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Acknowledgements 1. INTRODUCTION

References The Riemann zeta function is defined by the follow-
ing sum for Res > 1:

OO

3 = 1

The sum fails to converge when Res < 1, but its
partial sums are well defined:

ps(n) = J2rs-
3 = 1

To study the distribution of the Ps(n) modi , we
partition the unit interval into B equal bins, Ij =
[(j—1)/B, j/B), and count how many of the partial
sums P s( l) , Ps(2), . . . , P8(N) lie in each bin mod 1.
Daniel Asimov observed that for fixed values of TV
and S, the histogram of these bin counts is wildly
different for s = | than for other nearby values of s.
Histograms with s = 0.50 and s — 0.51 are shown in
Figure 1 for same N and B. The goal of this article
is to explain the striking difference between the two
parts of Figure 1.

In Section 2 we estimate the number of partial
sums which lie in each bin. This baseline is a pos-
itively sloped ramp function with a jump disconti-
nuity down at PS(N) modi . Section 3 introduces a
random model and predicts how much bin counts
may deviate from the baseline. When s ^ | , our
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FIGURE 1. Histogram with 500 bins of the fractional parts of the first 5 x 107 partial sums of ("(0.50) (left) and
of C(0.51) (right).

numerical experiments agree closely with the pre- counting the number of partial sums in a particular
dictions of the random model. interval mod 2 is related to counting the number of

When s = \ there is structure not captured by lattice points in a triangle.
the random model; see Figure 2. The staggering in The difference between the area of a triangle and
this picture suggests that the partial sums will line the number of lattice points inside (approximately
up even better mod 2 than they do mod 1, as shown the size of the spike in the histogram) is related to
in Figure 3. To count how many times the partial three sums of the form
sum is in a particular interval mod 2, draw vertical J£^
lines at the endpoints of the interval, and count how /-^^ + ̂ J 2 >
many of the following ordered pairs land inside: k=0

where a is the reciprocal slope of one of the sides of
{{Pi/2(n)}2, LPi/2(n)J2), for 1 < n < N. t h e t r i a n g l e . Closely related to these sums is the dis-

Here 2[x\2 is the largest even integer less than or crepancy of the sequence {ka}, for k = 1,2,..., M.
equal to x, and {x}2 = x — 2\_x\2. The same symbols We present some of the classical results about dis-
[x\ and {x} without subscripts are just the usual crepancy in Section 8. For almost every a, the
integer and fractional parts of a real number x. discrepancy grows very slowly with M — hence the

We now apply a transformation which unfolds very fiat parts of Figure 1, left. When a has large
Figure 3. The walls of the bins map to sloped lines. continued fraction coefficients (that is, when it is
The ordered pairs ({Pi/2(n)}2, \P\/2{n)\2) map ap- very close to a rational), the discrepancy can be
proximately to points on the integer lattice. Thus larger and cause a spike.
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FIGURE 2. Ordered pairs ({P1 / 2(n)}, [P1/2(n)\) and FIGURE 3. Ordered pairs ({Pi/2(n)}2 , Lpi/2WJ2)
how they fall into 10 bins of equal size, for n = 1, 2, and how they fall into 20 bins of equal size, for
3, . . . , 1000. n = 1,2,3, . . . , 1000.
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As a concrete example, consider the large central 3. THE RANDOM MODEL
spike in the histogram for £(0.50) (Figure 1, left), A f t e r s u b t m c t i t h e b a s e l i n e from t h e W n c o u n t S )

which chiefly occurs in the interval [0.538,0.540). t h g m e & n ^ b e ^ m & t d o w g p r e d i c t for t h g

