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This paper formulates some conjectures about the amplitude of
resonance in the General Standard Map. The main idea is to ex-
pand the periodic perturbation function in Fourier series. Given
any rational rotation number, we choose a finite number of har-
monics in the Fourier expansion and we compute the amplitude
of resonance of the reduced perturbation function of the map,
using a suitable normal form around the resonance, which is
valid for asymptotically small values of the perturbation param-
eter. For this map, we obtain a relation between the amplitude
of resonance and the perturbation parameter: the amplitude is
proportional to a rational power of the parameter, and so can be
represented as a straight line on a log-log graph. The convex hull
of these straight lines gives a lower bound for the amplitude of
resonance, valid even when the perturbation parameter is of the
order of 1. We find that some perturbation functions give rise
a phenomenon that we call collapse of resonance; this means
that the amplitude of resonance goes to zero for some value of
the perturbation parameter. We find an empirical procedure to
estimate this value of the parameter related to the collapse of
resonance.

1. INTRODUCTION

The study of stability and the chaotic behavior of
Hamiltonian systems with two degrees of freedom is
an important problem in classical mechanics and dy-
namical systems. The problem of finding the thresh-
old of stability has been studied by many authors;
outstanding contributions were made by Chirikov
and Escande in the early 1970s.

It is well known that a Hamiltonian flow can be
reduced to a two-dimensional map using a Poincaré
section; in that form the dynamics of the Hamil-
tonian flow can be studied in terms of the stability
problem of the two-dimensional map. To find the re-
gions of stability and the threshold of chaotic behav-
ior, we can use the Chirikov [1979] overlap method.
The idea of this method is to obtain the shape of the
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invariant manifolds of the hyperbolic periodic orbits
of our map; a pictorial description of these manifolds
looks like a chain of pendulum separatrices (see Fig-
ure 1). It is common to call resonances the struc-
tures defined by the hyperbolic periodic points and
their invariant manifolds (or separatrices). The res-
onances are denoted by the rotation number of the
corresponding periodic orbit. Chirikov studied the
interaction of two resonances: when the separatri-
ces of these two resonances overlap, we can expect
to find chaotic behavior around the resonances. A
similar idea can be found in [Escande 1982; Olvera
and Simé 1987].

One important aspect of the overlap method is
the necessity to estimate the amplitude of the res-
onances. This amplitude corresponds to the maxi-
mum distance of the separatrices (in Figure 1, the
maximum distance is given in the vertical direction).
We denote this amplitude by 4A,/,, where the sub-
script p/q is the rotation number of the periodic
orbit, and therefore a rational number.

In many cases, the two-dimensional map can be
described as the sum of an integrable twist map and
a small perturbation. The amplitude of the pertur-
bation is driven by one real parameter. The goal of
this paper is to obtain a simple relation between the
perturbation parameter and the amplitude of reso-
nance for any rational rotation number.

In this work we choose a particular (parametrized)
twist map, known as the Standard Map. This two-
dimensional map is important in the study of Hamil-
tonian systems with two degrees of freedom; Chiri-
kov [1979] and Lichtenberg [1983] describe many ex-
amples of how we can reduce the Hamiltonian flow
to a Standard Map. In this case, when we are in-
terested in the dynamics around any fixed point (or
periodic orbit) of any Hamiltonian system with two
degrees of freedom, it is easy to find a correspond-
ing twist map representing the dynamics around
the fixed point. This procedure is described in Ap-
pendix A.

We now define the General Standard Map and
study its resonances and their relation with the per-
turbation parameter. This map is defined by

pit1 = pi — €V (9i,€),  Qiy1 = @i+ pig1. (1-1)

The radial variable p; € R and the angular vari-
able ¢ € S'. The perturbation function V(p,¢) is

FIGURE 1. Phase space of two resonances.

analytic and periodic with respect to the angular
variable, that is, V(¢+1,¢) = V(p,€). The pertur-
bation parameter ¢ is a nonnegative real number.
For ¢ = 0, the map (1-1) reduces to an integrable
twist map and the phase space (R x S*) is completely
foliated by invariant circles. For any value of the ra-
dial variable p, there exists an invariant circle with
rotation number p.

For a small perturbation, 0 < ¢ < 1, we can
use the Birkhoff twist theorem to show that the set
of invariant circles with rational rotation number
disappears (in the generic sense), and it is trans-
formed into an even number of periodic orbits with
the same rational rotation number. The linear sta-
bility of these orbits is elliptic and hyperbolic. For
asymptotically small values of the parameter, it is
possible to find the amplitude of any resonance (in
the generic case) of the corresponding hyperbolic or-
bit; this amplitude is of the form A,/ ~ ¢'/2. Ap-
pendix B shows the derivation of this well-known
relation.

The main contribution of this paper is to find the
way in which the amplitude of resonance A,/, de-
pends on the perturbation parameter € when ¢ is
not asymptotically small; we can describe A/, all
the way up to € of the order of 1. We also show that
the behavior of the amplitude of resonance is not
homogeneous over the whole range of €. More pre-
cisely, we can write A, /, = A;e™ for € € (g;,€;41),
with different rational exponents n; in different in-
tervals, and we can determine the borderline values
g; where the rate of growth of the amplitude of res-
onance changes.

Our procedure to find the amplitude of resonance
A,/q for any value of the perturbation parameter ¢
has four steps.
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1. Get the Fourier expansion of the perturbation
function V(g,€) and define a new perturbation
function Vy(p,€) by selecting some of the the
first N harmonics of V(p,¢) (where N > g).

2. Use Vn(yp,€) as the perturbation function of the
Standard Map (1-1). Compute an appropriate
normal form via the Poincaré-Lindstedt method.
Use this normal form to determine the dynamics
close to the periodic orbit which looks like the
periodic orbits of the pendulum equation; this
makes it easy to find the amplitude of the sep-
aratrices of this pendulum equation. The nor-
mal form obtained is only valid for asymptoti-
cally small values of €.

3. Repeat the first two steps several times, changing
the set of selected harmonics to form the function

Vn(p,e).

4. Find that the behavior of A, /,, for a large value
of €, as the direct sum of the amplitudes of reso-
nance obtained in the previous steps.

We conclude that only a few harmonics of the
Fourier expansion of V (g, €) are responsible for the
behavior of A,/, in each interval of the domain of
e. Note that we can predict the size of A,/ for
a large value of € using only asymptotic informa-
tion obtained from the normal forms computed in
the Standard Map using different perturbation func-
tions Vy (e, €).

