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INTRODUCTION

Trilinear forms play an increasingly important role
in many parts of analysis — for instance in Fourier
analysis, where they appear in the guise of paracom-
mutators and compensated quantities (for a survey,
see [Peng and Wong 2000]). In this paper we address
the following problem. Suppose

is a trilinear form where !Ki, Jf25 3̂ 3 are separable
Hilbert spaces. What is the norm of T,

||T||= sup |T(s,i,,*)|?
IMUIylUI*ll<i

In the hypothesis that at least two of our three
spaces are finite dimensional we show (Section 1)
that the norm square A = ||T||2 is a root of a cer-
tain algebraic equation, usually of very high degree,
which we baptize the millennial equation, because it
is an analogue of the secular equation in the bilin-
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In Section 2 we work out the binary case (all three T{x, y, z) = [x, 2?(y, z)], where [ •, • ] is the duality
spaces are two dimensional). Even in this case the between %i and <K[.
situation is rather complex so, fault of any genuine Consider the problem of critical points of the func-
results, we content ourselves with advancing a num- tional ||B(y, z)\\2 under the subsidiary condition
ber of conjectures which we were led to by computer n p « ip _ -i
experiments using either Mathematica and/or Mat-
lab (see, in particular, the remark in Section 2). lt i s t h e s a m e a s looking at the critical points of the

In Section 3, returning to the general situation, functional \\B{y,z)\\2 - A||y||2||2:||2 where A is a La-
we briefly indicate a very general set-up of which grange^multiplier. The possible values of the square
the problem treated in Section 1 is but a special r o o t A* m a y b e viewed as an analogue of the singu-
c a s e < lar, Schmidt, or approximation numbers in the bilin-

Finally, in Section 4 we connect the singular val- e a r c a s e 5 t h e largest of them coincides with the norm
ues of a trilinear form with the critical values of an o f B- T h e existence of a singular value is guaran-
associated family of a one parameter family of bilin- t e e d hY making the assumption that T be compact
ear forms. Also here we have to offer mainly only [Cobos et al. 1992J.

experimental evidence. Remark. Actually, the norms of T and B agree,
For previous work on trilinear forms related to our w h i c h i s a consequence of Cauchy's inequality. Sim-

present investigation we refer to [Cobos et al. 1992; ilaxly we get essentially the same Lagrange multi-
1999; 2000a; 2000b]. See also the survey [Cobos p i i e r s w h e n considering the critical points of the
et al. 1997J. functional |T(#,y,z)\2 under the subsidiary condi-

tion ||^||2||y||2||^||2 = 1. So, in a way, what we have
1. MILLENNIAL EQUATION: THE GENERAL CASE is a kind of generalization of this inequality.

The idea of the millennial equation is really hidden We introduce the notation B(y, z) = B(y)z = B(z)y
in [Cobos et al. 1992, Appendix]. The millennial where B(y) and B(z) are regarded as linear opera-
equation does for trilinear forms what the secular tors, in 3<3 and %2 respectively, with values in %'v
equation does for bilinear forms. In general, there (One might perhaps equip the operators B(z) and
are three cases: the field of scalars K = R, C or H B(y) w i t h subscripts, putting B(y,z) = Bs(z)y =
(see Section 3). Here we shall consider the millen- B2(y)z. But if we make identify xyz with the in-
nial equation for K = C but only in the case when dices 123, as is customary in classical invariant the-
at most one of the underlying Hilbert spaces is infi- ory, these subscripts become superfluous.) Differ-
nite dimensional while the remaining ones are finite entiating we find the two necessary and sufficient
dimensional. Otherwise, we were led to infinite di- conditions
mensional determinants and other complications. B(z)*B(z)y = A||z||2y,

Let 3^i, %2 and %j be Hilbert spaces with generic r>( \ * n ( \ _ \ i i i | 2 0-1)
i , i I.- i r\ v • i. ^\V) ^\V)z — A\\v\\ zi

elements x, y and z respectively. Our policy is to
"eliminate" the variables one by one. Let the first f o r a P a i r G/>z) e ^ x W3 to be a critical point. Set
one be the potentially infinite dimensional variable Af \4£.f\n \\2TP TK \ * D / \

