xp) = x0 and for 0 < j < p - 1. 77ia£ is,
too sequences in [0,1] wi£/i a;n = yn + Sn (mod 1) *^N , r / J i\ •* • / ^ \ /-> n

y l/nW = ^ + *n (mod 1) if n = j (mod p) (3-6)
^z^/i on -> 0 as n -> oo. J

_7 mt/i 5n —>> 0 as n —>• oo.
(1) T/ie sequences \xn : n > 1} ana {yn : n > 1}

Ziave the same sets of limit points, provided the Proof, (i) => (ii). By Theorem 2.3 if 0 E Q the re-
endpoints 0 and 1 are identified. mainders {xn(6) : n > 1} of the ^-transformation

(2) The sequence {xn : n > 1} is uniformly dis- have finitely many limit points. By Theorem 3.1
tributed (mod 1) if and only if {yn : n > 1} is and Lemma 3.2 we conclude that {y*(0) : n > 1}
uniformly distributed (mod 1). has the same set of limit points.

Proof. (1) This is clear since xn. -> ^ implies i/n. ^ (U) =^ (i11)' B ^ T h eorem 3.1 and Lemma 3.2 the
^ and vice-versa, except at the endpoints ^ = 0 l i m i t P o i n t s o f ivM) • n > 1} are the same as
or 1, which, by convention, we identify as the same K W ^ > ! } • % Theorem 2.3 such limit points

•n t must form a periodic orbit of the 6-transformation.
(2) This is well known; see [Kuipers and Nieder- (m) = * ^' T h e v a l u e s {»«(«) • ̂  > 1} h a v e l i m i t

reiter 1974, Theorem 1.2, p. 3]. • P o i n t s t h e P e r i o d i c o r b i t ixj = 1 < J < n} of Th. By
Theorem 2.3, it follows that 0 G Q. D

One can compare the fo-expansion {dn(6) : n > 1}
and the perturbed 6-expansion {d*n(6) : n > 1} of ^marks. 1. Any real number 0 has some perturbed
such 0 We have 6-expansion that satisfies the hypotheses of Theo-

rem 3.1, so in a sense these expansions are com-
dn[0) = Lten-iJ, pletely general. It follows from Theorem 3.3 that
< ( 0 ) = [byn-i+£n\ = L&(xn_i-tn_i(mod 1)) +en\. Hypothesis A cannot be valid for all such 0, since
Since tn .-> 0 and en -+ 0 as n -> oo, one expects t h e r e e x i s t irrational 0 that are not normal num-
that "most" digit values of the two expansions will bers.
agree, in the sense that dn{6) = d* (0) for "most" 2. The rationality criterion of Theorem 3.3 is not
sufficiently large values of n. (This is an unproved directly testable computationally, unless all en = 0
heuristic statement. It is an open problem to prove for n > n0; the latter case is essentially the same as
that a natural density-one proportion of all n have that of a ^-transformation. When infinitely many
dn(8) — rf* (0).) However there is still room for there en are nonzero, then the points {y* (0) : n > 1} stay
to be infinitely many n where dn(0) ^ d* (0). outside the periodic orbit for infinitely many values
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of n, and the role of the {£n} is to compensate for We now formulate two hypotheses, whose conclu-
the expanding nature of the map T(x) — bx (mod 1) sions are in terms of topological dynamics and met-
by providing negative feedback to push the iterates ric dynamics, respectively. The second of these is
closer and closer to the periodic orbit. Hypothesis A of [Bailey and Crandall 2001].

(3) Theorem 3.1 does not extend to ^-expansions Weak Dichotomy Hypothesis. Let there be given a per-
for noninteger /?. One can consider turbed b-transformation with en = p{n)/q{n), where

00 p(x)-> <l(x) € 2 [a;] anddegq(x) > degp(x). Then the
0 = 9((3, {en}) := ^ e n / T n . orbit {yn : n > 1} for 9{b, {sn}) either has finitely

71=1 many limit points or else is dense in [0,1].
and define an associated perturbed /3-transformation ^ ^. • * .. ^ . T ± ±i i

. . . TT . ' . . Strong Dichotomy Hypothesis. Let there be given a per-
ln t he obvious way. However when b is not an mte- , , 7 7 , . ,. .,, / \ / / \ i