Section 2 of the paper describes the method of
obtaining the normal form for perturbation func-
tions defined as a trigonometric polynomial of .
This normal form only depends on the rotation num-
ber and the set of harmonics that form the pertur-
bation function. Section 3 shows how we can get
this kind of normal form using some information on
the linear stability of the hyperbolic periodic orbit.
In order to judge the accuracy of our estimate of
A,,q, we develop an alternative, numerical, method
to compute it; this is done in Section 4. We give
examples in Section 5 comparing the amplitude of
resonance obtained by the numerical and analytic
methods. Finally, Section 6 describes an interesting
phenomenon: for some values of ¢ the amplitude of
resonance goes to zero. We call this the collapse of
resonance.

2. RESONANT NORMAL FORMS

In this section we work out a procedure to obtain
a map that displays in a simple form the dynam-
ics around a specific periodic orbit. The idea is to
perform a set of coordinate transformations in or-
der to obtain a new map that must be closer to an
integrable map (in the neighborhood of the given
rotation number) than the original one. We show
that we need only perform a finite number of these
transformations if we set the rotation number as a
rational number p/q with (p,q) = 1. The final map
can be related to a simple Hamiltonian flow. The
dynamics of the Hamiltonian system is close to the
final map up to some order of the perturbation pa-
rameter £. Qur procedure is similar to the Lindstedt
series method, a standard procedure to solve nonlin-
ear differential equations using asymptotic methods
in Celestial Mechanics. In order to perform sym-
plectic transformations we must rewrite our map.
We take the two difference equations of (2-3) and
rewrite it as one second order difference equation,
which we call the Lagrangian representation of the
Standard Map.

Consider the map (1-1), where the perturbation
function V' (¢, €) is an analytic function with null av-
erage and periodic: V(p+1,e) = V(p,€). A general
expression for this function is given by the Fourier
expansion of the angular variable, the coefficient of
each Fourier term being a power series in ¢:

Vip,e) = i i C, ;e°e’™%.

s=1 j=—o00

We can obtain a good approximation of the per-
turbation function taking only the first N harmonic
terms of the preceding equation, where N < g. Each
harmonic is multiplied by the leading term of the
corresponding power series of the perturbation pa-
rameter. Our approximation is then given by

N
Vi) = 306 (e 6e74) 4 01,
= (2-1)

where the a; are positive integers, the frequencies w;
are positive integers such that w; < w;y; and ¢;, &
are complex numbers not depending on £. The re-
maining term O(e%V), where Sy > max;—:__n{a;},
does not contain harmonics of order less than wy.
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We assume that the magnitude of the coefficients of
the harmonic terms that belong to O(e°") is smaller
than

jmin {cj, &}
If V(p,¢e) is analytic, we can see that these coeffi-
cients ¢; and ¢; are proportional to 77, where 7 is a
constant such that |y| <1 and a; = 0.

In order to find the resonant normal form we must
take the lift of our map (1-1). For this map, the
phase space is now R?. We can write the lift in the
form

Yirr =¥ T eV(Ti,€),  Tiy1 = Ti + Yip1, (2-2)

where (z;,7;) € R® and i € Z. This map is a set
of two difference equations of first order; we can
rewrite it as a single difference equation of second
order, and this is the Lagrangian form of (1-1):

Tit1 — 237, +x,_, = €V($,’,€). (2-3)

We want to find a coordinate transformation that
conjugates, as far as possible, the dynamics of equa-
tion (2-3) to the dynamics of an integrable twist
map in the neighborhood of a given rotation number
p/q. The dynamics are given as a uniform rotation:

O = 6 + 2, (2-4)
q
where 6; € R.
Let the function ¢(6, ¢) define the conjugation be-
tween the coordinate z and the coordinate 6:

z; =0; + g(6;,¢). (2-5)

The function g(0,¢) is periodic and we can expand
it as a power series in € where the coefficients are
periodic functions of # and are given by Fourier se-
ries:

g(f,e) = Zsj Zgj,kez"““e.
=0 kez

Substituting this and (2-5) into (2-3), and taking
into account that the dynamic of 6 is a uniform ro-
tation (2-4), we obtain

- ] e 27ij
9i+1_20i+0i—1+zgjzgj,ke2 k92<cos . +1)

j=0 kEZ

N
— § :801 (czi—e27riwl(0i+g(0,s)) + cl—e—27riwl(0i+g(0,s))) .
=1

The right-hand side is an exponential function
whose arguments include the function g(0,¢), so we
can expand the exponential function as a power se-
ries of g(6,¢):
et2miwi(6+9(0,¢))

— E2miwo <1 n i l' (i i o Z gj,ke2”k9)s> .
s=1 s j=0  k€Z

Substituting this into the preceding equation and
considering that 6,,, —26;+6;,_; must be 0 (because
the dynamic of € is a uniform rotation), we get

<Y g2 (cos = F ~1)

7=0 kEZ

N o
— ; gai (cétezlﬁm'wlﬂ <1 + Zl %
- o0 - S
% (i Z gl Zgj’keZWikﬂ) )) .

Jj=0 keZ

(2-6)

To determine the values of the coeflicients g, ; we
must solve (2-6). For any positive integer m we can
collect all the terms of order O(e™); these terms de-
pend on the coefficients g; s, where j =0,...,m—1
and k is a finite subset of Z. The coefficient g,
appears in a linear form in the left side of equation
(2-6). Then we have an infinite number of homo-
logical equations, each related to the same order of
the perturbation parameter, €™, and a specific har-
monic term e?>"*?, Such a homological equation can
be expressed as

2mkp _ 1)
q

= Gm,k(go,k’agl,k”y .. 7gm—1,k('"))a

where k,k',..., k™ € Z. We can solve (2-7) be-
cause its right-hand side depends only on the coef-
ficients g; that we have already computed. Note
that for fixed order of ¢, the right-hand side of (2-6)
has a finite number of harmonic terms, so that for
any order of ¢ we must solve a finite number of ho-
mological equations.

Two conditions must be satisfied if we want to
solve the homological equations (2-7):

2Gm. k <cos
(2-7)

1. For any order of ¢, the right side of equation (2-6)
must have null average.
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2. The term cos(27kp/q) — 1 must be nonzero.

The first condition means that for any value of m in
(2-7) the term Gum0(gok;---»Gm—1,4m ), Which cor-
responds to a harmonic term of frequency zero, must
vanish in order to have null average. As a conse-
quence, the coefficients g,, o are indeterminate and
we can fix any value for them. We can use these free
parameters to ensure that G, o(gok,- - - s Gm—140m)
vanishes.

