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We develop a method to compute the Hermite-Humbert con-
stants 7y, , of a real quadratic number field K, the analogue of the
classical Hermite constant 7y,, when Qs replaced by a quadratic
extension. In the case n = 2, the problem is equivalent to the de-
termination of lowest points of fundamental domains in H? for
the Hilbert modular group over K, that had been studied exper-
imentally by H. Cohn. We establish the results he conjectured
for the fields @(v/2), @(v/3) and @(v/5). The method relies on
the characterization of extreme forms in terms of perfection and
eutaxy given by the second author in an earlier paper.

1. INTRODUCTION

Let K/Q be a quadratic totally real number field,
with ring of integers Ok and discriminant dg. Let
S = (51,52) be a binary Humbert form over K
[Baeza and Icaza 1997; Icaza 1997, i.e., S;, S, are
positive definite 2 x 2 real symmetric matrices. We
denote by P C R® the space of such forms. The
group GL(2,0k) of invertible 2 x 2 matrices with
entries in the ring of integers Ok of K acts on P:
if U € GL(2,0k) and UM, U® denote the images
of U under the 2 distinct embeddings of GL(2, Ok)
in GL(2,R), then S[U] = (S:[UD], S,[U®?]), where
A[B] means B*AB whenever the product is defined.
The set of forms {S[U] : U € GL(2,0k)} is the
equivalence class of S. If u € 0%, we define the
value of S at u by S[u] = S;[uM]S,[u?], and the
minimum of S is then

m(S) = min{S[u] : 0 # u € O%}.

Let det S = det.S;detS;. Then detS as well as
m(S) are class invariants of S, and we obtain the
class-invariant function

m(S)

1x(5) = gy (D

Tk - P— R>0a
This function is bounded by the constant (£)?|dk|
[Icaza 1997]. Actually Cohn has shown that 1|dx|
is a bound for v, (see [Cohn 1965b] or [Ohno and
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Watanabe 2001] for a generalised version). Thus
one can define the generalized Hermite constant of
K (for binary forms)

Y2 = sup v (5) (1-2)
SeP

The aim of this paper is to compute ~g, for
the fields Q(v/2),Q(v/3) and Q(v/5), as well as to
obtain general results towards the computation of
Yk, This problem has been studied by H. Cohn
[1965a; 1965b] under a different point of view. We
now briefly relate v, to Cohn’s work on lowest
points of fundamental domains in H? for the action
of SL(2,0k), where H denotes the upper half plane
{z € C:Im(z) > 0}.

If A= (A1, A2) € Rog xRy, it is clear that 4y, (-
S) = vk (S), where X\-S = (A151, A2S2). This invari-
ance of v, together with its class-invariance induces
a function vy : R2\P/SL(2,0x) — Ryo. Iden-
tifying R2, \P with SP = {(5;,5;) € P : det S; =
det S; = 1}, we see that v, = supgegp m(S) and
Yi : SP — Ry is given by v = m(S). On the
other hand, the group SL(2, Og) acts on H* = HxH
by M&bius transformations by the rule

o /8 a(l)zl + ﬂ(l) a(2)z2 + 18(2)
(Zla 22) = ) )
v o4 ")/(1)251 + 5 7(2)22 + §(2)

and we obtain a bijection ¢ : SP/SL(2,0k) —
H?/SL(2,0k) given by: for any S = (S, S,) € SP
write Sj = 14.]14?7 with Aj S SL(2,R),] = 1,2 Then
©(9) is the class of (A;%, A;'i) in H?/SL(2, Ok).

More precisely, if
_ (@ b
%= (bj dj)

for j = 1,2, then

a1 Q2

©(S) = class of <

Thus we have a function Y : H2 — R+, which on
H?/SL(2,0k) is given by 7x = v, 0 ¢~ !. Now the
relation of 7y , with the lowest points of fundamen-
tal domains in H? is clear. We assert that under
certain hypothesis on the field K there exist funda-
mental domains F C H? for the action of SL(2, Ok)

such that
Ak (21, 22) = (y192) ™ (1-3)

for all (z1,2) € F, where y; = Im(z;) for j =1, 2.