. . _ _. rt i P 'i i i i - turbed b-transformation with en — pin) a in), where
ger the ana ogue of Theorem 3 1 faxls to hold, since £ ^ > ^
(3-5) 1S no longer valid. In particular, Theorem 3.1 ^ ^ { .l ^ 1 } >{ { } ^ ^
does not extend to rational/? = 6/a > 1, with a > 1. « . 7 7. . . . . / ; » . . . » . ,

; finitely many limit points or is uniformly distributed
on [0,1]. Equivalently, in measure theoretic terms,

4. BBP-NUMBERS AND HYPOTHESIS A the measures
N

We consider expansions of the following special form. _ J_ v ^ c
Definition 4.1. A BBP-number to base b is a real num- k==1

ber 6 with a representation converge in the vague topology as N -> oc to a limit
oo / x measure JJL, which is an invariant measure for the b-

6 = V^ ^-~^-b~n, (4-1) transformation, and which is either a measure sup-
n = 1 Q\n) ported on a finite set or else is Lebesgue measure on

in which b > 2 is an integer and p(x), q(x) G Z[x] LU' J*
are relatively prime polynomials, with q(n) ^ 0 for The following conditional theorem is a central result
each n G Z>0. We call (4-1) a BBP-expansion to of [Bailey and Crandall 2001]:
base b.

Theorem 4.2. Let 9 be a BBP-number to base b whose
The name BBP-number refers to Bailey, Borwein associated BBP expansion satisfies
and Plouffe, who introduced this class of numbers
[Bailey et al. 1997, p. 904], proving that the d-th degg(x) > degp(x).
digit of such a number is computable in time at most ( 1 ) If the Weak Dichotomy Hypothesis is true, 9 is
O{d\og }d) using space at most O(log }d). (Here eUher mUond or digit-dense to base b.
"computing the d-th digit" is understood to mean ( 2 ) If the Strong Dichotomy Hypothesis is true, 9 is
computing an approximation to bd9 (mod 1) that either rational or a normai number to base bm

is guaranteed to be within a specified distance to
bd9 (mod 1); usually this determines the d-th digit, Proof- T h e condition degq(x) > degp(x) guarantees
but it may not, near the endpoints of the digit in- t h a t ^n = p(n)/q(n) -> 0 as n -> oo. Thus Theorem
terval.) In other words, computing digits of a BBP- 3-1 applies to the BBP-number
number is a problem of complexity class 5(7*, a sub- oo , ,
class of SC [Johnson 1990, p. 127]. 6 = Y1 (n)b~n'

We mainly consider BBP-numbers that satisfy the n=1

extra condition (1) By the Weak Dichotomy Hypothesis, the limit

degq(x) > degp(x). (4-2) S e t ° f ^ ^ : n > 1} is dense in [0,1]. Therefore
Lemma 3.2(1) implies that the 6-expansion remain-

This condition guarantees that en =p(n)/q(n) -> 0 ders {xn(9) : n > 1} are dense in [0,1]. Theorem
as n —> oo, which makes Theorem 3.1 applicable. 2.3(1) then shows that 9 is digit-dense.
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(2) By the Strong Dichotomy Hypothesis, the se- There is an extensive theory of G-functions; see
quence {y*(0) : n > 1} is uniformly distributed in [Bombieri 1981; Andre 1989; Dworket al. 1994]. For
[0,1]. Therefore Lemma 3.2(2) implies that {xn(0) : the general definition of a G-function over an alge-
n > 1} is uniformly distributed in [0,1]. Now 6 is braic number field K see [Andre 1989, p. 14; Dwork
normal to base b by Theorem 2.3(2). • et al. 1994]. G-functions have an important role

in arithmetic algebraic geometry, where it is con-
Many examples of BBP-numbers satisfying (4-2) j e c t u r e d t h a t t h e y a r e e x a c t l y t h e s e t o f solutions
where the associated real number 6 is known to be o y e r Q^ o f a g e o m e t r i c differential equation over
irrational are given in [Bailey et al. 1997; Bailey and Q ? a g d e f i n e d i n [ A n d r 6 1 9 g 9 j p 2] I n a n y c a g e