The second condition is the nonresonance condi-
tion. If the value of k is +¢ then cos(27kp/q)—1 = 0.
In this case there are no solutions of the homolog-
ical equation (2-7). Therefore we cannot continue
the procedure to solve the homological equation for
the next order of €. This condition defines the res-
onant normal form. There are some cases where
Gm,+q = 0; then the homological equation is triv-
ial and we can continue our procedure until we can
reach the next nonresonance condition when k = 2q.

‘We can only solve a finite number of homological
equations (2-7) because there exists an integer m
such that the nonresonant condition is not satisfied.
For this value of m € N there are terms of order
O(e™) that contain harmonic terms with frequency
+q (and G, 44(gj%) # 0 in general). As a conse-
quence, it is impossible to conjugate the dynamics
of our map (2-3) to the dynamics of a uniform ro-
tation in the neighborhood of the rotation number
p/q. Therefore 6,,; — 26; + 6,_; = O(™) # 0 for
1 € Z. Hence, we say that this equation is a resonant
normal form and the dynamics of the coordinate
are then described in the form

Oir1 — 20+ 6;1 = €7 G q(gjr)e™" ™% + O(™H).

We can shift the origin of the coordinate 6 and we
can rewrite the preceding equation in the form

9,‘_}.1 — 261 + 91'_1 = €mAp/q Sln(27rq91) + O(Em_‘_l).
(2-8)
We divide equation (2-8) by €™, then we can in-
terpret the left side as the approximation of a second
derivative of the variable 6 respect to time, where
At = Ve™. The related differential equation is the
pendulum equation:
d*o

— = Ap/qsin(2mgh).

2-9
at (2-9)

Figure 2 shows the phase space of this equation.
The phase space of our resonant normal form (2-8)
is similar to Figure 2 to order e™*!. We can see that
there are 2q periodic points which correspond to the
image of two periodic orbits, the first one has elliptic
linear stability and the second one is hyperbolic.

A

EAp/q
AV

FIGURE 2. Phase space of the ¢g-pendulum equation.

The maximum amplitude of the separatrices of
equation (2-9) is A = 4,/A4,,,/(2nq) = 4\/(2mq),
where )\ is the eigenvalue of the hyperbolic point.
The corresponding value of the amplitude of reso-
nance related to the resonant normal form (2-8) is
then

m A / m
Byjy = €/ G+ OE™0),

and the eigenvalues of the hyperbolic points are
Apjg = 1 £ ™2\ /2mqA, 4 + O(e™FD/2),

There are alternative ways to work out the res-
onant normal forms related to periodic orbits. We
can compute the image of the g-th iteration of the
map (2-3); in this case we must carry out the com-
position of trigonometric functions using the prop-
erties of the Bessel function. Given the explicit com-
putation of F'¢ we can use a fixed-point-like proce-
dure to obtain the resonant normal form. See Ap-
pendix C.

(2-10)

(2-11)

3. RULES TO DETERMINE THE RESONANT NORMAL
FORM

The amplitude of resonance of any hyperbolic peri-
odic orbit with rotation number p/q can be obtained
if we compute its resonant normal form. In general,
it is hard to solve a long sequence of homological
equations to obtain the exponent m and the coef-
ficient A,,,. However, there is an easier procedure
for finding m, as follows:

1. From equation (2-1), collect the set of exponents
{a;} and the corresponding frequencies {w;}, for
i=1,...,N.
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2. Let {n;} be any set of N integers satisfying the

condition
N
q = Z n;w;.
=1
3. Define the natural number

N
i=1

4. Find the set of integers {n;} that minimize m.
This minimum value of m is the exponent 7. In
this case we must suppose that A,,, # 0.

To show how this algorithm works, we follow the
construction of the resonant normal form step by
step. From (2-1), we have the set of exponents
{a;}, ¢ = 1,...,N. This set can be ordered and
so written in the form {a;}, i = 1,..., N, where
G; < @;,1. Let the set of corresponding harmonic
frequencies be {; }. The left-hand side of the homo-
logical equation (2-6) can be expressed as a power
series in €, each term of which will be a product of
terms (&g, ,et2™*?)". The lowest-order term of this
series is €% g;, 5,eT2™1% The next term could be

g2, eF2TI020
or any product of the first term if G, > na,, where n
is a positive integer. In this case the corresponding
harmonic frequency is given by w; or £nw;. The fol-
lowing term could be €% g, 4.e*?™%3¢ or any prod-
uct of previous term if G > na, +ma,, where n and
m are positive integers. The related harmonic fre-
quency is then given by w3 or +nw,; = mw,. We can
continue in a similar way to find the higher-order
terms of this power series.

We can see from this procedure that any har-
monic frequency w will appear the first time when
we can find a linear combination of the harmonic
terms {w;, ws, ..., wy} such that

N
w = E n;w;.
Jj=1

The set of integers n; is chosen to minimize the sum
My = Z;V:I Injla;. Given the value of m,, we know
that the harmonic terms of frequency w are of order
O(e™).

To compute the value of A,,, we must find the res-
onant normal form explicitly, for which one needs
an algebraic manipulator. An alternative way to

estimate the value of A,,, for any resonant normal
form is to use a numerical procedure to compute the
eigenvalues of the hyperbolic periodic points with
rotation number p/q, when the value of the param-
eter goes to zero. Given the values of \,/,, and m,
we can find the value of A,/, using equations (2-10)
and (2-11). The numerical algorithm to find the
hyperbolic periodic points can be reduced to a one-
dimensional method if our periodic orbits are mono-
tone.

4. NUMERICAL COMPUTATION

In the last section we developed asymptotic meth-
ods to obtain the amplitude of any resonance. Now,
we want to compare these results with the numerical
computation of the amplitude of resonance. From
a formal point of view, asymptotic methods can be
applied only for a very small value of the perturba-
tion parameter. Thus the numerical methods must
be implemented with high precision arithmetic, be-
cause the linear behavior close to the periodic orbits
has extremely slow dynamics since the eigenvalues
of the periodic points are proportional to a power of
the perturbation parameter; see (2-11).

The main idea to compute the amplitude of res-
onance is to find the invariant manifolds of the hy-
perbolic periodic orbits related to our resonance. A
naive method to compute the invariant manifolds is
to find the eigenvectors of the periodic orbits; then
we can iterate points which are located in the direc-
tion of the eigenvectors. But these points must be
chosen very close to the periodic point. In this way
we can expand the unstable invariant manifold by
iterating these points a sufficient number of times;
for the stable manifold we use the inverse map. This
method is very inefficient for small values of the pa-
rameter: we must iterate a great number times in
order to escape from the neighborhood of the peri-
odic orbit.

