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1. INTRODUCTION

The study of stability and the chaotic behavior of
Hamiltonian systems with two degrees of freedom is
an important problem in classical mechanics and dy-
namical systems. The problem of finding the thresh-
old of stability has been studied by many authors;
outstanding contributions were made by Chirikov
and Escande in the early 1970s.

It is well known that a Hamiltonian flow can be
reduced to a two-dimensional map using a Poincare
section; in that form the dynamics of the Hamil-
tonian flow can be studied in terms of the stability
problem of the two-dimensional map. To find the re-
gions of stability and the threshold of chaotic behav-
ior, we can use the Chirikov [1979] overlap method.

Work supported by CONACyT grant G25427-E. The idea of this method is to obtain the shape of the

© A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 10:3, page 401



402 Experimental Mathematics, Vol. 10 (2001), No. 3

invariant manifolds of the hyperbolic periodic orbits ^ ^ ^^^^~T^^^^^ ^ ^ ^ ~ ~ ^ T \ ^ ^
of our map; a pictorial description of these manifolds N. y / ^ ~ A^X^N. / / ^ ^ x X /
looks like a chain of pendulum separatrices (see Fig- yS f C^) ) y \ ( C^) ) y \
ure 1). It is common to call resonances the struc- / v̂ ^^^^/ / ^ \ ^ ^ ^ ^ ^ ^ / ^ \
tures defined by the hyperbolic periodic points and ^ ^^^^JEZ^^^ ^ \ ^ - - — ^ ^ " " " \
their invariant manifolds (or separatrices). The res-
onances are denoted by the rotation number of the " - - ^ . ^ ^ ^ ^
corresponding periodic orbit. Chirikov studied the N<̂  ( O ) JX\ ( O J y \ C O ) y \ ( O ) y \
interaction of two resonances: when the separatri- ^—^^rzr^^^^^r^^
ces of these two resonances overlap, we can expect
to find chaotic behavior around the resonances. A F IGURE 1 ' P h a s e s p a c e o f t w o resonances-
similar idea can be found in [Escande 1982; Olvera
and Simo 1987]. analytic and periodic with respect to the angular

One important aspect of the overlap method is variable, that is, V((p+l^e) = V(<p, e). The pertur-
the necessity to estimate the amplitude of the res- bation parameter e is a nonnegative real number,
onances. This amplitude corresponds to the maxi- For e = 0, the map (1-1) reduces to an integrable
mum distance of the separatrices (in Figure 1, the twist map and the phase space (ExS*1) is completely
maximum distance is given in the vertical direction). foliated by invariant circles. For any value of the ra-
We denote this amplitude by Ap/g, where the sub- dial variable p, there exists an invariant circle with
script p/q is the rotation number of the periodic rotation number p.
orbit, and therefore a rational number. For a small perturbation, 0 < e < 1, we can

In many cases, the two-dimensional map can be use the Birkhoff twist theorem to show that the set
described as the sum of an integrable twist map and of invariant circles with rational rotation number
a small perturbation. The amplitude of the pertur- disappears (in the generic sense), and it is trans-
bation is driven by one real parameter. The goal of formed into an even number of periodic orbits with
this paper is to obtain a simple relation between the the same rational rotation number. The linear sta-
perturbation parameter and the amplitude of reso- bility of these orbits is elliptic and hyperbolic. For
nance for any rational rotation number. asymptotically small values of the parameter, it is

In this work we choose a particular (parametrized) possible to find the amplitude of any resonance (in
twist map, known as the Standard Map. This two- the generic case) of the corresponding hyperbolic or-
dimensional map is important in the study of Hamil- bit; this amplitude is of the form Ap/q ~ s1/2. Ap-
tonian systems with two degrees of freedom; Chiri- pendix B shows the derivation of this well-known
kov [1979] and Lichtenberg [1983] describe many ex- relation.
amples of how we can reduce the Hamiltonian flow The main contribution of this paper is to find the
to a Standard Map. In this case, when we are in- way in which the amplitude of resonance Ap/q de-
terested in the dynamics around any fixed point (or pends on the perturbation parameter e when e is
periodic orbit) of any Hamiltonian system with two not asymptotically small; we can describe Ap/q all
degrees of freedom, it is easy to find a correspond- the way up to e of the order of 1. We also show that
ing twist map representing the dynamics around the behavior of the amplitude of resonance is not
the fixed point. This procedure is described in Ap- homogeneous over the whole range of e. More pre-
pendix A. cisely, we can write Ap/q = AiSni for e G (s^e^+i),

We now define the General Standard Map and with different rational exponents Ui in different in-
study its resonances and their relation with the per- tervals, and we can determine the borderline values
turbation parameter. This map is defined by z{ where the rate of growth of the amplitude of res-

onance changes.
Pi+i = Pi- eV{(fi, s), ¥>i+i = & + Pi+i. (1-1) Q u r p r o c e d u r e t o find t h e ampiitude of resonance

The radial variable pi G K. and the angular vari- Ap/q for any value of the perturbation parameter e
able ip G S1. The perturbation function V((p,e) is has four steps.
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1. Get the Fourier expansion of the perturbation 2. RESONANT NORMAL FORMS

function V((p.e) and define a new perturbation T ,, . ,. , , , , , , .
yr. ' P I T ^n tins section we work out a procedure to obtain

function VJV(<£,£) by selecting some or the the ,, , ,. , . , £ ,, ,
Ar , ^ ^ \ > J to a map that displays m a simple form the dynam-

first N harmonics of VUp^e) (where N > q). . , .G . -,. u . , T i -i • ,
V7^ J v ~ ' ICS around a specific periodic orbit. Ine idea is to

2. Use VN((p,e) as the perturbation function of the perform a set of coordinate transformations in or-
Standard Map (1-1). Compute an appropriate der to obtain a new map that must be closer to an
normal form via the Poincare-Lindstedt method. integrable map (in the neighborhood of the given
Use this normal form to determine the dynamics rotation number) than the original one. We show
close to the periodic orbit which looks like the that we need only perform a finite number of these
periodic orbits of the pendulum equation; this transformations if we set the rotation number as a
makes it easy to find the amplitude of the sep- rational number p/q with (p,q) = 1. The final map
aratrices of this pendulum equation. The nor- can be related to a simple Hamiltonian flow. The
mal form obtained is only valid for asymptoti- dynamics of the Hamiltonian system is close to the
cally small values of e. final map up to some order of the perturbation pa-

rameter s. Our procedure is similar to the Lindstedt

3. Repeat the first two steps several times, changing s e r i e g m e t h o d ) a s t a n d a r d procedure to solve nonlin-

the set of selected harmonics to form the function e a r d i f f e r e n t i a l e q u a t ions using asymptotic methods

VN\}P<>£)' in Celestial Mechanics. In order to perform sym-

4. Find that the behavior of Ap/q, for a large value Poetic transformations we must rewrite our map.
of e, as the direct sum of the amplitudes of reso- W e take the two difference equations of (2-3) and
nance obtained in the previous steps. rewrite it as one second order difference equation,

which we call the Lagrangian representation of the
We conclude that only a few harmonics of the Standard Map.