Crandall 2001]. For example for various b one can i t ig k n o w n t h a t t h e ( m i n i m a l ) homogeneous linear
obtain 7T, log 2, C(3) etc. Bailey and Crandall also d i f f e r e n t i a l e q u a t i o n satisfied by a G-series is of a
observe that C(5) is a BBP-number, to base b = 260, y e r y r e s t r i c t e d k i n d : i t m u s t h a v e r e g u l a r s i n g u l a r

but it remains an open problem to decide if C(5) p o i n t s ? a n d t h e s e m u s t a l l h a v e r a t i o n a l exponents,
is irrational. All the examples they give of BBP- b y a r e g u l t o f R a t z g e e [ B o m b i e r i 1 9 g l i p - 4 6 ; B o m .
numbers are actually of a special form: they are b i e r i a n d g p e r b e r 1 9 8 2 ] ( T h e g r o w t h c o n d i t i o n ( i v )

"special values" of G-functions defined over Q, as p l a y s a c m d a l r o l e i n o b t a i n i n g t h i s r e s u l t . ) I t fol_

we discuss next. l o w s t h a t a £_ s e r i e s analytically continues to a mul-

tivalued function on P1(C) minus a finite number of

5. SPECIAL VALUES OF G-FUNCTIONS singular points [Dwork et al. 1994, p. xiv]. We call
this multivalued function a G-function.

Definition 5.1. A power series I t i s known that the set 9K of G-series defined
over a number field K forms a ring over K. under

f(\ — V ^ n addition and multiplication, which is also closed un-
~ ^ der the Hadamard product

oo

defines a G-series over the base field Q if the follow- / KA n(~\ _ V^ n u ~n.
ing conditions hold. ^To

(i) Rational coefficients condition. All the an are ra- see [Andre 1989, Theorem D, p. 14].
tional, so we may write an — Pn/Qn, with p n , qn G
Z such that (pn,gn) = 1 and qn > 1. Definition 5.2. A special value of a G-function de-

(ii) Local analyticity condition. The power series f(z) fined o v e r K i s a v a l u e /(6)> w h e r e b e K' w h i c h i s

has positive radius of convergence r<xn and for obtained by analytic continuation along some path
each prime p the p-adic function f r o m ° t o b t h a t a v o i d s s i n § u l a r P o i n t s '

^ Siegel [1929] introduced G-functions and observed
f rz\ ._ V ^ a z

n that irrationality results could be proved for their
^Q "special values", but did not give any details. Bom-

bieri [1981] developed the theory of G-functions and
viewed with an G Q C Qp, has positive radius gave explicit irrationality criteria in specific cases
of convergence rp in Cp, the completion of the (his Theorem 6) for points close to the center of the
algebraic closure of Qp. circle of convergence of the G-series, as a by-product

(iii) Linear differential equation condition. The power of very general results.
series f(z) formally satisfies a homogeneous lin- It is easy to show that each BBP-number is a
ear differential equation in D = d/dz with coef- special value of a power series on Q that satisfies
ficients in the polynomial ring Q[z}. conditions (i)-(iii) of a G-series. They do not always

(iv) Growth condition. There is a constant C < oo satisfy the growth condition (iv), however, and in a
such that gn := lcm(gi,g25 • • • ?9n) < Cn for all subsequent result we give necessary and sufficient
n > 1. conditions for the condition (iv) to hold.
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Theorem 5.3. Let R(x) = p(x)/q(x) e Q(x) with Theorem 5.4. Let R(x) = p(x)/q(x) e Q(x) with
p(x), q(x) € Q[x], where (p(x),q(x)) = 1 and q{n) ^ p(x), q{%) € Q[x] with (p(x),q(x)) = 1 and with
0 for all n > 0. /Set g(n) ^ 0 /or a// n > 0, and set

Then the power series f(z) is a G-series {necessarily
and let fp(z) be the p-adic power series obtained by defined overQ) if and only ifq(x) factors into linear
interpreting p(n)/q(n) e Q C Qp. Then the power factors in Q[x\.
series f(z) satisfies a homogeneous linear differen-
tial equation in d/dz with coefficients in Q[z], and Proof- Suppose first that q(x) factors into linear fac-

f(z) has positive radius of convergence in C and s o v e r ^ ' s a ^
fp(z) has a positive radius of convergence in Cp for JL
all primes p. q{x) = A[{L3{x),

i=i

Proof. For the jirst assertion, let p{x) = ^ . = 0 a^ w h e r e L . ^ = ljX + m. w i t h x^m. r e l a t i v e l y p r i m e

and q(x) = Y,™=0
 bjx3 • T h e n t h e operator integers. To show f{z) is a G-series, by Theorem 5.3

it suffices to we check the growth condition (iv).

