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CONTENTS
We develop a method to compute the Hermite-Humbert con-

1 . Introduction stants 7 K n of a real quadratic number field K, the analogue of the
2. Bounds for Minimal Vectors of Humbert Forms classical Hermite constant 7 n when Q is replaced by a quadratic
3. Examples extension. In the case n = 2, the problem is equivalent to the de-
References termination of lowest points of fundamental domains in M2 for

the Hilbert modular group over K, that had been studied exper-
imentally by H. Cohn. We establish the results he conjectured
for the fields Q(>/2), Q(>/3) and Q(>/5). The method relies on
the characterization of extreme forms in terms of perfection and
eutaxy given by the second author in an earlier paper.

1. INTRODUCTION

Let K/Q be a quadratic totally real number field,

with ring of integers 0 ^ and discriminant d#. Let

S — (Si,S2) be a binary Humbert form over K

[Baeza and Icaza 1997; Icaza 1997], i.e., SUS2 are

positive definite 2 x 2 real symmetric matrices. We

denote by P C I 6 the space of such forms. The

group GL(2, 0K) of invertible 2 x 2 matrices with

entries in the ring of integers 0 ^ of K acts on P :

if U e GL(2,0K) and U^\U^ denote the images

of U under the 2 distinct embeddings of GL(2, 0^)

in GL(2,R), then S[U] = (S1[U^],S2[U^])J where

A[B] means BtAB whenever the product is defined.

The set of forms {S[U] : U e GL(2,0K)} is the

equivalence class of S. If u G 02
K, we define the

value of S at u by S[u] = S^u^^u^], and the

minimum of S is then

m(S) = mm{S[u] : 0 / w G 0 ^ } .

Let detS = det£idet52. Then det5 as well as

m(S) are class invariants of 5, and we obtain the

class-invariant function

7*:P->M>o, 7*(S) = 7 d S ^ - " ^
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Watanabe 2001] for a generalised version). Thus In particular,
one can define the generalized Hermite constant of , x_i
K (for binary forms) 7*-2 =

 M ( ^ 2 ) € F ( 2 / I 2 / 2 ) ) 0-4)
The classical case K = Q illustrates this formula

7K,2 — sup7K(oj (1-2) nicely. Any reduced positive definite binary form
S = (a,b) satisfies 0 < 26 < a < c and a = m(S).

The aim of this paper is to compute 7 K > 2 for T h e c o r
c

r e s p o n d i n g p o i n t ^S) = Zs e M is zs =
the fields Q(V2),Q(v3) and Q(V5), as well as to _h/a + ija € F = ^ € m . _ i < x < ^ ^j > x}
obtain general results towards the computation of T h u s im(^ s)-i =a = m(S) = 7 Q ( 5 ) and we obtain
7*,2- This problem has been studied by H. Cohn 7 2 = ( i nf z e F y)- i . A closer look at F shows that
[1965a; 1965b] under a different point of view. We Mz&p y = ^ 3 ^ s o t h a t ^ = 2 / ^
now briefly relate ~iK2 to Cohn's work on lowest W e n o w s h o w asse rtiOn (1-3). We will assume
points of fundamental domains in H2 for the action t h a t K h a s d a s s n u m b e r L T h e n a n y S e S P i s

of SL(2, 0K), where H denotes the upper half plane equivalent under SL(2, 0*) to a form S' = S[U]
{zeC: Im(z) > 0}. s u c h t h a t

If A = (A!,A2) eR> 0 xR > 0 , it is clear that 7^(A- . , . . , . . , .
S) = -yK(S), where X-S = (A^i, A252). This invari- m ( 5 ) = ™{S ) = S [(1,0) ] = axa2.
ance of 7^ together with its class-invariance induces This follows from the fact that all minimal vectors
a function -fK : R2^ \ P / SL(2,0^) —> M>0. Iden- of 5 are unimodular [Baeza and Icaza 1997] and
tifying R^Q \ P with SP = {(5i,Sl2) € P : detS^ = that one can transform such vectors into (1,0) by
det52 = 1}, we see that "fK2 = supSeSPm(5) and elements of SL(2,O^)- Thus replacing S by S' we
*yK : SP —> R>0 is given by fK = m(S). On the may assume m(S) = 5[(l,0)*] = aia2, where S =
other hand, the group SL(2,0^) acts o n i 2 = H x E ((a

b\ b
c \ ) , ( ^ ^ ) ) . Now zs = <p(S) € E2 is given by

by Mobius transformations by the rule • 1 » 1

(a (3\ (aWzi + pW gWz2 + pW\ ^ ^ = ( " ^ + ^ ' ~f2
 + ^ V '

^ 7 5j [Zu Z2) \ jWZl + 6W ' 7
(2)*2 + SW ) ' and hence

and we obtain a bijection (p : SP/SL(2,0x) —> 7K(S) = m(S) = axa2 = (j/ij/2)
-1.