Modulo 2, this corresponds to the intervals 0.538, . 9

0.540) and [1.538,1.540). When unfolded, the first T , . ' , „. A , w , , . ,
\ L \ J . , i i Looking at Figure 4 we can say that each bin has

interval corresponds to a triangle whose sloped edges , , , , , 7->/Ar\ rox- o
\ 6 . «r i b e e n passed by about P8(N) « 58 times. Suppose

have reciprocal slopes approximately 1.99835 and ,, , u ,, , . T ,, . _s

•L . f i i - i that on a pass by the bin i , the spacmgs n are
2.00035. These reciprocal slopes have the continued , ,
fraction expansions:

1.99835 = [1,1,606,1,2,1,. . . ], JIL = —±
k + a Bik + a)

2.00035 = [2 ,2820 ,1 ,4 ,8 , . . . ]
The large terms appearing in the continued fraction where k G Z and 0 < a < 1. Then with probabil-
expansion indicate that the reciprocal slopes are well ity a the bin is incremented (k + 1) times and with
approximated by a rational, and so the large spike probability (1 - a) the bin is incremented k times,
is to be expected. We imagine that each bin count is a sum of indepen-

dent random variables, each with its own variance
2. THE ESTIMATED COUNT FOR EACH BIN a^ ~ a)' Averaging over alpha gives a variance of

| per pass. We therefore estimate that the variance
We estimate the number of partial sums which land o n t h e b i n C0Unts, after subtracting the baseline, is
in each bin and call this estimate the baseline. As Ps(N)/6. We expect that averaging over a G (0,1)
illustrated in Figure 4, bins just to the right of PS(N) i s o n l y v a l i d i f Ns ^ B A t t h e o t h e r e x t r e m e 5 if
mod 1 should contain about Ns/B fewer partial sums B ^ Ns then on all the passes k = 0 and a is small,
than bins just to the left. We assume that away from s o averaging over a is not valid,
this jump discontinuity, the baseline is linear, and other than the restriction Ns > B, the variance
so it must have slope equal to Ns/B. The mean of predicted by the random model does not depend on
the baseline is N/B. the width of the bin. If A1 and A2 are the counts

The jump in the histogram for C(0.51) (Figure 1, for s u c c e Ssive bins, then V a r ^ + A2) - V a r ^ ) =
right) at bin number 482 is of size 17. This jump Var(A2). So the correlation of successive bins is
discontinuity is small compared to the noise, which
is of size around 50. In the histogram for ("(0.50) CoviAi A2) 1
(same figure, left) the jump discontinuity is of size P ~ / v (AW (A^ ~ 2
14, and is visible near bin number 340.

. •. •. %l •.-.•.•.-.-. i.-.-.• •.-.•.•.•.•.•.•.•.• •.• In two numerical experiments, the observed vari-
' ;' ;'. • •• ••;. -\ • ' . . :. :.- :

; ' ; ' ; ' ; ' : ' : ' ' :'• :'* ..'•:'" •• •; •; •; '•;'; : '•: '•;' ance and tha t predicted by the random model agree.

:V ; . :^^ : /V^^••VV^ ; 0 '6^•^" : .^• ^:^''-.'••••:• ?V ' : ' : • • : W h e n s = ° - 5 1 . N = 500000, a n d B = 1000, t h e
40 .'•*.'••.'••." •.' ••' :'. ••', ••'. ••'. •'.••'.*•' .'•' ;• '• ;• :' :'• :'• !• v ;- *'.- *'.- predicted variance is 211 and the observed variance

••': : V V ' : ; ' : : ; : : :'; : : -' '(''/': '< ''-\ ''-[''•'.'''-'.'''-\''^':'l ^ 243. When s = 0.51, 7V= 107, and B = 500, the
30 : '* -.'• •' •'• •'.• :" '•; •: '•'. '•'. ' •'.' • / ••.' : ' • '. •'. ••'. ••' predicted variance is 915 and the observed variance

:* .'•' '.•• V- ':':• •'.•' .: :". ':'::-':'•' •.'•' : : •:'• i s928.
20 • •'. • •'.• .. ' .• '• : "' ..'• •'• •'.• '•; "•*. '••. The random fluctuations have a standard devi-