J~° lcm{qi,q2,...,qn)<lcm(q(l),q(2),...,q(n)) (5-2)

has the property that J_

<\A\l[lcm(Lj(l),...,Lj(n))
Df(z) = 0. (5-1) j=1

where Lj(n) — ljX + rrij. Now
Indeed one has

z loglcm[l,2,...,m] = ^ l o g p

= V^ A(n) = m + o(m)
where â  are defined by the polynomial identity ^

z z by the prime number theorem. This yields

E *i* = E a'i (I) • lcm[l, 2,. . . , m] = e-^^1))
as m ^ oo. This gives a bound

Multiplying this rational function by (I-*)'4"1 yields l c m ^ l ) , . . . , L^n)) < lcm(l, 2 , . . . , \l3\n + \mj\)
a polynomial of degree / in z, which is annihilated nj , ,, h n , n ^
by dl+1/dzw, and this verifies (5-1). - e

For the second assertion, the power series expan- Substituting this in (5-2) implies condition (iv).
sion of f(z) clearly has radius of convergence 1 in C. For the opposite direction, we will show that if
It is easy to establish that the the p-adic series fp(z) q(x) does not factor into linear factors over Q then
has a positive radius of convergence on some p-adic condition (iv) does not hold. Nagell [1922] showed
disk around zero since \q(n)\ < cnd cannot contain that if q(x) e Z[x] is an irreducible polynomial of
more than cdlogn factors of p. • degree d > 2, then there is a positive constant c(d)

with the property that for any e > 0 there is a pos-
We now give necessary and sufficient conditions for ... , , ^( x , ,, ,

c ltive constant C(e) such that
a power series arising from a BBP-number to be a
G-series. lcm(g(l), g(2),. . . , q(n)) > C(e)n{c{d)-£)n (5-3)
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holds for all n > 1. One can prove this result Theorem 5.5. Let R(x) = p(x)/q(x) G Q(x) with
with c(d) = (d—l)/d2. Such a lower bound ap- p(x), q(x) G Q[x], where (p(x),q(x)) = 1 andq(n) ^
plies to any denominator q(x) that does not split 0 for all n > 0. Set
into linear factors over Q. To complete the argu- oo
ment one must bound the possible cancellation be- f(z) = V^ zn.
tween the numerators p(n), and denominators q(n). n=o ̂ n'
If (p(x)*q(x)) = 1 over Zfxl, then T£ , x £ , . , ,. ,. , ,. , , ^

\r\ y?iv // L JJ ŷ  g^ j factors into distinct linear factors over (y),

n £/ien /or each rational r in the open disk of conver-
TT gcd(p(j),q(j)) < Cn , (5-4) gence of q(z) around z = 0 the special value f(r) is
3=1 either rational or transcendental. Furthermore there

is an effective algorithm to decide whether f(r) is
for a finite constant C = C (p(x), q(x)). This follows mUonal Qr transcendental.
since

A( ( \ ( W <? r< Proof. We only sketch the details, since a similar
gcd{p(n), q{n)) < C ^ ^ h & g b e e n o b t a i n e d i n [A d h i k a r i e t a l - > 2001].

holds for all n, for a suitable C. To see this, factor S e e a l s o [Tijdeman > 2001, Theorem 6].
p(x) = n(z-«i) and q(x) = YKx-Pj), with a, ± fr BV expanding R(x) in partial fractions, under the
for all i,j. Then, over the number field K spanned hypothesis that q(x) splits in linear factors over Q
by these roots o n e obtains an expansion of the form

s

ideal-gcd((n-ai), (n-0j)) | (<*-&). R(x) = po(x) + V - ^ — ,
3 = 1 X ^

Taking a norm from K/Q of the product of all these
ideals gives the desired constant C. • i n w h i c h P^x) e ^ N > and each Cj,rj e Q. In

fact Tj $. Z>0, so all denominators q(n) are nonzero.
Remarks. 1. It is an interesting open question to Now if r,- =Pj/qj then one has a decomposition
determine what is the largest value of c(d) allowed
in (5-3). One can show that it cannot be larger than v ^ 1 3• _ , \ . v ^ R lrk_ (i _ „ _VI_ 27rifc\
d - 1 . ^ n " r / - ^ ^ + Z.^log^ zexp ^ j ,