In particular,

. -1
T2 = (lnf(zl,Zz)EF(yl"J2)) (1-4)

The classical case K = Q illustrates this formula
nicely. Any reduced positive definite binary form
S = (‘;IC’) satisfies 0 < 2b < a < ¢ and a = m(95).
The corresponding point ¢(S) = 25 € H is z5 =
—bla+if/aeF={zeH:-1<z<1|>1}.
Thus Im(zs)™! = a = m(S) = 7p(S) and we obtain
v2 = (inf,erpy)™'. A closer look at F shows that
inf,er y = v/3/2, so that v, = 2/4/3.

We now show assertion (1-3). We will assume
that K has class number 1. Then any S € SP is
equivalent under SL(2,0k) to a form S’ = S[U]
such that

m(S) = m(S') = S'[(1,0)"] = a;a..

This follows from the fact that all minimal vectors
of S are unimodular [Baeza and Icaza 1997] and
that one can transform such vectors into (1,0) by
elements of SL(2,0x). Thus replacing S by S’ we
may assume m(S) = S[(1,0)] = a1a, where S =
((52%),(%2%)). Now zs = ¢(S) € H? is given by

b1 b2 c2

and hence

Y& (S) =m(S) = ara; = (y1y2) "

This remark shows that we only need to look at
fundamental domains in SP for SL(2, Ok ) where all
elements S have the property that (1,0) is a mini-
mal vector. Such fundamental domains can be con-
structed using Humbert’s reduction theory [Hum-
bert 1940]. The next result gives an explicit charac-
terization of such domains.

For any «a, 3 € Ok and z = (21,2;) € H? let

Nas(2) = |aW2; + 5(1)|2 |a®2, +5(2)|2
and define
FO =

[\ {z€B:Nap(z) 21},  (1-5)

a,Be0k
(a,8)=0k

where (o, ) is the ideal generated by a and .

Proposition 1.1. Let S € SP and let z5 € H? be the
associated point in H2. The following assertions are
equivalent:

1. Ak (2s) = (h1y2) ™" -
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2. m(S) = S[(1,0)'].

3. zg € Fy.

Proof. The equivalence between statements 1 and 2
follows from the discussion above. Next assume 2,
so that S[(e, 8)'] > S[(1,0)!] for all @, 8 € Ok with

(e, 8) # (0,0). Writing S = ((1%),(52%)), we
get

2
[1(a;09? + 25,0989 + ¢;89?) > aya,,

j aj;
Since
b, 1 by 1
zs = (——~ +1—, —— +z—),
a3 a 3 a2
we have
, . b , G)
—ﬂ(])zj +a¥ =02 4 o0 4 ﬁ__i’
a; a;
and hence
N_ga(2s)

= |—ﬁ(”zl+a“)|2 I_ﬁ(2>z2+a(2>|2

2 2
= H(ﬁ(”z (% _ 55) +2%a(1)5(1) +a(f)2>
o : a2 .

J J

_J‘a(j>5<j)+fzﬂ<j)z) >1
a; a; -

il
o S

(au)z 12

<.
Il
-

because b3 — a;c; = 1 for j = 1,2. This shows that
zs € Fy. Tracing back this computation, we see that
statement 3 implies 2. O

Thus any fundamental domain F for SL(2,0f) in
H? contained in Fq satisfies vg , = (inf.cr y132) 7%,
establishing the relationship between the search for
lowest points in such domains [Cohn 1965a; 1965b)]
and the search for extreme Humbert forms. We will
in the next section stick to this last point of view.
Our results (Section 3) will explain some of Cohn’s
computations and guesses. In Section 2 we will esti-
mate the absolute values of the components of min-
imal vectors of Humbert forms. This will enable us
to find a finite set of forms where we can expect to
find extreme forms. To find them in this set, one
uses the analogue of Voronoi’s theory for number
fields developed in [Coulangeon 2001]. In Section 3

we apply this strategy to compute ~ , for the fields

Q(v2),Q(v3) and Q(v5).