Fourier expansion of V{ip,e) are responsible for the Consider the map (1-1), where the perturbation
behavior of Ap/q in each interval of the domain of function V((p,e) is an analytic function with null av-
e. Note that we can predict the size of Ap/q for erage and periodic: V((p+l,e) = V(ip,e). A general
a large value of e using only asymptotic informa- expression for this function is given by the Fourier
tion obtained from the normal forms computed in expansion of the angular variable, the coefficient of
the Standard Map using different perturbation func- each Fourier term being a power series in e:
tions VN(ip,e). ^ ^

y((n c\ — \~^ \ ^ n .£s
e
27rw

Section 2 of the paper describes the method of ^ ' ' Z-J Z-/ S^
obtaining the normal form for perturbation func- s~ 3~ °°
tions defined as a trigonometric polynomial of (p. We can obtain a good approximation of the per-
This normal form only depends on the rotation num- turbation function taking only the first N harmonic
ber and the set of harmonics that form the pertur- terms of the preceding equation, where N < q. Each
bation function. Section 3 shows how we can get harmonic is multiplied by the leading term of the
this kind of normal form using some information on corresponding power series of the perturbation pa-
the linear stability of the hyperbolic periodic orbit. rameter. Our approximation is then given by
In order to judge the accuracy of our estimate of
Ap/q, we develop an alternative, numerical, method y , x _ V ^ ^ (^%w^ + ^ e-2-K%w^\ + QUSN\

to compute it; this is done in Section 4. We give ' 4^ 3

examples in Section 5 comparing the amplitude of
resonance obtained by the numerical and analytic where the a$ are positive integers, the frequencies Wi
methods. Finally, Section 6 describes an interesting are positive integers such that Wi < wi+i and Q, Q
phenomenon: for some values of e the amplitude of are complex numbers not depending on e. The re-
resonance goes to zero. We call this the collapse of maining term O(SSN), where SN > maxj=lv..,jv{flj})
resonance. does not contain harmonics of order less than wN.
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We assume that the magnitude of the coefficients of The right-hand side is an exponential function
the harmonic terms that belong to O(SSN) is smaller whose arguments include the function g(8, e), so we
than can expand the exponential function as a power se-

min {c^cA. ries of g{9,e)\

e±2-Kiwi{e+g{9,e))

If V((p,s) is analytic, we can see that these coeffi- / oo / oo x s \
cients Cj and dj are proportional to 7 J , where 7 is a = e±27mi>i0 I ̂  _^_ y ^ — [ ± V^ ej V^ g ke

2irike ] I.
constant such that I7I < 1 and dj = 0. \ s=i s' V j = 0 kez ' J

In order to find the resonant normal form we must S u b s t i t u t i n g t h i s i n t o t h e p r e c e ding equation and
take the lift of our map (1-1). For this map, the c o n s i d e r i n g t h a t e.+i _ 29. + ̂ _ 1 m u s t be 0 (because
phase space is now R . We can write the lift in the t h e d y n a m i c o f 0 i s a u n i f o r m r o t a t i o n ) ) w e g e t

form

Vi+^yi + eV^e), xl+1 = Xi + yi+u (2-2) £ V ^ . ^ ^ ( c o s ^f~ ~ *)

where {x^yi) G R and i E Z. This map is a set N / / oo
of two difference equations of first order; we can _ y^ £

a * [ c±e±2™wi0 M _|_ V^ —
rewrite it as a single difference equation of second l=1 \ \ 8=1

 s-
order, and this is the Lagrangian form of (1-1): / °© y \ \

xi+1-2xi + xi-1=eV(xi,e). (2-3) X V^/f^9^ )))'

We want to find a coordinate transformation that (2-6)
conjugates, as far as possible, the dynamics of equa- m J x • n T r i l m - j.

/ N , , ' lo determine the values of the coefficients g+ & we
tion (2-3) to the dynamics of an mtegrable twist , n / o n^ -̂  . ,

v J J ° must solve (2-6). For any positive integer m we can
map in the neighborhood of a given rotation number n , n ,, , £ , ^ / ^N ,, , -,

, _ collect all the terms of order CMS ); these terms de-
p/q. The dynamics are given as a uniform rotation: -, ,, ^ . , , . n -
^7 H J to pend on the coefficients gf^, where j = 0 , . . . , m — 1

£ _ a , P n /.N and fc is a finite subset of Z. The coefficient gm fe

^ appears in a linear form in the left side of equation
where 9 • G R. (2~6). Then we have an infinite number of homo-

Let the function g(6, e) define the conjugation be- logical equations, each related to the same order of
tween the coordinate x and the coordinate 9: t h e perturbation parameter, £m, and a specific har-

monic term e27rike. Such a homological equation can
Xi = 9i + g(9i, £). (2-5) fog expressed as

The function g{9,e) is periodic and we can expand / 2nkp \
it as a power series in e where the coefficients are ^m)fc\ q J
periodic functions of 9 and are given by Fourier se- — n ro o n \ n7\
ries: . .

oo where fc, k\ . . . , fc(m) G Z. We can solve (2-7) be-
g(9,e) — 2_^sJ 2_^gj,k£ ™ • cause its right-hand side depends only on the coef-

i=° keZ ficients gitk that we have already computed. Note
Substituting this and (2-5) into (2-3), and taking that for fixed order of e, the right-hand side of (2-6)
into account that the dynamic of 9 is a uniform ro- has a finite number of harmonic terms, so that for
tation (2-4), we obtain a n y order of £ we must solve a finite number of ho-

^ mological equations.
Q. —29+9 + y ^ £ j y ^ a c2nike2(co3 I 1̂1 Two conditions must be satisfied if we want to

j=0 keZ \ q J solve the homological equations (2-7):
N

_ V^ eai /c+e27m (̂6>i+c/(0,£)) , Q-e-27ri^z(6'i+^((9,e))\ 1. For any order of £, the right side of equation (2-6)
l=1 must have null average.
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2. The term cos(2nkp/q) — 1 must be nonzero. Figure 2 shows the phase space of this equation.
The phase space of our resonant normal form (2-8)

The first condition means that for any value of m in i g g i m i l a r t Q p i g u r e 2 t Q Q r d e r £ ? s + 1 W e c a n g e e th&t

(2-7) the term Gm<o(go,k,..., gm.likim>), which cor- t h e r e & r e 2q p e r i o d i c p o i n t s w h i c h cor reSpOnd to the
responds to a harmonic term of frequency zero, must i m a g e o f t w Q p e r i o d i c o r b i t g ) t h g firgt Q n e h a g e U i p t i c

vanish in order to have null average. As a conse- ^ ^ g t a b m t y a n d t h g g e c o n d Q n e i g h y p e r b o l i c .
quence, the coefficients gm^ are indeterminate and
we can fix any value for them. We can use these free ^ ^ ^ r ^ ^ ^ ^ x ^ S ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

parameters to ensure that Gm)O(#o,fc> • • • jSm-i,&(™)) ^^^^^^^^^^^^^^^^^T^^^^^^^M^^ •

The second condition is the nonresonance condi- ^ = ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ = ^ ^ ^ ^ ^ ^ .'
tion. If the value of k is ±q then cos(27rkp/q) — 1 = 0. ^^y^^^^^X^^^^^^^^^^y^^^^^0 —

In this case there are no solutions of the homolog- rt^,tnr^ ™ m j i
FIGURE 2. Phase space of the g-pendulum equation,

ical equation (2-7). Therefore we cannot continue
the procedure to solve the homological equation for The maximum amplitude of the separatrices of
the next order of e. This condition defines the res- equation (2-9) is A = Ay/Ap/q/(2nq) = 4A/(27rg),
onant normal form. There are some cases where where A is the eigenvalue of the hyperbolic point.
Gm,±q = 0; then the homological equation is triv- The corresponding value of the amplitude of reso-
ial and we can continue our procedure until we can nance related to the resonant normal form (2-8) is
reach the next nonresonance condition when k = 2q. then