2. There are many more G-functions defined over i n w h i c h p.^ i s a p o l y n o m i a i w i t h r a tional coeffi-
Q than those given in Theorem 5.4. The set of G- d e n t s a n d t h e p. fc a r e e f f e c t i v e i y computable alge-
functions defined over Q is closed under multiplier b r a i c n u m b e r s in the field Q(exp(27ri/g,)). It fol-
tion, so that (log(l - z)f is a G-function, but its l o w s from t h i g t h a t o n e c a n e x p r e s s t h e f u n c t i o n

power series coefficients around z = 0 are not given f ^ a g a finite s u m o f t e r m s o f t h e form a . / ( 1 _ zy

by a rational function. Also, for rational a, b, c the w i t h vat[onal coefficients plus a finite sum of terms
Gaussian hypergeometric function o f t h e form _&. fc l o g ( 1 _ ̂  t h e ^ a n d Q . b e .

00 f \ (IA ing effectively computable algebraic numbers. The
2F1(a, fo, c, z) = ̂ 2 / r | ^ n ? nonlogarithmic terms all combine to give a rational

n=o yc)nTl' function Ro(z) with coefficients in Q. Given a ra-
n c j-- -L- x, - ±. c ±\. i. i • J £ tional r with 0 < r\ < 1, it follows that / (r) isis a G-function which is not of the above kind for • ' , ,

u . „ , r A i / ., nn^i a finite sum of linear forms in logarithms with al-
genenc a,b,c\ see [Andre 1996 . , , ,

gebraic coefficients, evaluated at algebraic points.
According to the results of Section 4, the conclusion Using Baker's transcendence result on linear forms
of Hypothesis A is really a statement about irra- in logarithms [1975, Theorem 2.1], f(r) is transcen-
tional BBP-numbers. A good deal is known about dental if and only if the sum of all the logarithmic
the irrationality or transcendence of the special val- terms above is nonzero. There is also an effective
ues of the G-series covered in Theorem 5.4, a topic decision procedure to tell whether this sum is zero
that we now address. or not. If the logarithmic terms do sum to zero, then
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the remaining rational function terms sum up to the are Lebesgue measure and measures supported on fi-
rational number /(r) = Ro(r). • nite sets that are periodic orbits of both Ta and Tb.

The case where q(x) factors into linear factors over Various results concerning this conjecture appear
Q but has repeated factors is not covered in the in [Rudolph 1990; Parry 1996; Host 1995; John-
result above. This case includes the polylogarithm son 1992]. In particular, if there is any exceptional
Lik(z) = J2^Lizn/nk °f o rder fc, for each k > 2. invariant measure violating the conjecture, it must
Various results are known concerning the irrational- have entropy zero with respect to Lebesgue measure,
ity of such numbers. For example, Lifc(l/6) is irra- Furstenberg's conjecture involves some ingredients
tional for all sufficiently large integers b; see [Bombi- similar to Hypothesis A, and its conclusion involves
eri 1981]. In fact it is known that the set of numbers a dichotomy similar to that in Hypothesis A. This
1, Lii(p/g), . . . , Lin(p/q), with Lii(z) = log(l—z), makes it natural to ask if there is any relation be-
are linearly independent over the rationals whenever tween the two conjectures. At present none is known,
|p| > 1 and \q\ > (4n)n(n~1) |p|n, according to [Nik- in either direction.
ishin 1979]. For polylogarithms one has Li/c(l) = One may look for BBP-numbers 0 0 Q which
C(fc), also on the boundary of the disk of conver- have properties similar to that expressed in the hy-
gence. It is not known whether ((k) is irrational pothesis of Furstenberg's conjecture, i.e., which pos-
for odd k > 5, although a very recent result of T. sess BBP-expansions to two multiplicatively inde-
Rivoal [2000] shows that an infinite number of ((k) pendent bases. It is known that there exist irra-
for odd k must be irrational. tional BBP-numbers 0 = Yl™=i R(n)b~n which do

possess BBP-expressions to two multiplicatively in-
6. INVARIANT MEASURES AND FURSTENBERG'S dependent bases. For example, Bailey and Crandall