M2/ SL(2, 0K) given by: for any S = {Su S2) € SP T h i g r e m a r k g h o w s th&t w e Q n l Q e e d t Q l o o k &%

write Si = A,A) with A{ G SL(2, R), j = 1,2. Then f u n d a m e n t a l d o m a i n s i n S p for S L ( 2 > QK) w h e r e a l l

^(5) is the class of (A; i, A2 i) in H / SL(2, QK). e l e m e n t s s h a v e t h e p r o p e r t y that (1,0) is a mini-
More precisely, if m a l v e c t o r g u c h fundamental domains can be con-

{a,j bj\ structed using Humbert's reduction theory [Hum-
3' ~~ \ bj dj J bert 1940]. The next result gives an explicit charac-

f • _ 1 „ , 1 terization of such domains.
tor j-i.,Z, then F o r ^ a ^ e Qj( a n d z = ^ ^ G H2 k t

<p(S) = class of ( Z ^ , Z ^ t ! ) - NcA*) = |«(1)^i +/3 (1) |2 |a(2)^2 +/?(2)f

Thus we have a function j K : W2 —> R>0 which on a n d d e f i n e

H2/ SL(2,0K) is given by 7^ = 7^0 tp-1. Now the Fo = p | { z e i 2 : Nai/J(^) > 1}, (1-5)
relation of fK 2 with the lowest points of fundamen- a,peoK

tal domains in H2 is clear. We assert that under <<*> /?>=OK

certain hypothesis on the field K there exist funda- where (a, /3) is the ideal generated by a and (3.

mental domains F c i 2 for the action of SL(2,0K) p r o p o s i t i o n u £ e t 5 e S P and Zet z s € H2 &e i/je

sucn tnat associated point in H2. The following assertions are
1K{ZUZ2) = (yi^)"1 (1-3) equivalent:

for all (21? 2?2) G F, where y5 = Im(^) for j = 1, 2. 1. ^K(zs) = (y^)'1 -
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2. m(S) = 5[(1,0)*]. we apply this strategy to compute *yK 2 for the fields

3. zs E F o . Q(v^),Q(\ /3) and Q(y/E).

Proof. The equivalence between statements 1 and 2
follows from the discussion above. Next assume 2, 2. BOUNDS FOR MINIMAL VECTORS OF HUMBERT
so that S[(a, /?)*] > 5[(1,0)*] for all a, 0 E 0K with FORMS

(a,/?) ± (0,0). Writing S = ( (£ £ ) , (^2 £ ) ) , we Let 5 G P be a binary Humbert form (Si,S2). Re-

§e^ call that a vector u E 02
K is minimal if S[u] — m(S).

2 If e E Uk is a unit of if, then s-u is also a minimal
J j K - a 0 ) 2 + 2bja

{j)f3u) + c ^ 0 ) 2 ) > aia2, vector of S and the set M(S) of classes of minimal
i=1 vectors of S is finite [Icaza 1997]. Moreover, as in

2 , N ft- , x , x r• , x the classical case, it is known that if S is an ex-
TT(aU)2+ 2-l-a{j)3u)+ -L3U)2)> I *. r / c \ • i i • c
Xlv^ a a- treme torm, i.e., ~iK\o) is a local maximum or 7 K ,
j=1 then the set M(S) can not be too small. Using the

Since characterization of extreme Humbert forms given in
Zs = ( h . + iJL? -h. + i l \ ? [Coulangeon 2001] we have:

Proposition 2.1. If S is a perfect binary Humbert
form over the totally real quadratic field K, then