We can only solve a finite number of homological r r —
equations (2-7) because there exists an integer fn AP/q — 6 \/7r~^ + O(£ (m+1)/2), (2-10)
such that the nonresonant condition is not satisfied.
T̂  , i . T r _ ,_ T5,T ,! , r i and the eigenvalues of the hyperbolic points are
Jbor this value ot m G M there are terms or order & jr r
O(sm) that contain harmonic terms with frequency \p/q = 1 ± em/2y/2u:qAp/q + O(£ (^+ 1 ) / 2). (2-11)
ztq (and Gm±a(qi k) ^ 0 in general). As a conse- T 1 ,, , ,,

H v m,±q\tij^j T & ) There are alternative ways to work out the res-
quence, it is impossible to conjugate the dynamics , , £ , , -, , . ,. , ., ^T

^n ' / ix , . r .P onant normal forms related to periodic orbits. We
of our map (2-3) to the dynamics of a uniform ro- . ,, r ,, ,, ., r ,,

, v / _ _ 1 *; _ 1 . _ can compute the image ot the q-th iteration ot the
tation in the neighborhood of the rotation number / o oN . ,, . , . ,,

7 m l n „ n „ ^ / -x / r map (2-3); m this case we must carry out the com-
p/q. Therefore 0i+1 - 2d{ + 6^ = O(£m) ^ 0 for ...l ; ' . . . . . . .,

1 ^ TT , , . . position ot trigonometric functions using the prop-
% E L. Hence, we say that this equation is a resonant ,. r , , ^ i r ,. ^ . xl ,. .,

/ . r n i. n erties ot the Bessel function. Given the explicit corn-
normal form and the dynamics of the coordinate 0 . . . r r i o £ i • , n

_ putation of b q we can use a fixed-pomt-like proce-
are then described in the form , , , , . ,, , , £ o A

dure to obtain the resonant normal form, bee Ap-
Q of) _L ti — c^n (n u ± 2 ^ i I n/cm+i\ pendixC.
We can shift the origin of the coordinate 9 and we 3. RULES TO DETERMINE THE RESONANT NORMAL
can rewrite the preceding equation in the form FORM

_ _ The amplitude of resonance of any hyperbolic peri-
6i+1 - 20i + 0i_i = e^Ap/q s in^Tr^) + O(em+ ). o d i c o r b i t w i t h r o t a t i o n n u m b e r p/q can be obtained

_ (2-8) if w e compute its resonant normal form. In general,
We divide equation (2-8) by e™, then we can in- i t -ls hard to solve a long sequence of homological

terpret the left side as the approximation of a second equations to obtain the exponent fn and the coef-
derivative^of the variable 9 respect to time, where ficient Ap/q. However, there is an easier procedure
At = v î™. The related differential equation is the for finding m, as follows:
pendulum equation:

1. From equation (2-1), collect the set of exponents
(pQ {cti} and the corresponding frequencies {v)i}, for
— = ̂ p / gsin(27r^). (2-9) j = l , . . . ,JV.
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2. Let {rii} be any set of N integers satisfying the estimate the value of Ap/q for any resonant normal
condition form is to use a numerical procedure to compute the

_ Y"> eigenvalues of the hyperbolic periodic points with
^ % l' rotation number p/q, when the value of the param-

_. n . eter goes to zero. Given the values of Xv/a and m,
3. Define the natural number n , ,, , r , . ,. /n ir*\

we can find the value of Ap/q using equations (2-10)

E i i and (2-11). The numerical algorithm to find the
\Ti• \ (1 •.

._ % l hyperbolic periodic points can be reduced to a one-
_.. , ;1 r . r . , . . . dimensional method if our periodic orbits are mono-

4. Jbmd the set of integers {nA that minimize m.
tone

This minimum value of m is the exponent m. In
this case we must suppose that Ap/q ^ 0.

To show how this algorithm works, we follow the 4" NUMERICAL COMPUTAT.ON
construction of the resonant normal form step by In the last section we developed asymptotic meth-
step. From (2-1), we have the set of exponents ods to obtain the amplitude of any resonance. Now,
{a^}, i = 1,...,JV. This set can be ordered and we want to compare these results with the numerical
so written in the form {a^}, i = 1,...,JV, where computation of the amplitude of resonance. From
hi < ai+1. Let the set of corresponding harmonic a formal point of view, asymptotic methods can be
frequencies be {wi}. The left-hand side of the homo- applied only for a very small value of the perturba-
logical equation (2-6) can be expressed as a power tion parameter. Thus the numerical methods must
series in e, each term of which will be a product of be implemented with high precision arithmetic, be-
terms (£jgj^e±27rzke)n. The lowest-order term of this cause the linear behavior close to the periodic orbits
series is s^1 gauw1e

±27rill)ie. The next term could be has extremely slow dynamics since the eigenvalues
a2 ±27riw2o of the periodic points are proportional to a power of

the perturbation parameter; see (2-11).
or any product of the first term if a2 > nau where n T h e m a i n i d e a t o c o m p u t e t h e a m p l i tude of res-
is a positive integer. In this case the corresponding o n a n c e ig t o find t h e i n v a r i a n t m a n i fo lds of the hy-
harmonic frequency is given by w2 or i m ^ . The fol- p e r b o l i c periodic orbits related to our resonance. A
lowing term could be ea*gMe±2™*e or any prod- n a i v e m e t h o d t o c o m p u t e t h e i n v a r i a n t manifolds is
uct of previous term if a3 > nax + ma2, where n and t o find t h e e i g e n v e c t o r s o f t h e periodic orbits; then
m are positive integers. The related harmonic fre- w e c a n i t e r a t e p o i n t s w h i c h a r e l o c a t e d i n t h e d i r e c_
quency is then given by w3 or ±nw1±mw2. We can t i o n o f t h e eigenvectors. But these points must be
continue in a similar way to find the higher-order c h o g e n v e r y c l o g e t o t h e p e r i o d i c p o i n t . I n t h i s w a y

terms of this power series. w e c a n e x p a n d t h e u n s t a b l e invariant manifold by
We can see from this procedure that any har- i t e r a t i n g t h e s e p o ints a sufficient number of times;

monic frequency w will appear the first time when for t h e g t a b l e m a n i f o l d w e u s e t h e i n v e r s e m a p . T h i s

we can find a linear combination of the harmonic m e t h o d is very inefficient for small values of the pa-
terms {wuw2, ...,wN} such that rameter: we must iterate a great number times in

N order to escape from the neighborhood of the peri-
w = ^2njwj- odic orbit.

j=1 An alternative method is to find a better approx-
The set of integers rij is chosen to minimize the sum imation of the local invariant manifolds, represent-
mw = ^ - = 1 l^l^j- Given the value of mw we know ing them as the graph of a polynomial function. In
that the harmonic terms of frequency w are of order that way we can choose points that belong to the
0{£rriw). graph but far from the periodic point. The compu-

To compute the value of Ap/q we must find the res- tation of the local invariant manifolds gives a numer-
onant normal form explicitly, for which one needs ical method to obtain the resonance of any periodic
an algebraic manipulator. An alternative way to point. We can use this method to find the maximum
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distance between the manifolds (measured orthogo H(H{x,y)) should be computed as a polynomial of
nally to the line that joins the periodic point with degree M as well. This can be done using symbolic
its next image). In that way we obtain a numerical routines to add, multiply and truncate polynomial
computation of the amplitude of resonance. expansions.

We now describe how we can compute the invari- In this way we obtain an expression for the map
ant manifolds and the amplitude of resonance: around the periodic point which can be written as a

- r . .. n • J- n u'. T I c i ui • 4. n A polynomial of degree M. We can repeat this proce-
1. Finding Periodic Orbits. The first problem is to find F J ° , 7

• J- u-x -iL -a J. J.- u / dure n times to obtain a polynomial approximation
a periodic orbit with specmc rotation number p/n. r

rm • • , i- l LI i. of the map (4-2). In our new set of coordinates, the
This is a two-dimensional problem, so we must use . . . v .