2. BOUNDS FOR MINIMAL VECTORS OF HUMBERT
FORMS

Let S € P be a binary Humbert form (51, S2). Re-
call that a vector u € 0% is minimal if S[u] = m/(S).
If ¢ € Uy, is a unit of K, then eu is also a minimal
vector of S and the set M(S) of classes of minimal
vectors of S is finite [Icaza 1997]. Moreover, as in
the classical case, it is known that if S is an ex-
treme form, i.e., v, (S5) is a local maximum of 7y,
then the set M (S) can not be too small. Using the
characterization of extreme Humbert forms given in
[Coulangeon 2001] we have:

Proposition 2.1. If S is a perfect binary Humbert
form over the totally real quadratic field K, then
|M(S)] > 5.

Proof. Recall that a perfect Humbert form S of rank
n over a (totally real) field K of degree r is charac-
terized by the condition

dimg Z Rulu = 7'_71(712_+Q —7r4+1,
uEM(S)
where u'u is the vector
u Wty TG
(sl[uw] S 0] >;

see [Coulangeon 2001]. Thus in our case we obtain
dimg 3, ¢ pr(s) Ru'u = 5 and hence [M(S)| > 5. O

Remark 2.2. In terms of the associated points zs €
H?, this result can be interpreted as follows: if S €
SP is extreme, then zg lies at least on five hyper-
surfaces {No,(z) = 1} on the boundary of Fy.

Proposition 2.1 now suggests the following proce-
dure to find extreme Humbert forms. First note
that after scaling a form S we can always assume
m(S) = 1. The strategy then is roughly as follows:

1. Find a finite set Mg C 0% such that any ex-
treme binary Humbert form is equivalent under
GL(2,0k) to a form S with |M(S) N Mg| > 5.

2. For any 5-set T' = {uy,...,us} C M solve the
linear equations in the unknown S

Slu] = -+ = S[us] = 1.
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3. Sort the resulting forms according to scaling S —
AS, A € R2, and integal equivalence S — S[U],
for U € SL(2,Ok).

4. Test for perfection and eutaxy of the remaining
forms using [Coulangeon 2001].

Theoretically the existence of the set My is assured
by the reduction theory of P. Humbert [1940]. But
unfortunately the description of the set of reduced
Humbert forms involves unexplicit constants, which
are difficult to estimate. The results in the next
three lemmas will enable us to construct an explicit
set My.

Lemma 2.3. Let S = (51, S;) € P, with

a; bz
5= (5 )
fori=1,2 and u = (o, B)" € O%. Then

INk/o(a)| < 01(02 E)) Tk 25

:’

a;ay S(u)

|NK/Q(/6)| S ( )m(S’) 7K2a
1) g(2) ascr S(u)
2) a(1 aic; S(u)

Proof. We have
S,[u(’)] = aia(i)z + Ciﬂ(i)z + 2bza(z)ﬁ(’)

2
= (89 + %amz n @amz)

> @a(i)2
el Cz ?
and the same inequality holds replacing « by 3, and
a; by c¢; respectively. The conclusion follows, writing
S(u) = S;[uM]S;[u®?] in all four possible ways, and
using
m(S
# S 7K,2' I:‘
V5118

Lemma 2.4. Let u = *(a, ) and v = *(v,u) € O% be
minimal vectors of S, withv ¢ Oxu, and U = (¢ ﬁ)
Then

Nk /o(det U)| < vk

Proof. Consider the Humbert form S[U]. Clearly,
m(S[U]) = m(S). On the other hand, det S[U] =
Nk/g(det U)? det S, so that

Nk/o(detU)? = d(:i—tef?.
Now
det S[U] = det S, [UY] det S,[UP)]
S1[u®]S1[v]) (S2[u®]S2[v®))
= m(S)? = det Sy (9)%
Hence
Ni/o(detU)? < v (5)? < vk o O

As usual, we define the fundamental unit of K as the
uniquely determined fundamental unit € subject to
the condition that €g = ¢ > 1. We also define a
constant Cg, depending only on K, as

Cx = sup
n=(c,p)EK?