-0UZj + a«> = 0"& + a«> + ^ i , IM^)I ^ 5-
Proof. Recall that a perfect Humbert form S of rank

and hence n o v e r a (totally real) field K of degree r is charac-

INLtf (ZQ) terized by the condition

= |-/*"*iW"|'|-0<2>* + a<«f d i m , ^ B A = " ^ " - , t l ,

j=iV V a i a j y a j / where ufu is the vector
2 /«(!)*«(!) UW*u(r)\

=n(aWa+2raW))9W+- /3W)a) -1' U ^ « r - - ' 5>«rJ ;

see [Coulangeon 2001]. Thus in our case we obtain
because b) - ajCj = 1 for j = 1,2. This shows that d i m R J2ueM(s) Ru'u = 5 and hence \M(S)\ > 5. D
zs &F0. Tracing back this computation, we see that
statement 3 implies 2. • Remark 2.2. In terms of the associated points zs e

H2, this result can be interpreted as follows: if S €
Thus any fundamental domain F for SL(2,0*) in s p i s e x t r e m e ) t h e n Zg l i e s a t l e a s t o n five h y p e r .
M2 contained in F o satisfies -yKft = ( i n f z 6 F y m ) \ s u r f a c e g {Na0(z) = 1 } o n t h e boundary of F o .
establishing the relationship between the search for
lowest points in such domains [Cohn 1965a; 1965b] Proposition 2.1 now suggests the following proce-
and the search for extreme Humbert forms. We will d u r e t o find extreme Humbert forms. First note
in the next section stick to this last point of view. t h a t a f t e r scaling a form S we can always assume
Our results (Section 3) will explain some of Cohn's m(S) = 1. The strategy then is roughly as follows:
computations and guesses. In Section 2 we will esti- , F i n d a finite s e t MR C Q2R s u c h t h a t a n y e x .
mate the absolute values of the components of min- t r e m e b i n a r y H u m b e r t f o r m i s e q u i v a i en t under
imal vectors of Humbert forms. This will enable us G L ( 2 ) QK) t o a form s w i t h | M ( 5 ) n MR\ > 5

to find a finite set of forms where we can expect to 2 F o r a n y 5_ s e t T = {uu... ,u5} c MK solve the
find extreme forms. To find them in this set, one l i n e a r e q u a t i o n s i n t h e u n k n o w n S

uses the analogue of Voronoi's theory for number
fields developed in [Coulangeon 2001]. In Section 3 siui] = • • • = S[u5] = 1.
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3. Sort the resulting forms according to scaling S —> Proof. Consider the Humbert form S[U]. Clearly,
AS, X e R>0 and integal equivalence S -> S[U], m(S[U}) = m(S). On the other hand, det S[U] =
for U e SL(2, 0K). NK/Q(det Uf det S, so that

4. Test for perfection and eutaxy of the remaining i , S\U\
forms using [Coulangeon 2001]. N x / Q (det Uf = ^ .

Theoretically the existence of the set MK is assured Now
by the reduction theory of P. Humbert [1940]. But det S[U] = det SV[£/(1)] det S2[U{2)]
unfortunately the description of the set of reduced < (1) lv(i)])(s \uW]s2\vW])
Humbert forms involves unexplicit constants, which — v L j L JA L J L \)
are difficult to estimate. The results in the next = m(S) = det S^fK(S) .
three lemmas will enable us to construct an explicit Hence

^ MK' NK/Q(det Uf < 7K(Sy < 7^,2. •
Lemma 2.3. Let S = (SUS2) 6 P , with . , , n ±, c , x . mj_ , Tyr J_.

As usual, we define the fundamental unit of K as the
(ai bi\ uniquely determined fundamental unit e subject to

1 ~ \bi Ci J the condition that e0 = £(1) > 1. We also define a
constant CV, depending only on K, as

for i = 1,2 and u= (a, /?)* eO2
K. Then

t CK = sup infu=(a.>J/)60^||7/-^||oo.
|N M l < l°lC2 S{U) v=(^)eK>
I K/QW I _ Y m ^ m ^ IK,2i W e a l g o d e n o t e b y | e i 5 e2} t h e standard basis of 02

K.

. / a1a2 S(u) Lemma 2.5. / / h{K) = 1, any binary Humbert form
| K/Q\P) — Y m(g\ m(cj\ 7K,2I yjtffo ai least 2 minimal vectors admits a representa-

tive S = (Si, Ŝ )} modulo scaling and integral equiv-
ln,(i) /9(2) I < / a2Ci S(u) alence, such that
| a P l-ym(S)m(S)7K^ m (2)

1- ^(5) = 1, ex G M(5) and 5i[e^] - S2[e{2)] = 1,
(2)̂ (1)1 < / a i c 2 S(^) 5o t/iot

Proof. We have \ \ bi Ci J \b2 c2 J J '