, ,. . i X P J X I j. j-i • J- origin is a fixed point of the map:
a two-dimensional root finder to locate the periodic 6 F p

orbit. However, our map can be written as the prod- (£n+i> Vn+i) — Hn(xn, yn).
uct of two involutions. For two-dimensional maps N o w l e t pn a n d QU b e t h e £ . a n d y . c o m p o n e n t s o f

with this property we can find periodic orbits by t h e i t e r a t e &n T h e n e x t g t e p i g t Q d e s c r i b e t h e i n .
looking for specific curves, known as symmetry lines, v a d a n t m a n i f o l d s a s t h e g r a p h o f a f u n c t i o n o f o n e

that correspond to the invariant curves of the invo- v a d a b l e ^ = ^ T h i g f u n c t i o n c a Q b e a p p r o x i .
lutions. This is useful because it lets us reduce the m a t e d b y & p o l y n o m i a l o f d e g r e e M . L e t ^ b e

problem of finding periodic orbits to a one-dimen- t h e g r a p h d e s c r i b i n g t h e l o c a l i n v a r i a n t manifold.
sional problem. A complete description of this pro- W e k n Q W t h a t t h e i m a g e o f a n y p o i n t o f t h e i n y a r i .
cedure can be found in [Greene 1979]. a n t m a n i f o l d m u s t b e l o n g t o t h e i n v a r i a n t manifold.
2. Finding Invariant Manifolds. Once the periodic orbit Therefore
has been found, we can compute its eigenvalues and in(Fn(x ip(x))) = Gn(x cp(x))
eigenvectors, and so determine the local invariant
manifolds. A first approximation of these invariant Because Fn and Gn are polynomials of degree M,
sets is the straight line segment starting at the peri- w e c a n manipulate this equation in order to deter-
odic point and parallel to the corresponding eigen- m i n e t h e v a l u e o f t h e unknown coefficient that de-
vector. This linear approximation is not enough for fines t h e polynomial function <p(x) up to degree M.
our purposes; we must find a high-order approxima- We now define the fundamental interval. This
tion. Write the map as s e^ belongs to the unstable invariant manifold and

equals {(x,(p(x)) : x G [£0, ^
n(^o,(f(x0))}}, where

\%n+i,yn+i) — H{xn^yn). (4-1) |^Q| ^ 2 rp^ g^- ĵg i n v a r i a n t manifold has a sim-
Let (xp,yp) be our periodic point with rotation ilar expression. The successive images of the fun-

number p/n. This is a fixed point of the q-th. iterate damental interval form the local invariant manifold,
of our map: We want to extend the invariant manifold until this

. _ rj(TT( (TT( \\\\ curve arrives close to the next image of our periodic
[xp, y p ) = H [xp, y p ) = H[h{---{H [xp, xp)))). o r b i t J n Q r d e r t Q s e l e c t & g u i t a b l e v a l u e o f £Q? w e

^ ~ ' must take in to account that the residue of <p(x) is
Now we must find the Taylor expansion of the x- o f Q r d e r O{x^), This approximation allows us to

and ^-components of the map Hn around the peri- c h o o g e v a l u e g o f ^ g r e a t e r t h a n t h e U n e a r a p p r Q x _
odic point. Let H(x,y) be the Taylor series (under- i m a t i o n o f t h e i n v a r i a n t manifold in some order of
stood componentwise) of the map (4-1), where the magnitude
new variables are x = x — xp and y = y — yp. We
can compute the second iteration of (4-1) using our 3- Amplitude of Resonance. To find the amplitude of
polynomial approximation: resonance, we set the periodic point x0 and we also

~ 2 ~ / ~ / - -\\ ^nc* ̂ e n e a r e s t i m a § e of this point in phase space,
H (x,y) = H[H(x,y)). t h i g p o i n t j s denoted by xx. Now, we have corn-

Then we can compute the Taylor expansion of this puted the approximation of the stable and unstable
second iterate. We know that the components of invariant manifolds of our periodic point, Ws(x0)
H are polynomials of degree M; the composition and Wu(x0). Let SP be the line segment that joins
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the points x0 and Xi, parametrized by the function The resonant normal form (2-10) is not easy to
sp(t), where t G [0,1]. We define SW(t) as the line obtain for periodic orbits with large period. This is
segment that is orthogonal to SP at the point sp(t) because the number of terms that we must work out
and has initial point located in Ws(x0) and its final from this asymptotic method increases like a corn-
point in Wu(x0). The amplitude of resonance is de- binatorial problem. However, we showed at the end
fined as the maximum length of SW(t) for t G [0,1]. of Section 3 a procedure to estimate the amplitude

of resonance without computing the complete reso-
A more complete description of the construction n a n t n o r m a i f o r m . T h i s i s a n a s y m pto t ic method

of invariant manifolds using numerical and asymp- a n d i t i s v a l i d for asymptotically small values of the
totic methods can be found in [Simo 1990]. perturbation parameter. For any perturbation func-

An important question for any resonance is to find t i o n ^ . ^ a n d r o t a t i o n n u m b e r p/q, we can compute
how the amplitude of resonance depends to the per- t h e corresponding amplitude of resonance if we are
turbation parameter e. To obtain this relation, we a b l e t o find t h e eigenvalues of the hyperbolic peri-
can compute the amplitude of resonance for a se- o d i c p o i n t s u s i n g equations (2-10) and (2-11). To
quence of values of the parameter { e j such that o b t a i n t h e v a l u e o f ^ w e c a n follow t h e r u l e s de_
ei+1 < Ei for % = 0 , . . . , L. Given any value of eu we s c r ibed in Section 4. It is easy to find the numerical
can compute the corresponding amplitude of reso- v a l u e o f Xp/q for s m a l l v a l u e s o f £ T h e first s t e p

nance A*. We then compute a linear regression of o f o u r n u m e r i c a i procedure describes how we can
the set of values (log e*, log A^, for i = 0 , . . . ,L. find hyperbolic periodic points and their eigenval-
This gives us a functional relation between the pa- u e s H e n c e ) w e c a n estimate the coefficient Ap/q of
rameter and the amplitude of resonance, of the form ^ e resonant normal form1

A = /fe«. (4-3) Ap/q = e-m{Xp/
2

q~1)2.

Our numerical procedure allows us to compute We must be careful about how small we must
the invariant manifolds with a very high precision, choose the value of the perturbation parameter \s\
which depends on the order of the polynomial func- for periodic orbits with large period. This is because
tion (p(x). To compute this function with an error the numerical procedure which computes the eigen-
less than 10~22, we calculated the polynomial func- value of any orbit can reach an arithmetic underflow
tion up to degree 30 and used quadruple-precision in our machine and then we can loose the precision
arithmetic. of the numerical computation.