. ' . • . " . • . ' .• '. •.'. •. . ; .. '• .. ation proportional to N^~s^2. When s > | , the
.' • ' . • : .• ; •. ' * • . ' random fluctuations are smaller as N —> oo than

• • ' • the jump discontinuity in the baseline, which is of
0.2 0.4 0.6 0.8 1.0 size Ns/B. According to the random model, the

FIGURE 4. The ordered pairs ({P0.5i(n)}, Lpo.5i(n)J) jump discontinuity will be the dominant feature as
and how they fall into 10 bins of equal size, for n = 1, N —> oo, even though it is just barely visible on the
2 , 3 , . . . , 1000. right half of Figure 1.



340 Experimental Mathematics, Vol. 10 (2001), No. 3

4. THE SPECIAL CASE s = \ Corollary 4.3. Let n = m2 + k, where \k\ < Am. Then

We now focus on the case s — \. For the remainder k k2 1
of this note, we omit the subscript of \ from P1/2{n). P ( n ) = T + 2m + ~ " 4^3 + 2m + ° ( m ~ 2 ) -
The staggering in Figure 2 indicates that the frac- _, , , . _. _ .
,. , , f D / u r ,.rr .i i J. Proof. From the conclusion of Corollary 4.2, substi-
tional parts {F{n)\ line up differently depending on 9 , p , . _ .
xl r xl x 1 n/ \ 1 mi x tute n = 777, + & and tor each term, use the Taylor
the parity of the integer part I P(n)\. The way to , 9 ' J _
. T , , i , ,. ,, . , , T , ,, expansion centered at n — m . Disolate these two competing patterns is to look at the
partial sums P(n) mod2 instead of modi. Indeed,
the pattern in Figure 3 is much simpler. 5. COUNTING LATTICE POINTS

Since the ordered pairs ({P(n)}2, |i5(n)J2) are . r ,
, . i i r i • i i x Locally, in any small patch of Figure 3, the ordered

arranged in an orderly fashion, we are able to ap- .
proximate the partial sums P(n). In this section we
derive the approximations; in the next section we ({^>(n)}2> L^(n)j2j
use these approximations to unfold Figure 3 so that
the ordered pairs ({P(n)}2, [P(n)\2) map approxi- a r e arranged roughly in a lattice. We apply a trans-

mately to lattice points. formation which unfolds Figure 3:

Proposition 4.1. For large n< JV, (x,y) ->• ( 0 -r)y- (\-\(x- r)2) , y) .

N j The walls of the bins in Figure 3 are vertical lines,
] T -p = 2(AT1/2 - n1/2) + \{N-1/2 - n~1/2) defined by the equation x = const. These bin walls

•?=n+1 _j_/7w—3/2 _ -3/2\ , /)/ -5/2\ are mapped to lines with slope l / ( x - r ) . By Corol-
24 lary 4.3, the partial sums in Figure 3 are mapped

Proof. The formula in the proposition is a telescoping very close to lattice points:
sum. It suffices to show that

(P(m2 + k)- 2m, m) -> (k + O ^ " 1 ) , m) .
^ L = - 2 ( ( n + l)1 /2-n1 /2) + i((n + l)-1 /2_n-V2)
\ m + l Counting the number of partial sums inside a bm

- ^ ( ( n + 1)"3/2 - n~3/2) + O(n~7/2). modulo 2 is equivalent to counting the number of
slightly displaced lattice points inside a triangle. In

To approximate the terms on the right, we use Tay- o r d e r t o simpiify t h e counting problem, we ignore
lor expansions with remainder for the functions xx'2, t h e s l i g h t displacements. This introduces an error,
x x/2, and x 3/2, expanding around x = n + l. D w h i c h w e m o d e l a s t w o s u m s o f r a ndom variables
Corollary 4.2. There exists r G R such that, for large M
P(n) = r + 2n1/2 + \n~112 - ±n~3/2 + O{n~b/2).

one for each of the sloped sides of the triangle. Here
Numerically, r « -1.46035450880959. Xk is 0 or 1 with probability O(k~1) depending on

whether or not the O(k~1) displacement of the lat-
Proof. Define the sequence rn by t j c e p o i n t affects the number of lattice points in the

1,2 1 _1/2 1 _3/2 triangle. We expect that this error is O(logM) as
rn = P{n) - 2n - 2n + ^ n . M ^ 00.