CONJECTURE observe that 0 = log 2 has this property, on taking

It is well known that for single expanding dynami- b — 2 and R(x) = —,
cal system, such as the 6-transformation T& , there
always exist chaotic orbits exhibiting a wide range 6
of pathology. For example, there exist uncountably b = 6 and H[x) — 2X — \ '
many 9 € [0,1] whose 2-transformation iterates {*„} g e e [ B & i l e y & n d Cr&ndall 2 0 0 1 > e q s ( 4 ) ? ( 1 0 ) ] T h e y

satisfy T5 < xn < ^ for all n > 0; see [Pollington a l g o o b g e r v e t h & t Q = ^2 h a g t h i g p r o p e r t y ) a s i t

1979]. One can obtain ergodic invariant measures of p o s g e s s e s BBP-expansions to bases b = 2 and b = 34,
Tb supported on the closure of suitable orbits, which t h e ^ ^ Q n e found b y B r o a d h u r s t [ 1 9 9 9 > e q ( 2 1 2 ) >

for example may form Cantor sets of measure zero. ori
If one considers instead two ̂ -transformations, say

Tbl and Tb2, with multiplicatively independent val- Question. Do all BBP-numbers which are special val-
ues (this means they generate a nonlacunary com- u e s o f ^-functions have BBP-expansions in two mul-
mutative semigroup S - <T6l,T62», then the set tiplicatively independent bases?
of ergodic invariant measures for the whole semi- To make tighter a possible connection between the
group is apparently of an extremely restricted form. two conjectures, one can ask for which numbers does
Furstenberg has proposed the following conjecture, the following weaker version of Hypothesis A hold.
suggested as an outgrowth of his work on topolog- . . . ^ „ ̂  ̂
. , , rTn . , i n _ c ,. T ,n T. . Invariant Measure Hypothesis. Every BBP-number to
ical dynamics Jburstenberg 1967, bection IV . It is , , , 7 , ' . . r .

r .,, , , , . rnv/r v OAnn ^ . , Al base b has b-transformation iterates \xn\ that are
explicitly stated m Marguhs 2000, Conjecture 4 . . „ .. J .. . .. ,. . .

asymptotically distributed according to some limiting
Furstenberg's Conjecture. Let a, b > 2 be multiplica- measure on [0,1].
tively independent integers. The only Borel mea- T, , , , . , ,. , n , i ,i

r/ T 1 . 7 It would be interesting to find extra hypotheses on a
sures on 0,1 that are simultaneously invariant er- , £ .,, ,. . , , , , . ,

1 ' J ^ class of arithmetical constants under which a precise
qodic measures for ,. n , , ,. , , -, , TT ,, . *
^ J connection can be established between Hypothesis A

Ta{x) — ax (mod 1) and Th{x) = bx (mod 1) and Furstenberg's conjecture.
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7. CONCLUDING REMARKS I am not aware of any irrationality or transcendence

A/r - , , , - .,, ,. -, , , results proved for a constant of type 3.
Many of the examples or arithmetical constants arise ^ _ , . . . , ,

. , , r ri £ X.- J ^ J M One can extend the hierarchy above outside the
as special values of G-functions denned over the ra- .

, , T , ,, . , , „ r r , class of G-functions. Bombien observes that the
tionals, or at least special values of functions sat-
isfying linear differential equations with polynomial
coefficients in Q[x]. Based on the known results, °^ \
one may empirically group these constants into three 'l\z) ~ /_^ n(n2 -\-l)Z

classes, of apparently increasing order of difficulty of n=1

establishing irrationality or transcendence results: of BBP-type, which is not a G-series, has special
value at z = 1 given by

1. special values of G-functions f(p/q) defined over
the rationals, with p/q inside the disk of conver- w-i \ _ i^> -^'(0
gence of the G-series; 2 T(i)

2. "singular values" / ( I ) of such a G-function, which The value z — 1 lies on the boundary of the disk of
are values taken at a singular point of the associ- convergence of the power series for this function, and
ated (minimal order) linear differential equation, corresponds to type (2) above. Another example is
on the boundary of the disk of convergence of ^
a G-series, at which the G-expansion converges V^ \ > ]_.
absolutely; and n = 1 ^