At this point, we can compare the amplitude of In the next sections we show many examples where
any resonance as computed by the resonant normal we had to compute the amplitude of resonance; in
form of Section 2 and by the numerical procedure all these cases we used the method to compute the
just described, and so get an idea the accuracy of eigenvalues in order to estimate the coefficients A in
the asymptotic procedure. We did this for three equation (4-3).
rotation numbers; in these examples the perturba-
tion function has only one harmonic, ef{x,e) = 5 ESTIMATE OF Ap/q FOR VALUES OF s
S/(2TT) sin(27rx) in equation (2-1). Here are the val- OF THE ORDER OF 1
ues obtained; we can see that agreement is good:

We now show how we can use the asymptotic be-
/ A 7~r A • 7] havior of the amplitude of resonances in order to

p/n Ap/n normal form Ap/n numerical ,. r A u - * ±u A
nnd a good estimate of Ap/g when s is ot the order

1/Q _\/2_ -3/2 ^ n 037513 p3/2 A QQ75QQ £i.5009 of 1. The idea is that only few harmonics of the
127r perturbation function (2-1) provide the main con-

1/4 vH s2 & 0 025685 s2 0 025684 s1'9999 tribution to the size of the amplitude of resonance.
We found that the asymptotic behavior of different

1/6 JL,y_M_£3 ~ 0.02555s3 0.02549s2996 s e t s °f harmonics determine the amplitude for spe-
I cific intervals of values of s that can be far from 0.
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We present two simple examples where we show say \e\ < 10~3, these curves look like straight lines
the form that we can determine, for any range of val- of slope | . Hence the asymptotic estimate of A2/9

ues of e, which is the dominant harmonic of (2-1). agrees with the numerical computation (lines B, C
From these examples we express a more general con- and D). For higher values of £, each curve changes
jecture about the behavior of the amplitude of res- its slope to | , so the amplitude then grows as A9/2 ~
onance. e9/2. For e greater than 0.1, the three curves behave

I W T J J 1 , 1 , . r 1. i like straight lines with slope I.
Example 1. Let the perturbation tunction be TTT . z. . . ..

We can compare these results with a similar ex-
/ ( x ) = _L (sin(27ra0 + 10"a sin(27r(9a;)) , (5-1) a m P l e i n w h i c h w e t a k e i n t o a c c o u n t only t h e first

2TT harmonic of the perturbation function:

where a will be taken equal to 9, 15 and 21. Suppose „, x e , .
^ ' . fix) = (sin 2TTX)

we want to find the growth rate of A2/9 for a periodic J v } 2TT
orbit with rotation number §. Using the rules given T h e a s y m p t o t i c b e h a v i o r of this case corresponds
in Section 3, we get m = 1. Then the asymptotic t o a s t m i g h t l i n e w i t h s l o p e | ( l i n e A i n F i g u r e 3 )

behavior can be determined with the help of equa- N e x t 5 w e c a n d o a g i m i l a r a s y m p t o t i c computation

tion (2-10). This relation is similar for the three b u t n o w w i t h a p e r t u r b a t i o n function that has only
values of the exponent a (though A2/9 depends on t h e g e c o n d h a r m o n i c o f (5_1):

the value of a). However, the numerical computa-
tion of A2/9 shows that the asymptotic behavior is ffx) = — 10~asin(27r(9x)). (5-2)
not accurate for e greater than 10~3. ^

The results are summarized in Figure 3, which We obtain three lines B, C, D with slope | , corre-
plots Iog10£ horizontally and log10 A2/g vertically. sponding to a = 9, 15 and 21. The intersections of
The three curves Fl , F2, F3 correspond to a equal these lines represent the transition points where the
to 9, 15 and 21 respectively. For small values of £, curve of the amplitude of resonance changes slope.

. . . .

-4 - 3 -2 - 1

FIGURE 3. Graphs of log10 A2/9 as a function of log10 e. The bold curves Fl, F2 and F3 correspond to A2/9 with
a equal to 9, 15 and 21. The lines B, C and D are the asymptotic behavior of (5-1) with a equal to 9, 15 and
21. Line A is obtained using the first harmonic in the perturbation function.
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We can also see in Figure 3 that these straight lines bound is given by the amplitude of the resonances
represent a lower bound for the rate of growth of the obtained from the perturbation function when we
amplitude of resonance. In fact, these straight lines consider only one harmonic. In this case we can
form a convex hull of the amplitude of resonance. compute the asymptotic behavior of A4/9 taking

only one harmonic from the perturbation function
Example 2. This is similar to the first example, but we (P;_QV
include an additional harmonic on the perturbation
function: /A(x) = JL sin(27rx),

f(x) = ^(sin(27ra;) + l(r4sin(27r(3z)) ^ = ±10-*&l(2v(3x))t

+l(T21siii(27r(9z))). (5-3) *"
/ c(x) = ^-10-21sin(27r(9x)).

Now we want to find the growth rate of the ampli- Z7r

tude of resonance for a periodic orbit with rotation F i g u r e 4 s h o w g t h r e e g t r a i g h t U n e s w h k h c o r r e s p o n d

number -g. The numerical computation of A4/9 is t o t h e m t e o f g r o w t h o f t h e t h r e e h a r m o n i c S i t h a t

shown in Figure 4. In this example we can see three ^ w h e n w e t a k e Q n l y o n e h a r m o n i c i n t h e p e r t u r .
different behaviors of the rates of growth of the am- b a t i o n f u n c t i o n _ W e o b s e r v e a g a i n t h a t t h e c u r v e

plitude: For small values of e, the curve looks like w h i c h r e p r e s e n t s A ^ f o r t h e perturbation function
a straight line; this part of the curve is dominated ( 5 _ 3 ) ) ig l o c a t e d o y e r t h e t h r e e g t r a i g h t l i n e g a n d t h e

by the third harmonic of (5-3). For e in the inter- v a l u e g o f £> w h e f e t h e c u r y e c h a n g e g i t g s l o p 6 ) c a n

val 10 < e < 10 2, the second harmonic of (5-3) b e e s t i m a t e d b y t h e intersection points of the three
dominates. Finally, for e > 10 2, the dominant har- straight lines
monic is the first.

As in the first example, we can find the convex From these two examples, we can formulate a more
hull (lower bound) for the curve of A4/9. This lower general conjecture:

i i i i i

= ^ 8 z:3J5 ^ 1 ^71 '

FIGURE 4. Axes are described in Figure 3. The bold curve correspond shows A4/9 computed via (5-3). Lines A,
B and C show A4/9 computed using only the first, second and third harmonic respectively in (5-3).
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Lower Bound Conjecture. Let ef(x,e) be an analytic 6. COLLAPSE OF RESONANCE
perturbation function. For any rational rotation r^ . , . . . £ ,., , c

, , , lne numerical computation of amplitudes of reso-
number p/q, we can estimate a lower bound for the £ ..rr , i • J £ x u ^ - £ J.-

' nance for different kinds of perturbation functions
amplitude of the resonance with this rotation num- n , n , ,i i ,- i , Li i r i l

^ allows us to find the relation between the value of the
perturbation parameter and the amplitude of reso-
nance for any rotation number. Usually, the ampli-

1. Using the Fourier series of the perturbation func- , ^ £ u i~ + r +•
to ^ tude of resonance behaves as a monotone function

tion, we truncate this series at N < q. We con- £ >^ ± *u ±- ±. u ^ ^
' — * of the perturbation parameter, but there are per-

sider only those harmonics such that the integer , •* *• £ ,. £ L,- i ,i • • J. • iJ . & turbation functions for which this is not so; in such
q can be written as an integer combination of ,n ,., i , , . , .
H & cases, the amplitude decays to zero in a certain m-

m* terval of values of e and later grows again to resume

n -r, , r i , i i • . i t s previous behavior (see Figure 5 for an example).
2. For any set of selected harmonics, we compute F v 6 F J

their asymptotic behavior. In this step we can W e n o w c o n s i d e r t h i s Phenomenon, which we call
follow the rules described in Section 3. t h e C o l l a P s e o f r e s o n a n c e ' a n d § i v e for ^ a s i m P l e

explanation in terms of the different harmonics that
3. From each set of harmonics we plot the corre- m a k e UP t h e perturbation function.