S'lu^} = a-a^2 + c-3^2 + 2b-a^0^ *̂ ̂ n^ °^er minimal vector admits a representative
,2 u = (x,yY modulo units satisfying

_ ^ + | a < « - + ^ a < . » ' ) l x W | < v _ _ { l + C j t e 6 v r a _

* Proo/". That one can assume that e1 is minimal is
and the same inequality holds replacing a by /?, and clear since hK = 1 and any minimal vector is primi-
ai by Q respectively. The conclusion follows, writing tive, i.e., its coordinates are coprime. The condition
S(u) = Stiu^S^uW] in all four possible ways, and 5i[e^] = S2[e{2)] = 1 is then easily fulfilled by seal-
using ing.

m(S) For the second assertion we proceed in several
^/I^H^I ~ 7 K ' 2 * steps: first, let u2 = (x2,y2), with y2 ^ 0, be a

second minimal vector. We know from Lemma 2.4,
Lemma 2.4. Le*« = *(«,/?) and v = > , M ) € 02

K be a p p ] i e d to JJ = ^ ) , that |NK/Q(y2)| < 1K<2.
minimal vectors of S, with v 4. O^u, and U = \ ). , . , /,in „ „ .
Then

 J * K V l / / i ; Let c'i = Ai[uf], for t = 1,2. Since u2 is mini-
mal and we are assuming that m(S) = 1, we have

|NK/Q(detEf)| < lK2. C,^ = x Multiplying u2 by a unit 77 = ek, k e Z,



Baeza, Coulangeon, Icaza, and O'Ryan: Hermite's Constant for Quadratic Number Fields 547

changes ci/c^ into e^djd2, so we can assume that and that
eo2 < c'x/4 < eg, whence , ,

| N K / Q U / / A ) | <1K>2,

x < c, < XO) AW * ^ l 7 * ' 2 < ^ 7 * ' 2 ' <2-5)

Let y = {y e 0K \ {0} : |N* /Q(y)| < 7 K , 2 } , and \&\W - ^^^2 < V^7*,2- ,

define y to be the set of y e Y such that y ^ < Clearly, A being fixed, the set of x € 0 * satisfying
|y(1)| < ,/£olKJ and ^Js^ < |y(2)| < y/so-yKt2. This (2-4) and (2-3) is finite, and then, inequalities (2-5)
set is finite and any y € Y admits a representative a n o w o n i y a finite set of values for y. Going back to
modulo units in Y. Thus, replacing 5 by S[U] with (2-1), we see that
U = (Q °), for a suitable unit 77, one can assume that
y2 is in Y (indeed, replacing S by S[U] amounts to \y(i)\ _ \V 1 L ( 0 I
replace e2 by 77e2, so y2 is replaced by r)~1y2, while l^wl

x2 remains unchanged). is bounded, and that
We can moreover assume, replacing 5 by S[[o ')J

for a suitable q € 0K, that (i) 5 « j/W (i) | x « | |yW| (i)
| s I - A W + AWX2 - w \ \wr2 '•

I x ^ l ^ C ^ , t = l ,2.
The explicit bounds of the lemma are then easily

Finally, let u = (x,y)* be any minimal vector; deduced from the various inequalities we have es-
we show that, up to units, its coordinates can be tablished. •
bounded according to the lemma. We claim that _ n _
,, • 4. \ /o -J.V. 1 AT /ANI / 1 In some particular instances, the preceding lemmathere exists A G 0K with N * / Q ( A ) < 7^,2 such F . . ' F &

., , A /a _ /n 1 / ^ 1 c a n ^e r e s^ a ted m a simpler way. We say that b
admits a unimodular pair 01 minimal vectors 11 there

^ ^ exist u, v G M(iS) such that 0Ku © 0 ^ ^ = 02
K.

u = - e i + - u 2 , x,y eQK. (2-1) T h e n .