We also denote by {e;, e;} the standard basis of 0%.

Lemma 2.5. If h(K) = 1, any binary Humbert form
with at least 2 minimal vectors admits a representa-
tive S = (51, S2), modulo scaling and integral equiv-
alence, such that

1. m(S) =1, e; € M(S) and S1[e{V] =
so that

s=((n 2)- (. 2)):

2. Any other minimal vector admits a representative
= (z,y)" modulo units satisfying

2P| < \/EoTx,2(1 + Cxeor/TK,2);

ly@| < 53/2’)’1{,2-
Proof. That one can assume that e; is minimal is
clear since hx = 1 and any minimal vector is primi-
tive, i.e., its coordinates are coprime. The condition
S1[eV] = $,[ef?] = 1 is then easily fulfilled by scal-
ing.

For the second assertion we proceed in several
steps: first, let uy = (z2,y2), with yo # 0, be a
second minimal vector. We know from Lemma 2.4,
applied to U = (ézz), that |NK/Q(y2)| < Yk
Let ¢, = A;[ul’], for i = 1,2. Since u, is mini-
mal and we are assuming that m(S) = 1, we have
¢,c, = 1. Multiplying u, by a unit n = &*, k € Z,

inf u=(z,y)€0% “77 - u”OO

Salel”] = 1,
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changes ¢} /c, into egfc;/cy, so we can assume that

g52 < ¢)/cy < €2, whence

-1 /
gy < ¢ < ey,

g5 < ¢y < go.

Let Y = {y € Ox \ {0} : [Nk/q(y)| < 7k}, and
define Y to be the set of y € Y such that \/Eg_l <
Y| < EoTxz and V/ep" < [y@| < /EoTx . This
set is finite and any y € Y admits a representative
modulo units in Y. Thus, replacing S by S[U] with

U= ( (1) 2), for a suitable unit 7, one can assume that

Yo is in Y (indeed, replacing S by S[U] amounts to
replace e; by nes, so y, is replaced by n~'y,, while
zo remains unchanged).

We can moreover assume, replacing S by S [((1) ‘1’)]
for a suitable ¢ € Ok, that

127 < Ok, i=1,2.

Finally, let u = (z,y)" be any minimal vector;
we show that, up to units, its coordinates can be
bounded according to the lemma. We claim that
there exists A € Og with |NK/Q(/\)| < 7k,2 such
that \u € Oge; ® Ogus, i.e.,

X - ~
u="2e + Zuy, 7 4€ 0k (2-1)

A A

The set choice of such As is stable under multipli-
cation by units, so we can assume without loss of
generality that

&5 Nicio(V)]| < AP < /20 Nk/a (M),

&0 [Nk/(V)] < M| < y/eo|Nkjo(V)],

(2-2)

which allows a finite set of values for A. Finally, hav-
ing fixed A € Ok satisfying (2-1) and (2-2), we can
still multiply » by a unit so as to have, for instance:

< \/solNK/Q (i'/A)la
S \/80[NK/Q (IZ'/)\)I

] — AL
Veo' Nese G/0)] < |55

7(2)
Veo' Nie (2/3)] < 555

(2-3)
Using Lemma 2.3, we infer that
|NK/Q (57/>‘)| < v 0/10’2'71{,2 =Tk,2 (2-4)

and that
INK/@ (Q/A)I < Y2

7(1) 7(2)
oy
< \/E'YKQ < VE0TVK 25

A N@
< v 0'2'71(,2 < VE YK,z

@ g®
2@ 2D
Clearly, X being fixed, the set of Z € Ok satisfying
(2-4) and (2-3) is finite, and then, inequalities (2-5)
allow only a finite set of values for §. Going back to
(2-1), we see that