An alternative method is to find a better approx-
imation of the local invariant manifolds, represent-
ing them as the graph of a polynomial function. In
that way we can choose points that belong to the
graph but far from the periodic point. The compu-
tation of the local invariant manifolds gives a numer-
ical method to obtain the resonance of any periodic
point. We can use this method to find the maximum
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distance between the manifolds (measured orthogo-
nally to the line that joins the periodic point with
its next image). In that way we obtain a numerical
computation of the amplitude of resonance.

We now describe how we can compute the invari-
ant manifolds and the amplitude of resonance:

1. Finding Periodic Orbits. The first problem is to find
a periodic orbit with specific rotation number p/n.
This is a two-dimensional problem, so we must use
a two-dimensional root finder to locate the periodic
orbit. However, our map can be written as the prod-
uct of two involutions. For two-dimensional maps
with this property we can find periodic orbits by
looking for specific curves, known as symmetry lines,
that correspond to the invariant curves of the invo-
lutions. This is useful because it lets us reduce the
problem of finding periodic orbits to a one-dimen-
sional problem. A complete description of this pro-
cedure can be found in [Greene 1979.

2. Finding Invariant Manifolds. Once the periodic orbit
has been found, we can compute its eigenvalues and
eigenvectors, and so determine the local invariant
manifolds. A first approximation of these invariant
sets is the straight line segment starting at the peri-
odic point and parallel to the corresponding eigen-
vector. This linear approximation is not enough for
our purposes; we must find a high-order approxima-
tion. Write the map as

(mn+1vyn+1) = H(mmyn) (4-1)

Let (z,,y,) be our periodic point with rotation
number p/n. This is a fixed point of the g-th iterate
of our map:

(Tps Yp) = H"(Tp, Yp) = H(H( - (H(zy, :I:,,))))
(4-2)
Now we must find the Taylor expansion of the -
and y-components of the map H™ around the peri-
odic point. Let H(&,9) be the Taylor series (under-
stood componentwise) of the map (4-1), where the
new variables are £ =z —z, and § =y — y,. We
can compute the second iteration of (4-1) using our
polynomial approximation:

H*(2,9) = H(H(2,9)).
Then we can compute the Taylor expansion of this
second iterate. We know that the components of
H are polynomials of degree M; the composition

H (ﬁ (2,9)) should be computed as a polynomial of
degree M as well. This can be done using symbolic
routines to add, multiply and truncate polynomial
expansions.

In this way we obtain an expression for the map
around the periodic point which can be written as a
polynomial of degree M. We can repeat this proce-
dure n times to obtain a polynomial approximation
of the map (4-2). In our new set of coordinates, the
origin is a fixed point of the map:

(ii'n+1,?3n+1) = H"(&n,Jn)-

Now let ™ and G™ be the 2- and j-components of
the iterate H™. The next step is to describe the in-
variant manifolds as the graph of a function of one
variable ¢(Z) = . This function can be approxi-
mated by a polynomial of degree M. Let ¢(Z) be
the graph describing the local invariant manifold.
We know that the image of any point of the invari-
ant manifold must belong to the invariant manifold.
Therefore

o(F"(2,0(2))) = G™(&,0(2)).

Because F™ and G™ are polynomials of degree M,
we can manipulate this equation in order to deter-
mine the value of the unknown coefficient that de-
fines the polynomial function ¢(Z) up to degree M.

We now define the fundamental interval. This
set belongs to the unstable invariant manifold and
equals {(&, (&) : & € [&o, F™(&0,9(%0))]}, where
|Zo| < 1. The stable invariant manifold has a sim-
ilar expression. The successive images of the fun-
damental interval form the local invariant manifold.
We want to extend the invariant manifold until this
curve arrives close to the next image of our periodic
orbit. In order to select a suitable value of &, we
must take in to account that the residue of ¢(%) is
of order O(23"*"). This approximation allows us to
choose values of &y greater than the linear approx-
imation of the invariant manifold in some order of
magnitude.

3. Amplitude of Resonance. To find the amplitude of
resonance, we set the periodic point x, and we also
find the nearest image of this point in phase space,
this point is denoted by x;. Now, we have com-
puted the approximation of the stable and unstable
invariant manifolds of our periodic point, W*(z)
and W*(x,). Let SP be the line segment that joins
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the points &y and x,, parametrized by the function
sp(t), where t € [0,1]. We define SW(t) as the line
segment that is orthogonal to SP at the point sp(t)
and has initial point located in W*(x,) and its final
point in W*(zx,). The amplitude of resonance is de-
fined as the maximum length of SW(t) for t € [0, 1].

A more complete description of the construction
of invariant manifolds using numerical and asymp-
totic methods can be found in [Simé 1990].

An important question for any resonance is to find
how the amplitude of resonance depends to the per-
turbation parameter £. To obtain this relation, we
can compute the amplitude of resonance for a se-
quence of values of the parameter {¢;} such that
giy1 <€ for i =0,...,L. Given any value of ¢;, we
can compute the corresponding amplitude of reso-
nance A;. We then compute a linear regression of
the set of values (loge;,logA;), for i = 0,..., L.
This gives us a functional relation between the pa-
rameter and the amplitude of resonance, of the form

A = Be°. (4-3)

Our numerical procedure allows us to compute
the invariant manifolds with a very high precision,
which depends on the order of the polynomial func-
tion (Z). To compute this function with an error
less than 10722) we calculated the polynomial func-
tion up to degree 30 and used quadruple-precision
arithmetic.

At this point, we can compare the amplitude of
any resonance as computed by the resonant normal
form of Section 2 and by the numerical procedure
just described, and so get an idea the accuracy of
the asymptotic procedure. We did this for three
rotation numbers; in these examples the perturba-
tion function has only one harmonic, ef(z,e) =
e/(2m) sin(27x) in equation (2-1). Here are the val-
ues obtained; we can see that agreement is good:

A,/ normal form A,/ numerical

p/n

1/3 232 %0.037513%/2  0.037538 150

1/4 Y15 62 7 002568562 0.025684 6199
1/6 5=/ o5 €% ~ 0.02555 ¢* 0.02549 2996

The resonant normal form (2-10) is not easy to
obtain for periodic orbits with large period. This is
because the number of terms that we must work out
from this asymptotic method increases like a com-
binatorial problem. However, we showed at the end
of Section 3 a procedure to estimate the amplitude
of resonance without computing the complete reso-
nant normal form. This is an asymptotic method
and it is valid for asymptotically small values of the
perturbation parameter. For any perturbation func-
tion (2-1) and rotation number p/q, we can compute
the corresponding amplitude of resonance if we are
able to find the eigenvalues of the hyperbolic peri-
odic points using equations (2-10) and (2-11). To
obtain the value of m, we can follow the rules de-
scribed in Section 4. It is easy to find the numerical
value of \,/, for small values of €. The first step
of our numerical procedure describes how we can
find hyperbolic periodic points and their eigenval-
ues. Hence, we can estimate the coefficient A/, of
the resonant normal form:

A, = E—mM’
p/q 21q

We must be careful about how small we must
choose the value of the perturbation parameter |e|
for periodic orbits with large period. This is because
the numerical procedure which computes the eigen-
value of any orbit can reach an arithmetic underflow
in our machine and then we can loose the precision
of the numerical computation.