By Proposition 4.1, rn is a Cauchy sequence and I n t h e n e x t s e c t i o n w e c o u n t t h e n u m b e r o f l a t"
converges. If r is the limiting value, then t i c e P o i n t s i n s i d e a t r i a n S l e ' I n P a r t i c u l a r ' w e a r e

interested in the the extent to which the number of
r = r + O(n~5//2). lattice points can differ from the area of the trian-

gle. This difference is comparable to the size of the
We used Maple to evaluate r numerically. • spike in the bin counts.
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6. ESTIMATING A SUM Defintion 7.1. Let uu u2, u3, . . . be a sequence of
^. . , T T t x T o . T , points on the torus [0,1). The discrepancy Dim) is
Given an interval 1 — (ao ,ai) m o d i , we wish to L 7 v y

count the number of lattice points inside the tri- D(m) = sup\#{j:x<Uj <y, l<j<m} — m(y — x)\
angle given by x<y

»<Ll(P(n)-«1)j+i = M + }, =sup|Z)(»;x,9)|.
x > aoy + /30, This definition is translation invariant on the torus.
x < aiy + /?!. An alternate definition (which is not translation in-

_ . n i n i i variant) is sup.. Z>(ra;0,y). These two are equivalent
The cti and $ are defined by , J ... f? ,. , ,

up to multiplicative constants:
aoy + (3o = (a0 - r)y - ( | - | (a0 - r)2) , 1

alV + A ^ (a, - r)y- (i - |(a, -r)2) 2 ° ( m ) < ^ l 2 3 ^ 0 ' ^ ! < DW'
The bottom vertex of this triangle has ̂ /-coordinate The sum in Question 6.1 may be expressed as

equal to y0 = (fio-fij/fa-ao). The number of lat- ^ = 1 fp{ka), where fp(x) = {x + 0} - \. Since fa
tice points inside is approximately the area of the j s of t otal variation 2 on the torus [0,1), Koksma's
triangle. The area will underestimate the count if inequality ([Montgomery 1994] p. 1-3) allows us to
lots of lattice points are just barely inside and will bound the sum in terms of the discrepancy of the
overestimate when lattice points are just barely out- sequence {ka}.
side. More precisely,

Theorem 7.2 (Koksma's Inequality). Let f be a function
(k,m) G L fl AI oj bouncie(i variation on the torus [0,1). Then

M

= Are*(A> + ̂ E ««b» + A> - i) ±f(ui)-m f fit) it < |D(m) %,(/).
M i=1

~ ]C ({aiy + ^ ~\)+ e r r o r- Proof- S i n c e dD(m; 0, t) = E 7 SUj - m, we have

The error term has absolute value less than V^ f(uj) ~ m / f(t)dt — / f(t)dD(m; 0, t).
1 j=i ^° ^°

o Now set
This formula for counting lattice points motivates ~
the following question: ^ ' ^

= I>(m;0,t)-|(supI>(m;0,y)+infI>(m;0,y)).
Question 6.1. Given a and p, how does 2/ 2/

i£^ x But dD(m;0,t) = dD(m,t) and supt|i)(ra,t)| =
2^{fca + ^} - 2 \D{m). Integrating by parts we get
fc=i

behave as M —> 00, and how does this depend on a V^ tt \ f *f±\ u. f j£u\i\t ±\

a n d / ? ? Z^f(ui)~mJ A*)"* = - y df(t)D(m,t).
We will show in the following section that the growth Now taking absolute values shows that the left-hand
of the sum in Question 6.1 is bounded by the dis- side of the inequality in the theorem is less than
crepancy of the sequence a, 2a, 3a, . . . modi. \D(m) ft\df(t)\, which proves the result. •