(2-5)

o 1191
1= oy’

is bounded, and that
FONO)

5@
GOl

7(%)
@ . 12 (
< I)‘(i)l |y2

M) —
o] = PGRCN RG]

+Cx Il

The explicit bounds of the lemma are then easily
deduced from the various inequalities we have es-
tablished. ]

In some particular instances, the preceding lemma
can be restated in a simpler way. We say that S
admits a unimodular pair of minimal vectors if there
exist u,v € M(S) such that Oxu ® Ogv = 0%.
Then:

Lemma 2.6. If h(K) = 1, any Humbert form admit-
ting a unimodular pair of minimal vectors is equiv-
alent, up to scaling and integral equivalence, to a

form
1 b 1 b

with e' < ¢ < €. Moreover, M(S) D {ej,es}
and any other minimal vector admits a representa-
tive u = (z,y)" modulo units satisfying

|NK/@(-’U)| < V&2 |NK/@(CU)| < Vk,2 (2-6)
and
(1) \/%’71(,2 (2) \/‘%’YK,Z

Proof. The assumption that S admits a unimodular
pair allows to take u; = e; and A = 1 in the proof
of Lemma 2.5. The conclusion follows. O
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Having explicitly described the set My, we can pass
on to step 2 of the algorithm, that is solve the sys-
tems

Sluy] =+ = Sfus] =1, (2-7)

for all 5-sets T = {uy,...,us} in Mg subject to
the condition that any pair of vectors in T satis-
fies Lemma 2.4. According to Lemma 2.5, we can
assume that u; = e;, and write

s=((3 2 (0 %),

So (2-7) is a system of polynomial equations in
the 4 variables by, ¢, by, c; that we can solve us-
ing elimination theory (see the examples in the next
section). When the condition of Lemma 2.6 is sat-
isfied, we can assume that u, = e, and the number
of variables reduces to three (c; = c;'). Finally,
since minimal vectors are defined up to multiplica-
tion by units, and M (S[U]) = U *M(S) for any
U € GL(2,0k), we need to consider these different
5-sets in My only up to the following equivalence
relation:

Definition 2.7. We call two 5-sets {u;,...,us} and
{v1,...,v5} of 0% equivalent if there exists U €
GL(2,0k) and (&i,...,e5) € Uy, such that

Uuizei'vi, 7/:].,...,5.

This remark shortens notably the computations in
the next section.

3. EXAMPLES

Let K = Q(v/d), with d > 0 a square free ratio-
nal integer, and suppose that hxy = 1. As usual,
we identify K with a subfield of R, i.e., we fix an
embedding of K, and we denote by z’ the image of
z € K by the nontrivial element of Galg/qg.

As mentioned above, the computations are much
more easy if one can restrict to forms admitting a
unimodular pair of minimal vectors. It turns out
that, for some small discriminants, one can show a
priori that this condition will always hold for Hum-
bert forms with sufficiently many minimal vectors —
for example, perfect forms. This is based on obser-
vations of the following kind:

Lemma 3.1. Let S € Py x and v; = (o, 5;)' € M(S)
for1 <i<s, and let v, , for 1 <i# j <'s, be the
determinants of the corresponding pairs:

o; O
1:dt ¢ J .
g = <5i ﬁj)

Then, for a fized prime ideal p, with corresponding
valuation v,, we have: If {i,j,k} C {1,...,s} is or-
dered so that v,(v; ;) > max(vy(vik), vp(vsk)), then
Up (Vi,5) 2 vp(vik) = Vp(Vjk)-
In particular, if {i,7} is such that v,(v; ;) is mawi-
mal among all pairs {i,j}, we have
Uy (Vi) > vp(vik) = Vp(vjk) for k #1,j.