In the next sections we show many examples where
we had to compute the amplitude of resonance; in
all these cases we used the method to compute the
eigenvalues in order to estimate the coefficients A in
equation (4-3).

5. ESTIMATE OF A, FOR VALUES OF ¢
OF THE ORDER OF 1

We now show how we can use the asymptotic be-
havior of the amplitude of resonances in order to
find a good estimate of A,,, when ¢ is of the order
of 1. The idea is that only few harmonics of the
perturbation function (2-1) provide the main con-
tribution to the size of the amplitude of resonance.
We found that the asymptotic behavior of different
sets of harmonics determine the amplitude for spe-
cific intervals of values of € that can be far from 0.
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We present two simple examples where we show
the form that we can determine, for any range of val-
ues of €, which is the dominant harmonic of (2-1).
From these examples we express a more general con-
jecture about the behavior of the amplitude of res-
onance.

Example 1. Let the perturbation function be

f(z) = 557; (sin(2mz) + 10~ * sin(27(9z)) ,
where « will be taken equal to 9, 15 and 21. Suppose
we want to find the growth rate of A, /g for a periodic
orbit with rotation number %. Using the rules given
in Section 3, we get m = 1. Then the asymptotic
behavior can be determined with the help of equa-
tion (2-10). This relation is similar for the three
values of the exponent a (though A,y depends on
the value of ). However, the numerical computa-
tion of A,/ shows that the asymptotic behavior is
not accurate for ¢ greater than 1073,

The results are summarized in Figure 3, which
plots log,, ¢ horizontally and log,, A,/ vertically.
The three curves F1, F2, F3 correspond to a equal
to 9, 15 and 21 respectively. For small values of ¢,

(5-1)

say |e] < 1073, these curves look like straight lines
of slope % Hence the asymptotic estimate of Ay /g
agrees with the numerical computation (lines B, C
and D). For higher values of ¢, each curve changes
its slope to %, so the amplitude then grows as Ag/, ~
€92, For ¢ greater than 0.1, the three curves behave
like straight lines with slope 2.

We can compare these results with a similar ex-
ample in which we take into account only the first
harmonic of the perturbation function:

f(z) = % (sin27z).

The asymptotic behavior of this case corresponds
to a straight line with slope g (line A in Figure 3).
Next, we can do a similar asymptotic computation
but now with a perturbation function that has only
the second harmonic of (5-1):

F(z) = %10-& sin(27(9z)). (5-2)

We obtain three lines B, C, D with slope %, corre-
sponding to & = 9, 15 and 21. The intersections of
these lines represent the transition points where the
curve of the amplitude of resonance changes slope.

—4 -3

-2 -1

FIGURE 3. Graphs of log;; Ay /g as a function of log;o €. The bold curves F1, F2 and F3 correspond to Ay /9 with
a equal to 9, 15 and 21. The lines B, C and D are the asymptotic behavior of (5-1) with « equal to 9, 15 and
21. Line A is obtained using the first harmonic in the perturbation function.
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We can also see in Figure 3 that these straight lines
represent a lower bound for the rate of growth of the
amplitude of resonance. In fact, these straight lines
form a convex hull of the amplitude of resonance.

Example 2. This is similar to the first example, but we
include an additional harmonic on the perturbation
function:

f(z) = %(sin@mj) +10* sin(27(3z))

+10"* sin(27(92))).  (5-3)

Now we want to find the growth rate of the ampli-
tude of resonance for a periodic orbit with rotation
number g. The numerical computation of Ay is
shown in Figure 4. In this example we can see three
different behaviors of the rates of growth of the am-
plitude: For small values of €, the curve looks like
a straight line; this part of the curve is dominated
by the third harmonic of (5-3). For ¢ in the inter-
val 107* < ¢ < 1072, the second harmonic of (5-3)
dominates. Finally, for € > 1072, the dominant har-
monic is the first.

As in the first example, we can find the convex
hull (lower bound) for the curve of Ay/y. This lower

-3.2—

—12.8

bound is given by the amplitude of the resonances
obtained from the perturbation function when we
consider only one harmonic. In this case we can
compute the asymptotic behavior of Ay taking
only one harmonic from the perturbation function

(5-3):

falz) = —2—67; sin(27z),

fa(z) = %10—4 sin(27(3z)),

fo(z) = 102 sin(27(9z)).
27

Figure 4 shows three straight lines which correspond
to the rate of growth of the three harmonics, that
is, when we take only one harmonic in the pertur-
bation function. We observe again that the curve
which represents A4y for the perturbation function
(5-3), is located over the three straight lines and the
values of €, where the curve changes its slope, can
be estimated by the intersection points of the three
straight lines.

From these two examples, we can formulate a more
general conjecture:

A

—1'g =36

L |
—-24 —-1.2

FIGURE 4. Axes are described in Figure 3. The bold curve correspond shows A4/9 computed via (5-3). Lines A,
B and C show A4/9 computed using only the first, second and third harmonic respectively in (5-3).
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Lower Bound Conjecture. Let ¢f(z,¢) be an analytic
perturbation function. For any rational rotation
number p/q, we can estimate a lower bound for the
amplitude of the resonance with this rotation num-
ber as follows:

1. Using the Fourier series of the perturbation func-
tion, we truncate this series at N < q. We con-
sider only those harmonics such that the integer
g can be written as an integer combination of
them.

2. For any set of selected harmonics, we compute
their asymptotic behavior. In this step we can
follow the rules described in Section 3.

3. From each set of harmonics we plot the corre-
sponding line of log A/, versus loge. This set
of lines forms a convex hull representing a lower
bound for the amplitude of resonance of the ac-
tual perturbed twist map.

4. The transition points, where there is a change in
the slope of the amplitude of resonance curve, can
be estimated by the intersection of the straight
lines.