The set choice of such As is stable under multipli- Lemma 2.6. / / /i(if) - 1, any Humbert form admit-
cation by units, so we can assume without loss of tin9 a unimodular pair of minimal vectors is equiv-
generality that alent, up to scaling and integral equivalence, to a

form

^ l l W A ) ! < |AW| < ^OINK/QCA)!, ^ S=((1 bl) (l b2 X\

with EQ1 < c < e0. Moreover, M(S) D {ei,e2}
which allows a finite set of values for A. Finally, hav- and any other minimai vector admits a representa-
ing fixed A G O K satisfying (2-1) and (2-2), we can tive u = ^ yy moduio units satisfying
still multiply u by a unit so as to have, for instance:

|N J C / Q(x) |<7 J f ,2 , |NX / Q(y)| < 7 K , 2 (2-6)

^/eo'lNic/QCx/A)! < | ^ y | < ^ O I N ^ / Q C X / A ) ! , a n d

~(2)

V ^ I N ^ Q C X / A J I < | ^ y | < yle»\KKIQ{xl\)\. |y(D| < V ^ 2 ? | ( 2 ) | < v ^ ^
A

 (2_3) F ( ) l F ( ) l
Using Lemma 2.3, we infer that Proof. The assumption that S admits a unimodular

pair allows to take u2 — e2 and A = 1 in the proof
|NK/Q (5/A)| < v / c i c27x2 = 7x,2 (2-4) of Lemma 2.5. The conclusion follows. •
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Having explicitly described the set MK, we can pass Lemma 3.1. Let S G P 2 ,K and v{ = (a*,/^)* G M(S)
on to step 2 of the algorithm, that is solve the sys- for 1 < i < s, and let Vij, for 1 < i ^ j < s, 6e £/ie
terns determinants of the corresponding pairs:

S[u1] = - = S[ui] = l, (2-7) vtj = 6et(aJ °A .
\ Pi Pj J

for all 5-sets T = {u\,... ,UK\ in MK subject to mi r n i j 7 .,, 7.
1 l j .' 5 J K J T/ien, /or a fixed prime ideal p, wzi/i corresponding

the condition that any pair of vectors in T satis- 7 .. , r , r . • n ^ f1 -i .
J K valuation vp, we have: If {i,j,k} C { l , . . . , s } is or-

ties Lemma 2.4. According to Lemma 2.5, we can , , ,, , / x . / / N / u ,,
° aerea 50 ma^ ^ ( ^ 7) > max v, ^ fcjj^ol^? fe))? ^ e r ^

assume that u± = e i5 and write
^ K i ) > vpKfc) - vpK*) .

^ = ( ( J, ) ' ( / ) ) ) ' ^n Par^cu^ar'? */ {*? j } ^5 suc/i t/ia^ ^p(^j) is maxi-
mal among all pairs {i, j } , we /lave

So (2-7) is a system of polynomial equations in U p ( v . ,} > ^ . ^ = Uj>(%fc) / o r fc _̂  ^ ^
the 4 variables 61? Ci, 62, c2 that we can solve us-
ing elimination theory (see the examples in the next Proof- Expressing vk as a linear combination, with
section). When the condition of Lemma 2.6 is sat- coefficients in K, of v{ and Vj, we get
isfied, we can assume that u2 — e2 and the number _ / n \ _ vk,i vk,j
of variables reduces to three (ci = c2 ). Finally, 5̂<7 Vj,»
since minimal vectors are defined up to multiplica- fvk:iai — Vk,j®j Vk^Pi — Vk,jPj\
tion by units, and M(S[U]) = U'1M(S) for any = y ~^~~ ' ~ ~^~~ J '
U G GL(2, OK), we need to consider these different , . ., , ,. . . , 7 TC , ,

. ' ' , r „ . . and similarly permuting z, 7 and /c. It ^ ( ^ i) were
5-sets in M ^ only up to the following equivalence , . , 1 1 ^ T_ n / \ i / \ /, ^

° ^ strictly less than both ^ ( ^ ^ j and ^p(^,/c), then the
valuation of ak and /?& would be strictly positive,

Definition 2.7. We call two 5-sets {uu ...,u5} and contradicting the primitivity of vk. ThusnlYo"^ 1 ^ 6qUiVfn!^rf th!r\eXiStS ^ ^ V^V^ * minKKO^K*)) ,GL(2, 0 K ) and ( e i , . . . ,e5) G C/̂  such that
and this holds for any permutation of i, j , &. This is

Uui — £iVi, i = 1 , . . . , 5. easily seen to imply the assertion of the lemma. •

This remark shortens notably the computations in 3A K - Of /5)
the next section. _,

Beside (John s general upper bound 7 K 2 < a x / 2 =
2.5, we can use in this case Gotzky's estimate [1928]

3. EXAMPLES 1 6

Let K = Q(Vd), with d > 0 a square free ratio- ^Q(^),2 - _ g + ^ / ^

nal integer, and suppose that hK = 1. As usual, Then Lemma 2.4 implies that any two noncolinear
we identify K with a subfield of R, i.e., we fix an minimal vectors of S G P generate Q2

K, so Lemma
embedding of K, and we denote by x' the image of 2.6 applies to any Humbert form S with #M(S) >
xeKby the nontrivial element of GalK/Q. 2, and in particular to any perfect Humbert form.