Koksma's inequality bounds the sum in Question 6.1
7. THE DISCREPANCY OF A SEQUENCE . , , Jr A. , ^ o

m terms 01 the discrepancy of the sequence a, 2a,
The discrepancy of a sequence modi measures the 3a, . . . modi. However, it is possible for the dis-
extent to which that sequence fails to be uniformly crepancy of the sequence to grow very large while
distributed modi: the sum Ylk=if^°) grows slowly. For example,
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let a — \ and j3 = | . The discrepancy of the se- oscillation has period about 110 and another has
quence | , 0 , | , 0 , | , . . . grows linearly — which is as period about 33000.
fast as possible. Meanwhile the sum E ^ i / M M T h e P e r i o d s o f t h e s e oscillations seem, roughly,
does not grow: it alternates between \ and 0. to be the denominators qk of the partial quotients.

The discrepancy gives an upper bound for the sum The amplitudes are roughly \qk/qk-i> Only those
Y^k^ifpika), but not a lower bound. In the next oscillations with period qk = O{m) have had the
section we present several results about the growth opportunity to influence the sum EJLili71"} ~ \- A t

rate of the discrepancy of a, 2a, 3a , . . . mod 1 and least once before M, say at m, we expect that all
how this depends on arithmetical properties of a. the oscillations up to qk « M are in phase and

Em f \ 1 l ( . ** . i *fe \

2 ~ 8 V ~q~i ~qi^~J'
The continued fraction expansion of a encodes in-
formation about the discrepancy of the sequence I f D(m) h a s t h e s a m e behavior as Y™=1{jn} - \,
a, 2a, 3a , . . . , Ma mod 1 and how the discrepancy w e h a v e Provided a heuristic derivation of the fol-
grows with M. For example, the continued fraction l o w i n § theorem, attributed by Beck [1994, p. 453-
expansion of n is 454] to Hardy, Littlewood, and Ostrowski (though I

have not been able to find it, at least in this form,
~~ ^ ' ' ' ' > > ' • • • ] j n ̂ he original papers [Hardy and Littlewood 1922;
_ 3 _j _ Ostrowski 1922]). For convenience, we define

7 H I A ( a , M ) = max D(m).
15_^ t V J l<m<M V J

H Theorem 8.1. Define as+1 as qs+i/qs if M > q8+u

292 H as M/qs if qs < M < qs+u and as zero otherwise.
1 j There are absolute constants c2 > C\ > 0 such that

1 + . . .
and its partial quotients are ciy^as < A (a, M) < c2 ̂ P a8.
P i _ 3 ^ _ 2 2 ps_333
q ~ i' q ~~ 7 ' q ~ 1Q6' F° r a specific value of a, the growth of A (a, M) de-

, pends very explicitly on the continued fraction ex-
P4 = 355 ps = !03993^ p^ = 104348^ pansion of a. By analyzing the growth of contin-
44 1 1 3 5̂ 33102 q6 33215 u e ( j fractiOn coefficients for almost every a, Khint-

Figure 5 plots the sum Y^jLiiJ^} ~~ I ' w^ich is a chine [1924, p. 125] was able to control the growth
lower bound for D{m), as a function of m. This of A(a,M) for almost every a, obtaining the next
sum oscillates on at least two different scales: one theorem.