sponding line of log Ap/q versus logs. This set Collapse of resonance happens when the contribu-
of lines forms a convex hull representing a lower t i o n s o f t w o o r m o r e harmonics of the perturbation
bound for the amplitude of resonance of the ac- function are out of phase in some small domain of
tual perturbed twist map. ttie parameter. In this case the total contribution to

the amplitude is null and the size of this resonance
4. The transition points, where there is a change in goes to zero. We have this situation when two har-

the slope of the amplitude of resonance curve, can monies of the perturbation function have opposite
be estimated by the intersection of the straight sign and they behave as the principal contribution to
lines. the amplitude. We can estimate the range of values

i i i i

-3D - / -

4 1 - /

-9.800 - ^ ^ /

-12.90 - ^ — — / "

^ — 1 1 ^—^ 1
-6.000 -4-.900 -3.800 -2.700 -1.600

FIGURE 5. Rotation number: | . Lines 1, 2, and 3 correspond to harmonics 9, 3, and 1, respectively.
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of e where we expect to find collapse; this situation Next we take the perturbation function
takes place when the contribution of the different £
harmonics of the perturbation function are of the SMX) = ^(sm(27nr)

same order of magnitude. The asymptotic behav- _ l(T4sin(27r(3£)) - 1CT21 sin(27r(9z))).
ior of these harmonics corresponds to straight lines
in a log-log graph. For any two harmonics which T h e § r a P h o f t h e numerical computation of A4 /9 is
have opposite sign, the intersection point of the two s h o w n i n F i S u r e 6> together with the lines corre-
lines, represents the value of the parameter where spending to the asymptotic behavior of the three
the resonance could collapse. harmonics. In this case the collapse occurs in the

The next examples show how we can predict the neighborhood of the intersection of lines 2 and 3
collapse of a specific resonance. Consider the per- ( t h e l a t t e r corresponds to the first harmonic). We
turbation function c a n Predict this collapse because the first and third

harmonics have opposite sign.
efi(x) = — (sin(27rx) The Lower Bound Conjecture can be extended to

\ If)"4 sin(27r(3x)) - 10-21 sin(27r(9x))). e n c o m P a s s t h e c o l l a P s e o f resonance:

r . c , ,, . , , ,. £ ,, Collapse of Resonance Conjecture. The intersection of
Figure 5 shows the numerical computation of the _\ ,. ' , . .

,., , r A i ,i T two lines corresponding to harmonics with opposite
amplitude ot resonance A4/9 and the lines corre- ,, , r° ,

,. ,, t t. ' . . r . sign gives the value ot the parameter where we ex-
spondmg to the asymptotic behavior ot each sepa- „ r

, , . TTT i ,1 T i n pec t col lapse ot resonance ,
rate harmonic. We see that the amplitude collapses
in the region of parameters where line 1 (correspond- An important fact related to the collapse of reso-
ing to the ninth harmonic) and line 2 (third har- nance phenomenon is that the left branch of the am-
monic) intersect. In this case we have collapse be- plitude of resonance, with respect to the point where
cause the ninth and third harmonics have opposite the amplitude has collapsed, corresponds to a peri-
sign and similar magnitude. odic orbit different from the periodic orbit produced

i i i i

-MOO - / -

-6.700 - / /

-910 - j^/

^— 1 ^ - 1 ^ H 1
-6.000 -4.900 -3.800 -2.700 -1.6O0

FIGURE 6. Rotation number: | . Lines 1, 2, and 3 correspond to harmonics 9, 3, and 1, respectively. Line 4
corresponds to harmonics 1 and 3.
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by the right branch of the curve. Dynamically, the 7. AN EXAMPLE OF ANALYTICAL PERTURBATION
collapse of resonance is related to one periodic orbit TXr .

. , . , P . i We now snow an example where we compute the
whose amplitude of resonance is decreasing in some v, i r- r i .• x i ^ -

^ T i i amplitude of resonance tor an analytic perturbation
interval of the parameter; the amplitude decreases £ ,. ^ ., ,, , , ,. r

, ni function. Consider the perturbation function
until the resonance disappears: this is because the
hyperbolic periodic orbit collides with the elliptic £/(#) — £sin(acos(27nr)).
orbit that shares the same rotation number. This TTr ,, , £( x . , ,. . ,. £

. _ i n i i .p We can see that jix) is an analytic periodic function
phenomenon corresponds to a saddle-node biturca- , ,, £ ,, . £ ,. . ~ o ,, ,
. . . . . . . _ and the average of this function is 0. buppose that

tion, which in turn corresponds to a creation or de- x x ^ , ,, o Mnt rj_, . , ,
_ _ f . ... . . we want to study the resonance 3/10 of this problem

struction of a set of periodic orbits. Simultaneously, . £ , « , ' .
_ . , . . . . . . . J in a range of values of the perturbation parameter

a pair of periodic orbits with the same rotation num- rn n n w a ,, , n A1
. F . F

 x 1 . . 1 . r _ . . . , e G 0,1 . We fix the parameter a = 0.01.
ber, is created by the mechanism of the saddle-node r ^ i j - ^ x - x i - j x T T ^ - • r
. . r . T i. i r r i -*-̂ e ̂ rs^ s^eP 1S ^° ̂ ncl ̂ e Courier expansion of
bifurcation: the amplitude of resonance of the corre- ,, . , ,. £ m l . . , .«

.. . . .. . . . . . . the perturbation function. JLhis is easy to do if we
spondmg hyperbolic periodic orbit grows from zero ,. rr> i r TAI

1 1 1 1 - 1 p . mi -r̂ - i i rv • use some properties of Bessel functions Abramowitz
and behaves like a step function. Ihe Birkhoff twist , Ox ^^^

. . and Stegun 19721:
theorem shows that any twist map has at least one
pair of periodic orbits for any rational rotation num- J2^
ber belonging to the rotation interval of the map. sin(acosz) = 2 ^ J2fe+1(a)sin(27r(2A;+l)x), (7-1)
Usually, we only have one pair of periodic orbits for ~°
any value of the perturbation parameter. Collapse where J^a) are the Bessel functions of integer order
of resonance is a case where we can find two pairs i. Because we are interested in the resonance 3/10,
of periodic orbits sharing the same rotation number we must cut the Fourier series at harmonic 10:
and existing simultaneously for a small open set of 4
values of the perturbation parameter. £/(#) — 2e ̂  J2k+i(o) sin(27r(2fc+l)x). (7-2)

fc=0
( ( j ( (

^ _ L 1 / 1 1
- 3 . 9 D 0 - 2 . 8 D 0 - 1 . 7 0 0 - . 6 0 0 0 0

FIGURE 7. Rotation number: ~. Line 1: harmonics 1 and 9; line 2: harmonics 3 and 7; line 3: harmonic 5; line
4: harmonic 1; line 5: harmonics 1, 3, and 5.
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We only have harmonics 1, 3, 5, 7, and 9, and we Using only linear information for small values of
can find five linear combinations of these harmonics the parameter, we were able to predict the nonlinear
in order to reach harmonic 10. The next step is behavior of the map when the perturbation param-
to determine the asymptotic behavior of each linear eter is of order 1.
combination. The results are: The perturbation functions we have used in our

, 1 previous examples are written as sums of sine func-
Harmonics m -̂3/10 tions. The main reason to use only odd functions

1 and 9 1 3.6164 x 10~10 is related to our numerical method to compute pe-
3 and 7 1 3.2794 x 10"9 riodic orbits. When the General Standard Map is

5 1 1.0384 x 10~9 written with an odd perturbation function, this map
1 10 1.2244 x 10~7 can be described as the composition of two maps,