6. COLLAPSE OF RESONANCE

The numerical computation of amplitudes of reso-
nance for different kinds of perturbation functions
allows us to find the relation between the value of the
perturbation parameter and the amplitude of reso-
nance for any rotation number. Usually, the ampli-
tude of resonance behaves as a monotone function
of the perturbation parameter, but there are per-
turbation functions for which this is not so; in such
cases, the amplitude decays to zero in a certain in-
terval of values of € and later grows again to resume
its previous behavior (see Figure 5 for an example).
We now consider this phenomenon, which we call
the collapse of resonance, and give for it a simple
explanation in terms of the different harmonics that
make up the perturbation function.

Collapse of resonance happens when the contribu-
tions of two or more harmonics of the perturbation
function are out of phase in some small domain of
the parameter. In this case the total contribution to
the amplitude is null and the size of this resonance
goes to zero. We have this situation when two har-
monics of the perturbation function have opposite
sign and they behave as the principal contribution to
the amplitude. We can estimate the range of values

<>

=

=
I

800

| |

I I

—6.000 —4.900 —3.800

| |
—2.700 —1.600

FIGURE 5. Rotation number: %. Lines 1, 2, and 3 correspond to harmonics 9, 3, and 1, respectively.
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of ¢ where we expect to find collapse; this situation
takes place when the contribution of the different
harmonics of the perturbation function are of the
same order of magnitude. The asymptotic behav-
ior of these harmonics corresponds to straight lines
in a log-log graph. For any two harmonics which
have opposite sign, the intersection point of the two
lines, represents the value of the parameter where
the resonance could collapse.

The next examples show how we can predict the
collapse of a specific resonance. Consider the per-
turbation function
efi(z) = % (sin(2rz)

+10™*sin(27(3z)) — 107 %' sin(27(9z))).
Figure 5 shows the numerical computation of the
amplitude of resonance A,y and the lines corre-
sponding to the asymptotic behavior of each sepa-
rate harmonic. We see that the amplitude collapses
in the region of parameters where line 1 (correspond-
ing to the ninth harmonic) and line 2 (third har-
monic) intersect. In this case we have collapse be-
cause the ninth and third harmonics have opposite
sign and similar magnitude.

Next we take the perturbation function

efa(z) = % (sin(27z)
—107*sin(27(3z)) — 107** sin(27(9z))).

The graph of the numerical computation of Ay is
shown in Figure 6, together with the lines corre-
sponding to the asymptotic behavior of the three
harmonics. In this case the collapse occurs in the
neighborhood of the intersection of lines 2 and 3
(the latter corresponds to the first harmonic). We
can predict this collapse because the first and third
harmonics have opposite sign.

The Lower Bound Conjecture can be extended to
encompass the collapse of resonance:

Collapse of Resonance Conjecture. The intersection of
two lines corresponding to harmonics with opposite
sign gives the value of the parameter where we ex-
pect collapse of resonance.

An important fact related to the collapse of reso-
nance phenomenon is that the left branch of the am-
plitude of resonance, with respect to the point where
the amplitude has collapsed, corresponds to a peri-
odic orbit different from the periodic orbit produced

-3400

400

|

] I
—6.000 —4.900 —3.800

FIGURE 6. Rotation number: 2
corresponds to harmonics 1 and 3.

I
—R2.700 —1.600

- Lines 1, 2, and 3 correspond to harmonics 9, 3, and 1, respectively. Line 4
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by the right branch of the curve. Dynamically, the
collapse of resonance is related to one periodic orbit
whose amplitude of resonance is decreasing in some
interval of the parameter; the amplitude decreases
until the resonance disappears: this is because the
hyperbolic periodic orbit collides with the elliptic
orbit that shares the same rotation number. This
phenomenon corresponds to a saddle-node bifurca-
tion, which in turn corresponds to a creation or de-
struction of a set of periodic orbits. Simultaneously,
a pair of periodic orbits with the same rotation num-
ber, is created by the mechanism of the saddle-node
bifurcation: the amplitude of resonance of the corre-
sponding hyperbolic periodic orbit grows from zero
and behaves like a step function. The Birkhoff twist
theorem shows that any twist map has at least one
pair of periodic orbits for any rational rotation num-
ber belonging to the rotation interval of the map.
Usually, we only have one pair of periodic orbits for
any value of the perturbation parameter. Collapse
of resonance is a case where we can find two pairs
of periodic orbits sharing the same rotation number
and existing simultaneously for a small open set of
values of the perturbation parameter.

7. AN EXAMPLE OF ANALYTICAL PERTURBATION

We now show an example where we compute the
amplitude of resonance for an analytic perturbation
function. Consider the perturbation function

ef(z) = esin(acos(2nz)).

We can see that f(z) is an analytic periodic function
and the average of this function is 0. Suppose that
we want to study the resonance 3/10 of this problem
in a range of values of the perturbation parameter
e € [0,1]. We fix the parameter a = 0.01.

The first step is to find the Fourier expansion of
the perturbation function. This is easy to do if we
use some properties of Bessel functions [Abramowitz
and Stegun 1972]:

sin(acosz) = 2 Z Jog+1(a) sin(2m (2k+1)z), (7-1)
k=0
where J;(a) are the Bessel functions of integer order
i. Because we are interested in the resonance 3/10,
we must cut the Fourier series at harmonic 10:

ef(z) =26 Joyi(a)sin(2r(2k+1)z).  (7-2)

k=0

-3.600_

-6.000_]

T T

|
-2.800

|
-3.300

FIGURE 7. Rotation number: %.

4: harmonic 1; line 5: harmonics 1, 3, and 5.

1 |
-1.700 -.6000 0

Line 1: harmonics 1 and 9; line 2: harmonics 3 and 7; line 3: harmonic 5; line
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We only have harmonics 1, 3, 5, 7, and 9, and we
can find five linear combinations of these harmonics
in order to reach harmonic 10. The next step is
to determine the asymptotic behavior of each linear
combination. The results are:

Harmonics M AT
1 and 9 1 3.6164 x 10710
3and 7 1 3.2794 x 107°
) 1 1.0384 x 107°
1 10 1.2244 x 1077
1,3 and 5 4 1.5325 x 1077

We can verify that the coefficients of the pertur-
bation function (7-2) are positive, that is J;(a) > 0
for a = 0.01. This means that we do not expect
to have any collapse of resonance, in this case the
amplitude of resonance must behave as a monotone
function. Figure 7 shows the numerical computation
of amplitude of resonance Ajs,;o with perturbation
function (7-1). The five straight lines correspond
to the asymptotic behavior of the harmonics given
above. This set of straight lines determines a good
estimate of As,19. The range of values of the pertur-
bation parameter in our example is € € (0, 3.163).

Note that we have obtained a good estimate of
A3 /10 using only asymptotic information on the lin-
ear combination of five harmonics, and these asymp-
totic behaviors were computed for values of the pa-
rameter close to zero.