., . i u . n .. j . A\z) - AFll h-H(z) tf(z),
x, the remaining ones y and z being nnite dimen-
sional. The elimination of x is effected by observing A(y) = X\\y\\2E — B(y)*B(y).
that the study of trilinear forms ( H e r e a n d i n w h a t followS5 E s t a n d s for t h e i d e n t i t y

T • *K x !H x 3i —> C operator in the corresponding space.) We note that
A(z) and A(y) are self-adjoint operators. Then we

is equivalent to the study of bilinear forms B : 3f 2 x obtain the two equivalent conditions
!K3 -> 5-Ci, where Ji[ is the dual Hilbert space to
%x\ by the F. Riesz lemma there is a canonical anti- A ^ y = ° a n d A ^ z = °' (1"2)

holomorphic isometry from 5f x to ${[ denoted x i-> We now assume, for simplicity, that both JK2 and
x. The formal connection is given by the formula 3"C3 are finite dimensional, setting dim!K2 = n2 and
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dimIK3 = n3 (and dimlKi = nu if %i is finite di- This achieves the elimination of y. We summarize
mensional too). Let det be the determinant function the situation as follows.
on them. It follows from (1-2) that r , L ,, , , »

v y Proposition. Let z be the second component of a cnt-
det A(z) = 0 and det A(y) = 0. (1-3) ical point of the functional \\B(y,z)\\2 - A||y||2||£||2,

with corresponding critical value A. Then we have
Next we put into play the adjoint operator A(z)***; the equations

already Ivar Fredholm had an adjoint operator.
det A(z) = 0 and dz det A(z) = 0

Remark. Recall that if C is a linear operator is a finite
dimension vector space W then its adjoint operator where A^) = M\4"E - B(z)*B(z) and B{z) is the
Cadj is a generically defined operator satisfying the linear °Perator defined by B(z)y = B(y, z).
identity CC a d j = Edet C. The adjoint operator is (A similar, symmetrical result can be obtained start-
implicit in Cramer's rule; in the infinite dimensional i n g w i th (1-1), first formula, but this does not con-
case Fredholm constructed it for certain integral op- c e r n u s a t present.)
erators. One has the formula ddet C = tr(Ca d j dC).) Because the operator A(z) is Hermitean we have
Below we use the fact that if W is a finite dimen- a i s o

sional Hilbert space and C is self-adjoint, then Cadj Q det A(z) — 0.
projects onto the nullspace or is zero. (Note the

a- j.- u J. i. J-X- i r u i- • x» \ -n I n other words, we can also state our result as fol-
conmctmg but traditional uses ot adjoint .) ror '
instance, if C is a diagonal 3 x 3 matrix with en-
tries Ai,A2,A3 then Cad j is also diagonal with en- Corollary. The point z is a critical point of the func-
tries A2A3, AiA3, A:A2 and if, say, X± = 0 then Cadj

 tion f^ d^ det A(z).
projects onto the first basis vector (1,0,0).

The fact that f(z) is only analytic, not holomorphic,
Differentiation yields [s a n u i s a nce . To emphasize this we may write,

dz det A(z,() = ti{A(zYd']dzA(zX)) instead of / (* ) , also f(z,z) and, indicating the A-
dependence, even / ( z , z, A); we call / the eliminant.

where we have
Remark. f(z,z) is of bidegree (n2 ,n2) .

d,A(z,O = HME-B(zyB(Q.
This forces us to pass to the complexification Ox^ of

From (1-2), first formula, and using the result in- ^ ( a t p r e g e n t c o n s i d e r e d a s a red H n b e r t s p a c e ob_
dicated in the previous remark, we infer that there t a i n e d f r o m t h g c o m p l e x Q n e forgetting t h e c o m p l e x

exists a complex number p such that x r^, , m r C ^ / \
^ r structure). The elements of JI3 are thus pairs (2, w)