1, 3 and 5 4 1.5325 x 10~7 each of which is an involution, and it has a pair of
invariant curves in the plane. One can show that we

We can verify that the coefficients of the pertur- can find periodic orbits which have points in these
bation function (7-2) are positive, that is Ji(a) > 0 invariant curves, so we only need to look for the pe-
for a = 0.01. This means that we do not expect riodic orbits, for any rotation number, on the sym-
to have any collapse of resonance, in this case the metry lines. Using this method, we can simplify
amplitude of resonance must behave as a monotone significantly the numerical procedure to find peri-
function. Figure 7 shows the numerical computation odic orbits because we are able to find these orbits
of amplitude of resonance A3/10 with perturbation using a one-dimensional root-finder. Nevertheless,
function (7-1). The five straight lines correspond the method to estimate the amplitude of resonance
to the asymptotic behavior of the harmonics given can be used for any perturbation function,
above. This set of straight lines determines a good

estimate of A3/i0. The range of values of the pertur- A P P E N D I X A : HAMILTONIAN FLOWS AND
bation parameter in our example is e G (0,3.163). SYMPLECTIC TWIST MAPS

Note that we have obtained a good estimate of
A3/10 using only asymptotic information on the lin- S m a 1 1 perturbations of the integrable Hamiltonian
ear combination of five harmonics, and these asymp- system § i v e s r i s e t o m o r e complex dynamics in phase
totic behaviors were computed for values of the pa- s P a c e ' A suitable way to perturb an integrable twist
rameter close to zero. m a P i s u s i n S a generating function; in this way we

can assure that the transformed map has the same
symplectic structure. Any integrable twist map can

8. CONCLUSION be written in the form

We have presented a simple algorithm for study- . / \
mg the nonlinear behavior 01 any resonance of twist
maps. We gave several examples of how to predict where ((^,7^) G ^ x l and i G Z. In this case the
the amplitude of resonance given a rational rota- value of the function a(r) coincides with the rotation
tion number. In each case, we only needed to know number of the orbit and is a monotone function;
the asymptotic behavior of the standard map and from now on we set da{r)/dr > 0. The generating
we used a simple perturbation function composed function of the map just defined is
of a few terms of the Fourier expansion of the ini-
tial perturbation function. The hardest task was G(r i+1,<^) = r i+1<^ + 5 ( r i + 1 ) ,
determining the eigenvalue of the hyperbolic peri- w h e r e dB(rydr = a ( r ) < L e t g(r,<p,e) be an ana-
odic orbit having the same rotation number when l y t k f u n c t i o n w h i c h ig p e r i o d i c w i t h r e g p e c t t Q ^
the value of the parameter is asymptotically small. T h e n w e c a n p e r t u r b t h e e x p r e s s i o n o f t h e g e n e r a t -
Usmg this information, we could obtain a good set i n g f u n c t i o n a s follows:

of lower bounds for the amplitude of resonances and
we could predict the collapse of resonances. G{ri+U (p^ = r i + i ^ + B{ri+i) + eg(ri+i, < ,̂ e).
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Define the functions Replacing <pi+1 by (ft + pi+1 and using again the
Qg Qg implicit function theorem, we can write p i + 1 as a

hviVi6) — ~Q~^ hviViZ) ~ ~Q^> function of pi and (ft. Therefore the new map is
then given by

Then our perturbed twist map is given by

, , , x Pi+i = Pi + £7s(ft, <ft, e), (ft+i = (pi + Pi+i. (A-4)
ri+i = ri + ef1(ri+U(pue),

(ft+1 = (ft + a(rl+1) + e/2(r i+1, (ft, e). ( T h i s m u s t b e a s y m P l e c t i c maP> w h i c h means that
its Jacobian has determinant 1. This implies that

This is in fact a one-parameter family of twist maps; the function 73(ft, (ft, e) does not depend on ft. The
the parameter is £, and we assume that |e| <C 1. The final form of map (A-4) is
functions /1 and f2 are periodic with respect the
angular coordinate cp and we impose the condition P*+i ~ P + ^ Wnw? <Pi+i — ̂  + PH-I- (A-5)
lim^oe/iCr, <p,e) - 0. We call this the General Standard Map. We must

In order to study the dynamics around monotone remark that the angular coordinate cp was not trans-
periodic orbits of the perturbed map (A-l) it is con- formed from (A-l) to (A-5), so the function V(<ft e)
venient to transform it. The idea is to find a sim- remains periodic with respect to the first argument,
pie map which coincides with (A-l) in the neigh- yf^+i £\ — y(m s).

borhood of specific rotation number. This transfer- T h e m a p (A-5) might not be a global representa-
mation must be symplectic in order to preserve the t i o n of t h e dynamics of the map (A-l) because the

Hamiltonian properties of the map (A-l). A way domain of transformation (A-4) could be an open
of carrying out symplectic transformation is to find s e t of j ^ The map (A-5) can then be used around
a suitable generating function which can be used to a s t r i p of t h e cylinder S1 x R. Therefore in order to
construct the transformation. We want to trans- s t u d y mOnotone periodic orbits we can choose the
form the set of coordinates (r, <p) into new coor- Standard Map as a general representation of a twist
dinates (p,<p) with the property Pi+1 = a{ri+1) + symplectic map.
e/2(ri+i,(ft,£).

Using the implicit function theorem we can write A p p E N D | X Bs A M p L | T U D E Q F R E S O N A N C E | N T H E

ri+x as a function of (ft and ft+i, then we obtain GENERIC CASE
ri+i — 71(ft+i,(^i,e). Because e is small, this func-
tion is then written as Consider the standard map (1-1); for small values

of the parameter e we can estimate the eigenval-
ri+i — & (Pi+i) + el2\Pi+iiifi->£)- (A-2) u e s of a n y monotone periodic orbit with rotation

Therefore our generating function is given by number p/q. Suppose that V{x) is a Qk periodic
function with k > 2. The map Fq can be written

G(ft+1, (fi) = a -^p i+ i )^ + e I 72(Pt+i, «, e)ds. i n t h e neighborhood of periodic orbit, to first-order
J<Pi approximation, as follows [Veerman 1993]:

Because the second equation of (A-l) is transformed q-i
to (ft+i = (ft + p^ i , the variable (ft can be substi- yq = yx + e ̂  V(xi + iyi) + O(s2),
tuted in (A-2): 1=1

q-l

ri+l = a~1(ft+i) + ^72(ft+i,^+i -p*+i,e) Xq = x1 + qy1 + s ^ ( g - i)V(xi + iy{) + O(e2).

= a '^f t+i) + £72(pi+i, <Pi+i, e). (A-3) i=1

m, - i 1 T .,i i - i -. Using; the coordinate transformation y = p/q +
This involves only coordinates with submdex i + \, 1/0 > T i v m.

i • , 1 u - TT • t\ o\ £ 7 (> this becomesso we can replace % + 1 by 1. using (A-3), we can
rewrite the first equation in (A-l) as follows: , 2^1

Cq = Ci+ e1/2 E V^ + */«) + °^
oi pi+i + £72 (pi+i, (ft+i, e) i=i
= a'Vi+^CPt,^*^) + £f2(pi+e%(pi,tPi,e),<Pi,e)' xq = ^1 + £1/2<?Ci + ^ + O(e).
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The eigenvalues of the fixed points Xi = xq — p of this equation corresponds to a monotone periodic
and (q = d are orbit with rotation vector p/n.