Proof. Expressing v, as a linear combination, with
coefficients in K, of v; and v;, we get

Vk,i Vk,j
Ve = (ag, Br) = ——v; + —;
3,J Jyi
- (Uk,iai — Uk, j QG VB — Uk,jﬂj)
- b )
Ui, j Vi,j

and similarly permuting ¢,j and k. If v,(v; ;) were
strictly less than both v, (v; ) and v, (v, ), then the
valuation of a; and B would be strictly positive,
contradicting the primitivity of vy. Thus

Vp (v5,5) > min(vy(vig), vp(vjk)),

and this holds for any permutation of 4, j, k. This is
easily seen to imply the assertion of the lemma. [

3A. K = Q(/5)
Beside Cohn’s general upper bound 7 , < dg/2 =
2.5, we can use in this case Gotzky’s estimate [1928]

16
< — <2
7@(\/5)12 - __9+ /312

Then Lemma 2.4 implies that any two noncolinear
minimal vectors of S € P generate 0%, so Lemma
2.6 applies to any Humbert form S with #M(S) >
2, and in particular to any perfect Humbert form.
So we can restrict to forms

()6 )

with m(S) = 1. The right-hand side of (2-6) is
less than 2, and for the same reason as before, this
implies that the coordinates of minimal vectors dis-
tinct from e; and e, are units. Up to multiplica-
tion by a suitable unit, we can assume that these
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vectors are of the shape (o, 1), with a € Uk, and
Lemma 2.6 provides explicit bounds for a, namely
a € {£1,+7,£7'}, where 7 = %(1 + \/5) Finally,
taking into account that each pair of minimal vec-
tors has to satisfy Lemma 2.4, it is easily seen that,
up to equivalence in the sense of Definition 2.7, the
only 5-set to consider is

T ={(1,0), (0,1), (1,1)%, (v, 1), (=7, 1)"}.

The requirement that vectors u€T satisfy S(u)=1
amounts to requiring that the following polynomials
in ¢, b; and b, vanish simultaneously:

(14 2b3)c® + (1 + 2by)(1 + 2by)e + (14 2by), (3-1)

7/(7'+2by)® — (7' +2b2) (T+2b1 )e+7(T74+2by), (3-2)
T(—742by)c®+(—7+42by) (—7'+2by ) e+7'(—7'+2by).
(3-3)
Eliminating b, between (3-1) = 0 and (3-2) = 0
yields
(87 +(8487)c)b2+((4+47) P +167c*+(8+127)c)b,
+(2¢* + (44 27) + (2 +67)c® + (2 +47)c) =0
and doing the same between (3-1) = 0 and (3-3) =
0 yields
((8+87)c2+87c)b3+((8+127)c*+167c*+(4+47)c)b,
+((2+47)c* + (24 67)c + (44 27)c? + 2¢) = 0.

Finally, eliminating b; between these two equations,
we find that ¢ has to satisfy

AEle—1D*ec—1)(c—

whence ¢ = 1, 72 or 72, If one substitutes the value
¢ = 1 into (3-2) and (3-3), the two equations are
easily seen to be equivalent, so the initial system
eventually reduces to the system

(14 2by) + (1 4 2bg)(1 + 2by) + (1 +2b;) =0,
7'(7" + 2by) — (7' + 2bo) (T + 2by) + 7(7 + 2b;) = 0.

Using the conditions 1 — b2 > 0 (4; > 0), calcula-
tion yields (by,bs) = (—37,—37') or (37/,37). It is
then easily checked that substituting ¢ = 72 or 72
in (3-1)—(3-3) leads to equivalent solutions modulo
integral equivalence. Thus, we have shown that the
only possible perfect binary forms over Q(+/5) are

g _ 1 —37 1 —37
—%7’ 1 ’ —%T' 1

(A +3c+1)=0, (3-4)

and

g - 1 %'r’ 1 %7‘
- %T’ 1)’ %7’ 1 ’

But the two are equivalent:

)2 =147 =147
=78 (70T 7).