As mentioned above, the computations are much go w e c a n restrict to forms
more easy if one can restrict to forms admitting a / V l b \ / l & \ \
unimodular pair of minimal vectors. It turns out ^ = I i 6 / ' 1 b c " 1 / / '
that, for some small discriminants, one can show a
priori that this condition will always hold for Hum- w i t h m(S) = L T h e right-hand side of (2-6) is
bert forms with sufficiently many minimal vectors— l e s s t h a n 2> a n d f o r t h e s a m e r e a s o n a s b e f o r e ' t h i s

for example, perfect forms. This is based on obser- i m P l i e s t h a t t h e coordinates of minimal vectors dis-
vations of the following kind: t i n c t f r o m e i a n d e2 a r e u n i t s - U P t o multiplica-

tion by a suitable unit, we can assume that these
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vectors are of the shape (a, 1)*, with a G [/#, and and
Lemma 2.6 provides explicit bounds for a, namely / / i i / \ / i \ \
a € {±1, ±r, ±r '} , where r = § (l + y/E). Finally, S' = ( f ^ 5 [ ) , ( i \ ~2{ ) ) •
taking into account that each pair of minimal vec- ^ ̂  2 / \ 2 / /
tors has to satisfy Lemma 2.4, it is easily seen that, But the two are equivalent:
up to equivalence in the sense of Definition 2.7, the

only 5-set to consider is 0/ _ -2 P | ( —1+7" —l+r\ l

T = {(l ,0)*,(0, l) i , ( l , l ) t , (r , l ) i , (-r ' , l )«}. l-V 0 1 ) \

The requirement that vectors ueT satisfy S(u) = 1 S i n c e w e k n o w f r o m [Coulangeon 2001] that there
amounts to requiring that the following polynomials a l w ay s e x i s t s a t l e a s t o n e P e r f e c t f o r m a n d a t l e a s t

in c, &! and b2 vanish simultaneously: o n e e u t a c t i c f o r m ' w e conclude that 8 is perfect and
eutactic. This can of course also be checked using

(1 + 2b2)c
2 + (1 + 262)(1 + 26i)c + (1 + 2^), (3-1) the original definitions. Thus:

r'(T'+ 2b2)c
2-(rf + 2b2)(r + 2b1)c+r(r + 2b1), (3-2) Theorem 3.2. Up to scaling and equivalence under

T(_r+2b2)c2 + (-r+2&2)(-r/+26i)c+T/(-r/+261). GL(2,0K), the form § is the only binary perfect
(3_3) Humbert form overQ(y/5). It has #M(S) = 5 min-

imal vectors, and is moreover eutactic, hence ex-
Eliminating b2 between (3-1) = 0 and (3-2) = 0 treme. Consequently
yields

4
(8rc2 + (8+8r)c)^ + ((4+4r)c3 + 16TC2 + (8+12r)c)61 7Q(V5),2 = 7(§) = - ^ .

+(2c4 + (4 + 2r)c3 + (2 + 6r)c2 + (2 + 4r)c) = 0

and doing the same between (3-1) = 0 and (3-3) = 3B. K = Q(>/2)
0 yields In this case we can again apply Lemma 2.6, thanks

( ( 8 + 8 r ) c 2 + 8 r c ) 6 2 + ( ( 8 + 1 2 r ) c 3 + 1 6 r c 2 + ( 4 + 4 r ) c ) 6 i to the following lemma:

+((2 + 4T)C4 + (2 + 6r)c3 + (4 + 2r)c2 + 2c) = 0. Lemma 3.3. Any binary Humbert form S over Q(A/2)

_ . . . _ . . . . . . with #M(S) > 3 admits a unimodular pair.
Jb mally, eliminating b1 between these two equations,
we find that c has to satisfy Proof. We let #M(S) = {vx,..., vs}, s > 3, and use