8. CONCLUSION

We have presented a simple algorithm for study-
ing the nonlinear behavior of any resonance of twist
maps. We gave several examples of how to predict
the amplitude of resonance given a rational rota-
tion number. In each case, we only needed to know
the asymptotic behavior of the standard map and
we used a simple perturbation function composed
of a few terms of the Fourier expansion of the ini-
tial perturbation function. The hardest task was
determining the eigenvalue of the hyperbolic peri-
odic orbit having the same rotation number when
the value of the parameter is asymptotically small.
Using this information, we could obtain a good set
of lower bounds for the amplitude of resonances and
we could predict the collapse of resonances.

Using only linear information for small values of
the parameter, we were able to predict the nonlinear
behavior of the map when the perturbation param-
eter is of order 1.

The perturbation functions we have used in our
previous examples are written as sums of sine func-
tions. The main reason to use only odd functions
is related to our numerical method to compute pe-
riodic orbits. When the General Standard Map is
written with an odd perturbation function, this map
can be described as the composition of two maps,
each of which is an involution, and it has a pair of
invariant curves in the plane. One can show that we
can find periodic orbits which have points in these
invariant curves, so we only need to look for the pe-
riodic orbits, for any rotation number, on the sym-
metry lines. Using this method, we can simplify
significantly the numerical procedure to find peri-
odic orbits because we are able to find these orbits
using a one-dimensional root-finder. Nevertheless,
the method to estimate the amplitude of resonance
can be used for any perturbation function.

APPENDIX A: HAMILTONIAN FLOWS AND
SYMPLECTIC TWIST MAPS

Small perturbations of the integrable Hamiltonian
system gives rise to more complex dynamics in phase
space. A suitable way to perturb an integrable twist
map is using a generating function; in this way we
can assure that the transformed map has the same
symplectic structure. Any integrable twist map can
be written in the form

Tiv1 =Ti,  Qiv1 = @i + (riz1),

where (p;,7;) € S* x R and i € Z. In this case the
value of the function a(r) coincides with the rotation
number of the orbit and is a monotone function;
from now on we set da(r)/dr > 0. The generating
function of the map just defined is

G(Tiv1, i) = rizapi + B(riga),

where dB(r)/dr = a(r). Let g(r,¢,c) be an ana-
lytic function which is periodic with respect to ¢.
Then we can perturb the expression of the generat-
ing function as follows:

G(Tis1, i) = Tiv19s + B(riy1) +€9(rig1, 05, €)-



Olvera: Estimation of the Amplitude of Resonance in the General Standard Map 415
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Then our perturbed twist map is given by

Tiy1 =i + €fi(Tiv1, @ir €),
it1 = @i + rig1) + efa(rigr, @is €).

This is in fact a one-parameter family of twist maps;
the parameter is ¢, and we assume that |¢| < 1. The
functions f; and f; are periodic with respect the
angular coordinate ¢ and we impose the condition
lim, ¢ efi(r,,€) = 0.

In order to study the dynamics around monotone
periodic orbits of the perturbed map (A-1) it is con-
venient to transform it. The idea is to find a sim-
ple map which coincides with (A-1) in the neigh-
borhood of specific rotation number. This transfor-
mation must be symplectic in order to preserve the
Hamiltonian properties of the map (A-1). A way
of carrying out symplectic transformation is to find
a suitable generating function which can be used to
construct the transformation. We want to trans-
form the set of coordinates (r,¢) into new coor-
dinates (p,¢) with the property p;+1 = a(riz1) +
efa(Tiv1, i €)-

Using the implicit function theorem we can write
r;41 as a function of ¢; and p;,;, then we obtain
Tiv1 = Y1(Pit1, @i, €). Because ¢ is small, this func-
tion is then written as

(A-T)

Tiv1 = & (piy1) + €72(pis1, @i €)- (A-2)

Therefore our generating function is given by

G(pir1, 1) = a  (pis1) i + 5/ Y2(pit1, 8, €)ds.

Pi
Because the second equation of (A-1) is transformed

to ;11 = ©; + pir1, the variable ¢; can be substi-

tuted in (A-2):
Tiv1 = & (piy1) + €72(Pir1, Pit1 — Pitr1,€)
= o Y pir1) + e%2(pis1, Pis1, €)- (A-3)

This involves only coordinates with subindex ¢ + 1,
so we can replace ¢ + 1 by i. Using (A-3), we can
rewrite the first equation in (A-1) as follows:

a pir1 + €%2(pit1, Pit15€)
-1 ~ A
=a  piteFa(pi i €) + efo(piteNa(ps, wis €), i, €)-

Replacing ;11 by ¢; + piy1 and using again the
implicit function theorem, we can write p;.; as a
function of p; and ;. Therefore the new map is
then given by

Pit1 = pi + €¥3(psi, 0is €)y  Qir1 = @i+ pir1. (A-4)

This must be a symplectic map, which means that
its Jacobian has determinant 1. This implies that
the function 93(p;, ¢;, €) does not depend on p;. The
final form of map (A—4) is

pir1 = p+eV(pi€)y w1 = @i+ piy1. (A-H)

We call this the General Standard Map. We must
remark that the angular coordinate ¢ was not trans-
formed from (A-1) to (A-5), so the function V (p,¢)
remains periodic with respect to the first argument,
V(p+1,e) = V(p,e).

The map (A-5) might not be a global representa-
tion of the dynamics of the map (A-1) because the
domain of transformation (A-4) could be an open
set of R. The map (A-5) can then be used around
a strip of the cylinder S* x R. Therefore in order to
study monotone periodic orbits we can choose the
Standard Map as a general representation of a twist
symplectic map.

APPENDIX B: AMPLITUDE OF RESONANCE IN THE
GENERIC CASE

Consider the standard map (1-1); for small values
of the parameter ¢ we can estimate the eigenval-
ues of any monotone periodic orbit with rotation
number p/q. Suppose that V(z) is a C* periodic
function with k£ > 2. The map F? can be written
in the neighborhood of periodic orbit, to first-order
approximation, as follows [Veerman 1993]:

q—1

Y=t +eY V(z+iy)+O(e),
=1
qg—1
By =3+ ay e S (g — i)V (@ + i) + O(2).
=1
Using the coordinate transformation y = p/q +
€'/2¢, this becomes

Co=C+e? i V(z; +ip/q) + O(e),

=1

Tg =21+ e?qC +p+ O(e).
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The eigenvalues of the fixed points z; = z, — p
and (, = (; are

g—1 1/2
Ay =1+ 1/2 (Z DV (z; + ip/q)) + O(e),
i=1
where DV is the derivate of V and the set of values
{z;} must be the solution of the equation

q—1
> V(zi+ip/q) =0.
=1

Genericlly, the asymptotic value of the eigenvalues
satisfies

s = 1]~ O(e"?);

therefore, the amplitude of resonance is given by
the following relation, obtained from the pendulum
equation:

/2 S22 DV (z; + ip/q)
Ap/q = T\/V o + 0(8)

However, sometimes there are no solutions of the
equation Zf;ll V(z;+1ip/q) = 0 and the eigenvalues
depend on values higher than % of the exponent of .
This happens when the Fourier expansion of V()
has a null coefficient in the n-th harmonic term. In
this case the amplitude of resonance depends on the
other harmonics of the perturbation function and
we cannot compute this amplitude of resonance in
a straightforward manner using the first order ap-
proximation of our map.