Since we know from [Coulangeon 2001] that there
always exists at least one perfect form and at least
one eutactic form, we conclude that 8 is perfect and
eutactic. This can of course also be checked using
the original definitions. Thus:

Theorem 3.2. Up to scaling and equivalence under
GL(2,0k), the form § is the only binary perfect
Humbert form over Q(v/5). It has #M(8) = 5 min-
imal vectors, and is moreover eutactic, hence ex-
treme. Consequently

Bl

YowsE),2 = 7(8) =

3B.K = Q(v/2)
In this case we can again apply Lemma 2.6, thanks
to the following lemma:

Lemma 3.3. Any binary Humbert form S over Q(v/2)
with #M (S) > 3 admits a unimodular pair.

Proof. We let #M(S) = {v1,...,vs}, s > 3, and use
the notation v; ; for the determinants of the vari-
ous pairs, as in Lemma 3.1. Assume that no pair
is unimodular, i.e., none of the v; ; is a unit. From
Lemma 2.4, using the bound v , < |dx|/2 = 4, we
see that the only possible prime divisor for v;; is
p = v20k, and that all v;; must satisfy v,(v;;) =
1. Without loss of generality, we can assume that
v; = (1,0)*. Writing v; = (o4, 8;)%, and multiplying
each v; by a suitable unit, we can therefore assume
that 8; = v/2 for 2 < i < s. The v; being primitive,
we moreover have that v,(a;) =0, 2 <7 <s. Now
the condition v, (v; ;) = 1, for 2 < i < j < s reads
vp(a; — ) = 0 = vy(0;) = vy(ev;), which is impos-
sible (Og/p ~ F,). So at least one v;; is a unit. O

We used PARI to classify all 5-sets of vectors sat-
isfying Lemmas 2.3, 2.4 and 2.6 according to the
equivalence relation of Definition 2.7. There are two
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inequivalent sets to consider:

le{( (0 1) ( 1- \/_ 1) (_ﬁ,l)t, (_1)1)t},

T2={(1 O) ( ) ( 1- \/_ l)t ( ﬂ’l)ta (1)1)t}
They correspond each to a system of polynomial

equations, analogous to the system of the previous

section given by the vanishing of (3-1)—(3-3). As

before, we eliminate successively b, and b; and fac-

torize over K the resulting polynomial in ¢, to find
that ¢ has to satisfy

(¢ = (2+V2)c+3+2V2)
x (2= (1+V2)e—(3+2V2))

X (02 —V2¢ - 1) =0 (3-5)
in the case of T}, or
(c*—(10+ 4V2)E + (44 4V2)c?
+ (14 +8v2)c — (3+2V2))
X (+(1+V2)e—(3+2V2) =0. (3-6)

in the case of T5.

One can compute the real positive roots of these
equations, substitute these values of ¢ in the initial
system, and then solve the corresponding systems
in b, and b,. Afterwards, one has to check that the
resulting form are positive definite, and that their
minimum is 1. In the case of 77 and equation (3-5),
the only root that leads to a Humbert form is ‘/642"/5,
the positive root of ¢ —+/2¢c—1, and the correspond-
ing form is

1 1+v2 1 1-2
_ 2 2
S1 = 1+v2 vE+v2 |\ 1=v2 vB—v3 ||
2 2 2 2

In the case of 7> and equation (3-6), the only root
that leads to a Humbert form is 1+2—‘/§(\/3 —1) (pos-
itive root of ¢ + (1 + v/2)c — (3 + 2v/2)), the corre-
sponding form being

1 1 o
— 2
82 = V2 (1+x/§)(\/5—1)> ’ (—ﬁ (1—\/5)(\/3+1)> :
2 2 2 2

But it is readily checked that m(8z) < 1; for in-
stance, 8,([2 +v2,-1-V2]) = 7-2V10 < L
Thus:

Theorem 3.4. Up to scaling and equivalence under
GL(2,0k), the form 8, is the only binary perfect
Humbert form over Q(v/2). It has #M(8;) = 5

minimal vectors, and is eutactic, hence extreme.
Consequently

4
=~(8§) = ——.
Y0(v/2),2 7( 1) 2\/6 _3

3C. K = Q(/3)

Lemma 3.5. Any binary Humbert form S over Q(v/3)
with #M(S) > 5 admits a unimodular pair.