. , N9/ 4W ,/iw o x the notation ^ i 7 for the determinants of the vari-
c 5 (c - l ) 2 (c - r 4 ) (c - r / 4 ) (c 2 + 3c+l) = 0, (3-4) . . M T Q 1 A ,, ,

v y v yv /v y ous pairs, as in Lemma 3.1. Assume that no pair
whence c = 1, r2 or r/2. If one substitutes the value is unimodular, i.e., none of the Vij is a unit. From
c = 1 into (3-2) and (3-3), the two equations are Lemma 2.4, using the bound *yK2 < |^K|/2 = 4, we
easily seen to be equivalent, so the initial system see that the only possible prime divisor for Vij is
eventually reduces to the system p = \/2OK, and that all viyj must satisfy vp(vij) =

(1 + 2b2) + (1 + 262)(1 + 2b,) + (1 + 26x) = 0, L W i t h o u t l o s s o f generality, we can assume that
Vi — (1,0)*. Writing vi — (a^,/?^*, and multiplying

r\rf + 2b2) - (rf + 2b2){r + 2bx) + T(T + 2&i) - 0. e a c h v. b y a s u i t a b l e unit5 w e c a n therefore assume
Using the conditions 1 - b2 > 0 (A{ > 0), calcula- t h^t fr = y/2 for 2 < i < s. The ^ being primitive,
tion yields (bu b2) = ( - | r , -\r') or (|r', | r ) . It is we moreover have that ^(a*) = 0, 2 < i < s. Now
then easily checked that substituting c = r2 or r'2 t he condition ^p(^?j) = 1, for 2 < i < j < s reads
in (3-l)-(3-3) leads to equivalent solutions modulo vp(ai - a5) = 0 = vp(ai) = vp(aj), which is impos-
integral equivalence. Thus, we have shown that the s i b l e (0*7P - F2). So at least one vfji is a unit. •
only possible perfect binary forms over Q(\/5) are ^T , n A r ) T , , . r n ^ , £ ,

J * F J Y V V ; We used PARI to classify all 5-sets of vectors sat-
<>_f{ 1 ~2 r > \ ( ^ ~2rf\\ isfying Lemmas 2.3, 2.4 and 2.6 according to the

y y — | r 1 / \ ~\T' 1 / / equivalence relation of Definition 2.7. There are two
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inequivalent sets to consider: minimal vectors, and is eutactic, hence extreme.

^ = {(1,0)*, (0,1)*, (-1-72,1)*, (-V2,l)\ (-1,1)*}, Consequently

r2 = {(l,0)«, (0,1)', (-l-v/2,1)*, (-N/2,1)*, (1,1)*}. 7Q(V2),2 = 7(§i) - ^ T ^ -

They correspond each to a system of polynomial
equations, analogous to the system of the previous 3C. K = Q(\/3)

section given by the vanishing of (3-l)-(3-3). As L e m m a 3 . 5 . Any binary Humbert form S overQ(VZ)
before, we eliminate successively b2 and bx and fac- with #M(S) > 5 admits a unimodular pair.
torize over K the resulting polynomial in c, to find
that c has to satisfy Proof. We use the same notation as in the previous

subsection and assume that none of the Vij is a unit.
(c2 - (2 + y/2)c + 3 + 2V2) Thanks to Lemma 2.4 and to the bound '

x ( c 2 - ( l + ^ - ( 3 + 2^2)) 7 , , 2 < ^ l = 6, (3-7)

x (c2 - V2c - 1) = 0 (3-5) . .
v ' the only possible prime divisors for the v^- are p =

in the case of Tu or \/30*- and q = (1 - y/3)0K> Moreover, a given vid

(C4 _ (10 + 4v/2)c3 + (4 + 4\/2)c2 cannot be divisible by both p and q, since

+ (14 + 8V2)c - (3 + 2>/2)) |N*/Q(P<1)| = 6 > 7*,2-

x /C2 _|_ /]_ _j_ s/2)c — (3 + 2-\/2)) = 0 (3-6) We c l a i m that P or q has to divide all Vij simulta-
neously. Suppose, for instance, that p divides v^j.

in the case of T2. B y L e m m a 3 1? f o r a n y k ^ ^ e i t h e r p divides
One can compute the real positive roots of these b o t h y. fc a n d Vj ^ QT b o t h h a v e v a l u a t i o n 0 . But

equations, substitute these values of c in the initial i n t h e g e c o n d ^ y. fc a n d Vj fc w o u H b e d i v i s i b l e

system, and then solve the corresponding systems b y ^ a n d g o w o u l d y. .? b y L e m m a 31 a g a i n S o

in W and b2. Afterwards, one has to check that the p q w o u l d d i v i d e y, ̂  wh[ch ig i m p o s s i b l e . T h e s a m e

resulting form are positive definite, and that their h o l d g r e p l a c i n g p b y q? w h i c h p r o v e s t h e c l a i m . L e t

minimum is 1. In the case of T, and equation (3-5), m = m a x . < . ̂ . . y F r o m L e m m a 2 4 a n d b o u n d

the only root that leads to a Humbert form is ̂ ± ^ , (3_7)? o n e h a s m < 2. If m = 0, then all vid are di-
the positive root of c 2 - v ^ c - 1 , and the correspond- visible by p, with valuation 1, and we easily derive
ing form is a contradiction, arguing exactly as in Lemma 3.3.