(^Z^ \ 1 / 2 3. Starting with a scalar transformation y = Ĉ{o} +

2^ DV(xi + ip/q)j + O(e), p/n w e c a n find a s e t of m a p s F^ s u c h that t h e
1=1 difference between the map F^ and the identity is of

where DV is the derivate of V and the set of values order 0{ern). For each scale transformation, ({m} =
{x^ must be the solution of the equation ^C{m+i} + ^{m+i}(^) where C{m+i} is the new axial

q-i coordinate, </?{m+1}(x) is a periodic function of the
\~^ V(xi + ip/q) = 0. angular coordinate x, the new map is closer to the
i=i identity map than the previous one, the distance is

Genericlly, the asymptotic value of the eigenvalues order U[e ).
satisfies 4# The lowest-order term of the new map, after m

\\± — 1| ~ O(£1//2); transformations, is of order O(em). Consider only
^ r ^ ,., T r ! the lowest-order terms, which are polynomials in
therefore, the amplitude ot resonance is given by . . . . zl .
n r i l . , t. , J . , P ,. , , the axial coordinate Cr™* whose coefficients are pe-
the following relation, obtained from the pendulum . _. r . r

 M m ' ^
nodic functions ot the angular variable x. Ine fixed

equation: , , f . , . j * , •- .•
points ot this map correspond to monotone periodic

pi/2 /y^- i TJY(T. i jn/n) orbits of the initial map. The fixed points are ob-
Ap/g = y — — — h O(s). tained when ({my — 0; therefore the maximum num-

ber of fixed points is related to the maximum har-
However, sometimes there are no solutions of the monic of the periodic term which depends on x, the
equation YHZl V(xi + ip/q) = 0 and the eigenvalues number of fixed points is equal to the period of the
depend on values higher than \ of the exponent of e. corresponding monotone periodic orbit of the initial
This happens when the Fourier expansion of V{x) m a p . The set of monotone periodic orbits is well or-
has a null coefficient in the n-th harmonic term. In dered with respect to the rotation number, and the
this case the amplitude of resonance depends on the Aubry-Mather theory shows that there exist mono-
other harmonics of the perturbation function and tone periodic orbits for any rational rotation num-
we cannot compute this amplitude of resonance in ber that belongs to the rotation interval of the twist
a straightforward manner using the first order ap- m a p [Mather 1982]. If the maximum harmonic is
proximation of our map. l e s s than n, where n is the period of the monotone

periodic orbit we want to find, it is impossible to
APPENDIX C: ALTERNATIVE METHOD TO FIND A obtain a periodic orbit with period m. This means
RESONANT NORMAL FORM that the periodic term of order O(ern) which does

TTr , , , , ,.rr , , , , . not depend on (sm\ must be null otherwise we can
We sketch here a dinerent procedure to determine a _ . 1 / . 1 . , . . . , .

i r , , . ,. , ., r obtain a monotone periodic orbit located in a wrong
normal form around monotone periodic orbits or a . _ . . _ _ . .

, , i ! /n n\ T n • i order, lneretore we can nnd the next scale trans-
general standard map (2-2). In this case we choose r . . _ . _ c .
T . ,. i . r- j.- i x - x - - i i ^ formation where the lower order terms are or order
V as an antisymmetric function but it is possible to . TTr . . . . .

^ ^. .,_, , ,_, . ,. ra + 1. We can repeat the procedure until the maxi-
carry out our computation without this assumption. _ . r , . . . i . i i ^
^ ^ . i r i L l L . n A i r mum harmonic ot the periodic terms, which depend
Details of how to obtain these resonant normal forms . _ TTr i i n , i c

T̂ T , o . , irvorvi TT • on x, is equal to n. We denote by bn tne number ot
are given m Olvera and Simo 19891. Here is an . r . , c,,. scale transformations that we can perform until we
outline: . . l

get the maximum harmonic equal to n.
1. Given a rational rotation number p/n, compute A f t e r performing Sn scale transformations, we get

an explicit form of the n-th iterate of F , defined by a m a p t h a t l o o k s l i k e a t i m e . £ 5 n flow o f a Hamilto-

\%niyn) — £ {xo^yo). n j a n SyStem. This system is a chain of n-pendula,

2. Obtain the root of this map by solving the equa- the phase space of which looks like the diagram in

tion jFn(x, y) — (x, y) — (p, 0) = 0. The set of solutions Figure 1. The differential equation of the system is
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given in (2-9). From this equation, we can estimate This can further be written as a power series of the
the amplitude of resonance Ap/9, this amplitude is perturbation parameter e:
given in equation (2-10). n_1

Now we show how to compute Fn. First rewrite Vn — Vo + /_^ z_^ e ^(^ojj/ojj
(2-2) as a second-order difference equation: J = o seRN (C-2)

n—1

N xn = xo + nyo + ^T(n-j) ^ £sG*(£o,2/o),

xi+2 = 2xi+1 - Xi + ^eajCj sin(27r(jxi+i)), J=° seR»
j=i where the functions Gj(x,y) have the definition

where the function V(x) was substituted by equa- ^(x^y) — 2_^ 9(j,N,i,s) sin [SNi x + SNiy) .
tion (2-1), in this case we rewrite the perturbation A(j,N,i,s)

function in terms of trigonometric series. The coefficients S(j,N,i,s) a r e constant rational num-
Using basic properties of Bessel functions it is pos- bers. The sets of index RN and A(j, N, i, s) define

sible to obtain the n-th iteration of the angular vari- the domain of the index s, lb
a, i and tc in the form

able, xn, in terms of the initial values x0 and Xi. „ r ^ v^w , r77 + ̂
rv i • Ju- i +• K+ • 4-u zrn RN = [s eZ : s = J ] x wtat and wt G Z + } ;
laking this relation, we obtain the map b . L *

the numbers at are the exponents of the perturba-
n-2 tion parameter in equation (2-1). The set A^jN}ijS)

xn — nxi — {n — l)xo + 22(n — i — l)Pi(xo,Xi), (C-1) defines the domain of values of the sets of integers
*=o {/£}, where lb

r e Z, r = 1 , . . . , m and 6 = 1 , . . . , iV,
the set {i} such that i — 1 , . . . , N and the set {tc}

w e r e where tc G Z + . These sets of integers satisfy the
iv , N m x restriction

- = i ; : : : ; m V f c = 1 , = 1 / r = 1

x sin(501x - 5^x) , T h e coefficient S^ are defined by:
/ 3 - 1 Q!

where J^(x) are the Bessel functions of integer order S^ i = 2TT ̂ ^ V^ jZr.
i and the coefficients 5f^ are defined by: r=o j=i

We can check that for a fixed value of the integer
^ " 5 the domain of index lb

r is bounded, therefore the
^a,i — ̂ n 2_^\P~r) Z-/ ̂  3' maximum value of the coefficients SJ^ and SJ

N i are
r = 0 j=1 also bounded.

,, , £ , 7r . , .,, ,. , . .. The map (C-2) can be understood as a power se-
the set or numbers l\ are integers with the restriction . . \ _ . o . ^
l0 r, T r?- . xl T̂  i J u r j.' r i e s m ^ where the coefficients are a finite Fourier
q = 5!-, where 5) is the Kronecker delta function. £ ,. x . _. . .
J
 AT ^ #J . . , , ., ,1 , T TP series or coordinates x and v- J-he maximum har-
JNow, it is convenient to write the second order dit- r r t, _ . .

r ,~ . . 1<rr _ monic or any or these Jbouner series corresponds to
rerence equation (C-1) as two dinerence equations, t. . . r ^7+1 . ^7, i n r the maximum value of & J-J- and*b^-.
where we detine j / i + 1 = x i + 1 — x^ tor z = 0 , . . . ,n. ' '
Then we obtain
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