Proof. We use the same notation as in the previous
subsection and assume that none of the v; ; is a unit.
Thanks to Lemma, 2.4 and to the bound

Y2 < 3ldk| =6, (3-7)

the only possible prime divisors for the v; ; are p =
\/§OK and q = (1— \/§)OK. Moreover, a given v; ;
cannot be divisible by both p and q, since

INk/q(pa)| =6 > vk

We claim that p or q has to divide all v; ; simulta-
neously. Suppose, for instance, that p divides v; ;.
By Lemma 3.1, for any k& # 1,j, either p divides
both v; ) and v,, or both have valuation 0. But
in the second case, v;; and v, would be divisible
by q, and so would v; ;, by Lemma 3.1 again. So
pq would divide v; ;, which is impossible. The same
holds replacing p by g, which proves the claim. Let
m = maxX;<; Vq(v; ;). From Lemma 2.4 and bound
(3-7), one has m < 2. If m = 0, then all v, ; are di-
visible by p, with valuation 1, and we easily derive
a contradiction, arguing exactly as in Lemma 3.3.
So we assume that m > 1. Due to the previous
remarks, this implies that all v; ; are divisible by g.
We claim that for a given ¢, and for j # k one cannot
have vq(v; ;) = vq(vsx) = 2. Indeed, if such a triple
{i,J,k} existed, we could assume, up to a change of
basis, that v; = (1,0)* (since v; is primitive), v; =
(ajv ﬁj)t’ Uk = (ak’ﬁk)t’ with vq(ﬂj) = Uq(ﬂk) =2,
and v4(e;) = vg(ax) = 0 (primitivity of v; and
vk). Scaling v; and v, by suitable units, we can
moreover assume that 3; = ;. Now the condition
vp(v5,) < 2, implies v, (ay —a;) = 0, which is impos-
sible (Og/q ~ F,). Finally, assume, without loss of
generality, that v; = (1,0)%. The previous observa-
tion, together with the assumption that q divides all
the v; ;, and the fact that #M(S) > 5, imply that
vg(v1,5) = vq(v1k) = vg(v1,) = 1 for at least three
distinct integers j, k, [, and that one of the pairs, say
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{J, k}, satisfies vq(v;x) = 1. Using the coordinates
of v; and vy, scaled by suitable units, we conclude
again that vy(o) = v4(ay) = ve(ax — ;) = 0, a
contradiction. d

Here the classification of 5-sets of vectors satisfying
Lemma 2.3, 2.4 and 2.6 is considerably more com-
plicated. There are 37 such sets to consider, up to
the equivalence relation of Definition 2.7. We solved
the corresponding systems in the same way as in the
previous subsections. Only 24 of them lead to ac-
tual Humbert forms i.e., positive definite. They fall
into 2 distinct classes modulo integral equivalence
and scaling, among which only one has minimum 1.
This is obtained with the set

T; = {(1,0), (0,1), (—u,V3),
(—1-v3,V3)!, (—u,1+V3)'},

where u = 2+4+/3 is the fundamental unit of Q(v/3).
The corresponding form is

, 1 iu 1 Ly
81 = lu U ’ lu/ u’ :
2 2

As in the case of Q(v/5), we can immediately con-
clude that it is both perfect and eutactic. It has
#M(8}) = 12 minimal vectors (up to units), given
by

M(S;) = {(0,1)%, (1,0)%, (—u, V3)",(~1-V3,V3)",
(—3-2v/3,1+V3), (—u, 1+V3)¢, (—u, 1)}, (=2,1)%,
(—1-v3,1)%, (-1,1)%, (=V3,1), (~u,2)t}.

Thus:

[ V)

Theorem 3.6. Up to scaling and equivalence under
GL(2,0k), the form 8} is the only binary perfect

Humbert form over Q(v/3). It has #M(S}) = 12
minimal vectors, and is eutactic, hence extreme.
Consequently

Yo 2 = 1(81) = 4.
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