( / i 1+V2 \ / i 1-V2 \ \ So we assume that m > 1. Due to the previous

I 51 I , I V6-X/2 I I ' remarks, this implies that all vitj are divisible by q.
V ~~2 2 / V ~1 2 / / We claim that for a given z, and for j ^ k one cannot

In the case of T2 and equation (3-6), the only root have vq(vid) = vq(vitk) = 2. Indeed, if such a triple
that leads to a Humbert form is l i ^ ( v / 5 - 1) (pos- {h3, k} existed, we could assume, up to a change of
itive root of c2 + (1 + V2)c - (3 + 2>/5)), the corre- b a s i s ' t h a t vi = (x> °)* ( s i n c e v< i s Primitive), Vj =
sponding form being (<Xj>0jY> Vk = {<*kiPk)\ with vq(/?,•) = vq(/3fc) = 2,

^ \ / 1 ^ 2 \ \ and ^ (a j ) = vq(afc) = 0 (primitivity of ^ and
§ _ I [ 2 I I 2 \ | i;fc). Scaling ^ and vfc by suitable units, we can

2 ^ ^ (i+^KVs-i) J ' ^ -^2 (i-^KV5+i) j y * moreover assume that fa = /3fc. Now the condition
, v . Vp(vifc) < 2, implies ^(afc—a^) = 0, which is impos-

But it is readily checked that ra(S2) < 1; for in- .u\ J',' , 1, , ^. n •y/ .,, , , ro /m /K t /K\\ J * PTK i Sl^e \®K/<\ — F2). Finally, assume, without loss of
stance, S2( 2 + V 2 , - l - V2 ) = 7 - 2\/lO < 1. r f l i , . /1 n(t r™ • ,

VL v generality, that vx = (1,0) . The previous observa-
tion, together with the assumption that q divides all

Theorem 3.4. Up to scaling and equivalence under the vitj, and the fact that #M(5) > 5, imply that
GL(2,0x), the form §i is the only binary perfect vq(vij) — vq{vi^) = vq{v^i) — 1 for at least three
Humbert form over Q(\/2). It has #M(Si) = 5 distinct integers j , fc, Z, and that one of the pairs, say
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{j, &}, satisfies vq(vj,k) — 1- Using the coordinates Humbert form over Q(\/3). It has #M(§[) = 12
of Vj and i>fc, scaled by suitable units, we conclude minimal vectors, and is eutactic, hence extreme.
again that vq(ak) = vq(aj) = vq(ak - oij) = 0, a Consequently
contradiction. • -. _ _/<>/ \ _ ^

Here the classification of 5-sets of vectors satisfying
Lemma 2.3, 2.4 and 2.6 is considerably more com- REFERENCES
plicated. There are 37 such sets to consider, up to ^ ^ R ^ ^ M L ^

the equivalence relation of Definition 2.7. We solved Humbert-Minkowski's constant for a number field",
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, , „ u x r • -j.' J ^ - X rrr, r u [Cohn 1965a] H. Cohn, "A numerical survey of the
tual Humbert forms i.e., positive definite. 1 hey fall L

 n r . TT..- ' . . . ,, , . .
_ .. . . I T . i - 1 tloors of various Hubert fundamental domains , Math.

into 2 distinct classes modulo integral equivalence ^ 1 9 (ingt^ 504-̂ 05
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tal domain of the Hilbert modular group", pp. 190-
T[ = {(1,0)*, (0,1)*, (-u, V3)\ 202 in Theory of numbers, edited by A. L. Whiteman,

(_1_V35 v^)*, (-u, 1+V3)*}, Proc- Symp- P u r e M a t h- 8 ' 1965 '
, ^ / ? r . i r i i - r - / o v / / 7 7 \ [Coulangeon 20011 R. Coulangeon, "Voronoi* theory over
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