" ;" lOff 200: 300 400 500 V y
' ' ' ' 5 10 15 20 25 30 35xlO3

FIGURE 5. The sum EjLili71"} - | for m = 1,2,..., 500 (left) and for ra = 1, 2 , . . . , 35000 (right).
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Theorem 8.2. Suppose that (f(M) is a positive func- and (2.99835,2.00035). The continued fraction ex-
tion and that (p(M)/M is monotone increasing. If pansions of the first two (to get the others just add

oo one to the first coefficients) are

^ ^ ( M ) < ° ° ' (8~1) «o = [1 ,1 ,606 ,1 ,2 ,1 , . . . ],

that is, if the ip(M) grow fast enough, then for al- ai = t 2 ' 2 8 2 0 ' 1 ? 4 ' 8 ' ' * * ]'
most every a, These a have a very large term early in their con-

A(a M) = O(v(lozM)) (8-2) t i n u e d f r a c t i o n expansion. Using Theorem 8.1 for
V ' ; V^V )} N = 5xlO7 and M = 7071, we know that A{auM)

as M -» oo. The constant implied by O may depend w i n b e comparable to 2826 = 1 + 2820 + 1 + 4. We
on a. / / the sum in 8-1 does not converge, then for n o w retrace our steps. The sum in Question 6.1 can
almost every a the Statement 8-2 is false. b e i a r g e ? s o t^e n u m b e r of lattice points inside the

Corollary 8.3. For almost all a, A(aM) is triangle can differ significantly from the area. Thus
the number of partial sums in the bin [0.538,540)

O (log M (log log M) £) c a n d i f f e r S ig n i f i c a n t ly from the baseline, causing a

but not O (log M log log M)). spike in the histogram.
^ , rn^^.i i i i i . ii i . i A n o t h e r spike is a t b in 211 , which is t h e in terva l
Beck 1994 has extended this corollary to higher rrv .ork _ . * ,.L. J J & 0.420,0.422), corresponding to
dimensions. L n

In order to return to the original problem, we con- (a0> a{) « (1.88035,1.88235).
elude our brief tour of lattice points, discrepancy,
and continued fractions. T h e s e r e c i P r o c a l s loPes have the continued fraction

expansions
9. APPLICATION TO THE ORIGINAL PROBLEM a0 = [1,1, 7, 2,1, 3,1,4,1, 5 9 8 , 1 , 1 , . ] ,

We began this article with the intention of explain- a i = l>> 1> ' > 1> ̂ J 2206,1,3,. . . J.

ing the large spikes in the histogram of partial sums W e h a v e o b s e r v e d that, except for the few strong

of C(|) and the surprising flatness everywhere else. s p i k e s ? t h e h i s t o g r a m of partial sums of ((0.50) (Fig-

See Figure 6 for a closeup of the biggest spike. u r e 1? l e f t) ig s u r p r isingly flat — much flatter than

the random model of Section 3 would predict. Corol-
100 400 j a r y g^ of Khintchine's Theorem offers a possible

f\ explanation. Indeed, pick a bin with random end-
100 200 / \ points (ao,ai). The deviation of this bin count is

/ \ related to sums of the form
100 000 • " \ / M

\ / V { ^ + A}-J,
99 800 \ / f^i 2

\J where c^ = a^ — r. These sums are bounded by
268 270 272 274 A(a*, M). Corollary 8.3 applies and, for almost all

FIGURE 6. A closeup of the large, central spike in choices of (ao ,ai), the value of A{auM) is domi-
Figure 1, left. nated by

logM(loglogM)1 + £

The large downward part of the spike corresponds
to bin number 270, which is the interval [0.538, as M —> oo. This is much slower than the M1/2 «
0.540). Modulo 2, this is the intervals [0.538,0.540) N^~s^2 growth rate predicted by the random model,
and [1.538,1.540). After unfolding, the reciprocal To the extent that a random bin in has random end-
slopes (a0, ai) corresponding to the sides of the tri- points, Corollary 8.3 explains why in most places the
angular regions are, respectively, (1.99835, 2.00035) histogram of partial sums of ((0.50) is flat.
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