APPENDIX C: ALTERNATIVE METHOD TO FIND A
RESONANT NORMAL FORM

We sketch here a different procedure to determine a
normal form around monotone periodic orbits of a
general standard map (2-2). In this case we choose
V' as an antisymmetric function but it is possible to
carry out our computation without this assumption.
Details of how to obtain these resonant normal forms
are given in [Olvera and Simé 1989]. Here is an
outline:

1. Given a rational rotation number p/n, compute
an explicit form of the n-th iterate of F', defined by
(xmyn) = F"(f'307y0)~

2. Obtain the root of this map by solving the equa-
tion F™(z,y)—(z,y)—(p,0) = 0. The set of solutions

of this equation corresponds to a monotone periodic
orbit with rotation vector p/n.

3. Starting with a scalar transformation y = (o} +
p/n we can find a set of maps F, such that the
difference between the map F and the identity is of
order O(e™). For each scale transformation, () =
€Cimt1} + Pim+13(x) where ({11 is the new axial
coordinate, @(m11}(z) is a periodic function of the
angular coordinate x, the new map is closer to the

identity map than the previous one, the distance is
of order O(g™*1).

4. The lowest-order term of the new map, after m
transformations, is of order O(e™). Consider only
the lowest-order terms, which are polynomials in
the axial coordinate () whose coefficients are pe-
riodic functions of the angular variable z. The fixed
points of this map correspond to monotone periodic
orbits of the initial map. The fixed points are ob-
tained when ({,; = 0; therefore the maximum num-
ber of fixed points is related to the maximum har-
monic of the periodic term which depends on z, the
number of fixed points is equal to the period of the
corresponding monotone periodic orbit of the initial
map. The set of monotone periodic orbits is well or-
dered with respect to the rotation number, and the
Aubry-Mather theory shows that there exist mono-
tone periodic orbits for any rational rotation num-
ber that belongs to the rotation interval of the twist
map [Mather 1982]. If the maximum harmonic is
less than n, where n is the period of the monotone
periodic orbit we want to find, it is impossible to
obtain a periodic orbit with period m. This means
that the periodic term of order O(¢™) which does
not depend on ({,,; must be null otherwise we can
obtain a monotone periodic orbit located in a wrong
order. Therefore we can find the next scale trans-
formation where the lower order terms are of order
m+ 1. We can repeat the procedure until the maxi-
mum harmonic of the periodic terms, which depend
on z, is equal to n. We denote by S,, the number of
scale transformations that we can perform until we
get the maximum harmonic equal to n.

After performing S, scale transformations, we get
a map that looks like a time-£%* flow of a Hamilto-
nian system. This system is a chain of n-pendula,
the phase space of which looks like the diagram in
Figure 1. The differential equation of the system is
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given in (2-9). From this equation, we can estimate
the amplitude of resonance A,/,, this amplitude is
given in equation (2-10).

Now we show how to compute F". First rewrite
(2-2) as a second-order difference equation:

N
Tirg = 2X401 — T; + Z e%c;sin(2m(jzi41)),
j=1

where the function V(z) was substituted by equa-
tion (2-1), in this case we rewrite the perturbation
function in terms of trigonometric series.

Using basic properties of Bessel functions it is pos-
sible to obtain the n-th iteration of the angular vari-
able, z,, in terms of the initial values z, and x;.
Taking this relation, we obtain the map F™:

n—2
n=nz1—(n—1)ze+ Y _(n—i—1)Pi(z0,21), (C-1)
=0
where
N N m
Puea) =Y s 3 (ITTT s ast)
=1 lgGZ s=1t=1
ot

x sin(Syi'z — S§ iz,

where J;(z) are the Bessel functions of integer order
¢ and the coefficients Sg,i are defined by:

p-1
Sg’i—sz Zyl
r=0

the set of numbers [7 are integers with the restriction

19 = &%, where 8} is the Kronecker delta function.
Now, it is convenient to write the second order dif-

ference equation (C-1) as two difference equations,

where we define y;,1 = z;41 — x;, for i = 0,...,n.
Then we obtain
n—1
Yn = Yo + Z Pj(zo—Yo, To),
j=0

n—1

Tp = To + NYo + Z(n — 7)Pj(z0—Yo, %o)-

Jj=0

This can further be written as a power series of the
perturbation parameter e:

=Y + Z Z (%0, %0),
j=0 sER: 1 (C=2)
Tp = $O+ny0+2(n‘]) Z 5SG;($0>?J0)>
=0 SERN

where the functions G3(z,y) have the definition

Gs(m y Z 9 (3,N,i,s) sin (SJ+1$ + S}V zy)

A(j,Nyi,s)

The coefficients G ,i,s) are constant rational num-
bers. The sets of index Ry and A(j, N,i,s) define
the domain of the index s, [°, ¢ and ¢, in the form

RN:{SEZ:s:thlwtat andwt€Z+};

the numbers a; are the exponents of the perturba-
tion parameter in equation (2-1). The set A(; v,
defines the domain of values of the sets of integers
{I!}, where b € Z, r =1,...,mand b=1,...,N,
the set {i} such that ¢ = 1,..., N and the set {t.}
where t, € Z*. These sets of integers satisfy the
restriction

a; + (ZZabll |)+Zzt a, = s.

k=1 b=1
The coefficient 5‘5’1- are defined by:

B-1 a
Shi=2my ) il
r=0 j=1
We can check that for a fixed value of the integer
s the domain of index [® is bounded, therefore the
maximum value of the coefficients 5’};,“;1 and Sg\u are
also bounded.

The map (C-2) can be understood as a power se-
ries in € where the coeflicients are a finite Fourier
series of coordinates x and y. The maximum har-
monic of any of these Fourier series corresponds to
the maximum value of 54/ and S% ;.
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