2 + 1 ^ ~ g - 7 r

3. "renormalized singular values",which are the con- s e e [Flajolet and Salvy 1998, p. 18], where many
stant terms in an asymptotic expansion of a G- other interesting examples are given.
function around a singular point. The relevant special values of a rational power se-

ries for the approach of Bailey and Crandall to apply
In this hierarchy, an arithmetical constant may oc- a r e z = 1 / f t for i n t e g e r fe > 2> w h e r e t h g d i s k o f c o n .
cur as more than one type. For example, TT2/6 = v e r g e n c e o f t h e a s s o c i a t e d p o w e r s e r ies has radius
C(2) = Li2(l) occurs as a number of type 2, but it L Q n e o b s e r v e g t h a t t h e t h e Q r y o f G . f u n c t i o n s p r o .
is also realized as a number of type 1, which falls in y i d e s i r r a t i o n a l i t y r e s u l t s f o r r a t i o n a l v a l u e s z = a/b:

the class of constants considered in this paper. It is w i t h o u t r e g a r d for w h e t h e r a = l o r n o t . T h i s s u g .
a nontrivial problem to determine what is the lowest g e s t g t h e following q u e s t ion.
level in the hierarchy a given constant belongs.

Various constants of types 1 and 2 appear in the Question. Given a rational value z = a/6, with 1 <
renormalization of massive Feynman diagrams, see \a\ < |6|, is there an associated dynamical system
[Broadhurst 1999; Groote et al. 1999], where Li4(|) (possibly higher dimensional) for which an analogue
is cited as such a constant. Multiple zeta values of Theorem 3.3 holds, relating the dynamics of one
and polylogarithms give many examples of type 2, orbit to the ^-expansion of (9, with (3 = a/bl

see [Borwein et al. 1997; 20011. Many of the most A, , ,, , , . , , ,
L ' J J At present there seems to be no evidence strongly

interesting arithmetical constants naturally arise as £ >- ^ ^ r -±i J.- i ± ±
° i i ! favoring a particular class or arithmetical constants

constants of type 2 and 3. For examples, the values r . A . , ,
/ r for which Hypothesis A might be expected to hold.

Cik) = Lu(l) appear as constants of type 2, while ^ ,. . ra ,. - , n , ,, ,
i} : , v J

 LL \ . The discussions of Sections 5 and 6 suggest that one
Eulers constant appears as a type 3 renormalized . , , . , ., - n . ,

OT , , _ . , . . . . might consider the following classes,
value at z — 1 of Lii(^). The problem of showing the
linear independence of all odd zeta values £(2n+l) 1. The largest class is the set of "special values"
over the rationals has recently been of great interest of power series f(z) defined over Q at z = 1/6,
from connections with various conjectures in arith- arising from solutions of Df(z) = 0 for some D G
metical algebraic geometry, see [Goncharov 2000]. W := Q[z,d/dz], whose power-series coefficients
Many other examples of constants of type 2 and 3 an —> 0 as n —> oo. This class includes all BBP-
appear in [Lehmer 1975; Flajolet and Salvy 1998]. numbers.
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2. One could restrict to the subclass of special val- [Bombieri and Sperber 1982] E. Bombieri and S.
ues z = 1/6 of G-functions defined over the ratio- Sperber, "On the p-adic analyticity of solutions of
nals. However we know of no compelling reason l i n e a r differential equations", Illinois J. Math. 26:1
to restrict to special values of G-functions. (!982), 10-18.

3. The smallest class consists of a class of arithmeti- [Borwein et al. 1997] J. M. Borwein, D. M. Bradley, and
cal constants which satisfy extra conditions anal- D* J ' Broadhurst, "Evaluations of fc-fold Euler/Zagier

J . . . r _ J . , . sums: a compendium of results for arbitrary k"
ogous to the hypotheses of Furstenberg s conjee- Electron. J. Combin. 4:2 (1997), RP5.
ture. These consist of those constants which are
BBP-numbers to at least two multiplicatively in- [Borwein et al. 2001] J. M. Borwein, D. M. Bradley,
dependent bases. One might add the further re- D ' ,J; Broadhurst, and P. Lisonek, "Special values of

. . , . . . . 1 1 o ^ multiple polylogarithms , Trans. Amer. Math. Soc.
stnction that they also be special values of G- 353-3 (2001) 907-941
functions. As noted in Section 6, this class in-
cludes 7T2 and log 2 [Broadhurst 1999] D. J. Broadhurst, "Massive 3-loop

Feynman diagrams reducible to SC* primitives of
algebras of the sixth root of unity", Eur. Phys. J. C
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rr u 1 n êri TA TT T T_ ten 1 J. J. C prend une infinite de valeurs irrationnelles aux entiers
Lenmer 1975 D. H. Lehmer, Euler constants for f . „ „ _ . . n . _ . n, _ _ _ ±1 nn^ .
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