A(z)adi- = p( •, y)y. where z € !K3, w G 5f3; a pair (2, w) comes from an
^ n i . n i element of IK3 if and only if w = z. So we have now
Continuing our calculation, we find 1 1 1 , . i . 1 P/ \ <>, ^\

the holomorphic polynomial / ( z , TI;) = 7(2, K;, A) on

dzdetA(z,()=ptr[\((,z)(',y)y-(B(zyB(()-,y)y] ^ C ^ T h e c o r o l l a r y i m p i i e s that its discriminant

— p[\((,z)\\y\\2 — {B(zyB(Qy^y)). A — A(A) must vanish. In other words, we can,
m i w - ^ i i ^ • . n • ! 1 at last, write down the millennial equation:
1 he second term in the last expression withm brack-

ets can be transformed as follows: A(A) = 0 . (1-4)

(B(z)*B(()y, y) = (B(()y, B(z)y) I t .g a n a l g e b r a i c equation of a very high degree, its

= (2?(y)£, B(y)z) exact determination in terms of ni , n2 and n3 being

= (C B(y)*B(y)z) a n ° P e n problem. It contains also imaginary roots,
the meaning of which is not yet clear.

Thus finally, in view of (1-2), second formula,
Remark. Recall (from [Gel'fand et al. 1994], for ex-

dz det A(z,Q = p{t,M\y\\ z ~ B{yYB{y)z) a m p l e ) t h a t i f x i s a n y a l g e b r a i c v a r i e t y t h e n i t s

= p((,A(y)z) = 0. discriminant A is a polynomial such that A = 0 is
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the equation of the dual variety X*, if the latter is which in turn is a reflection of the invariance under
a hypersurface. the transformations x *-> x~x etc. (inversion).

Example. Consider the circle X2 + Y2 = 1 in the a000 d
affine plane C2. Then a line aX + Yb + c = 0 is aOoi &3

tangent to it precisely when a2 + b2 — c2. That is, a010 a2

the discriminant is A = a2 + b2 — c2. aon b\

Example. Consider the quartic Veronese map t \-> ai00 a\
[I:t:t2:t3:t4], that is, it is an algebraic curve in P4 a101 b2

with parametric equation a n o b3

XQ = 1, JLI — t, X2
 = £ , X3 — t , X4 = t . I I

A hyperplane Thus we may then write

a0X0 + aoXi + a0X2 + a0X3 + a0X4 = 0 T ( x > 3/>z)
. , . c , , . c . ^ . a ^ =d + a1x + a2y + a3z + b1yz + b2xz + b3xy + cxyz.

cuts the curve at a point if and only if t satisfies the
algebraic equation a0 + a±t + a2t

2 + a3t
3 + a4t

4 = 0. Eliminating x and y according to the general scheme
It is tangent precisely when t is a double root (or indicated in Section 1 we obtain for the eliminant
a root of higher multiplicity). Thus A is the usual / = f(z> *) a n expression of the type
discriminant of the polynomial, f = A\z\A + 2H\JeBz\z\2

A = a5jJ(* i-t fc), +C|z|2 + 2ReD^2 + 2 R e ^ + F, (2-1)

&k where the six coefficients A , . . . , F are given by

where t,- (j = 1,2,3,4) are the roots. A = x2-{\a^\2 + \b1\
2^b2\

2 + \c\2)\^b1b2-a^c\2',

B — —(b1d2 + b2a1+a3d+cb3)X
2. THE BINARY CASE ,, L . ,— -N

+ {b1b2-a3c){aib1+a2b2-a3b3-cd)\
We turn to the case of binary trilinear forms, that ^ , 9 ,. l9 . l9 , l9 ., l9 ., 9 l7 9

. n ,, ,, „.„ , + J- • i C = 2 A 2 - ( a i 2 + a 2
2 + a3

 2 + 61 2 + \b2\
2 + \b3\

2

is, all the three Hilbert spaces are two dimensional, V l 1
 I ^ I M ^ I M H \ * M ^

m = n2 = n3 = 2. In inhomogeneous notation, such +lcl +1^1 )A+|ai&i + a2b2 — a363 — cd| ;
a form T can be written D = ( 6 l 6 2 _ a 3 C ) ( a i a 2 _ M ) ;

T(x,y,z)= Yl aJkixjykzl- E--(61a2+62a1+a3J+c63)A
+ (a!a2-63(i)(ai6i+a262-«3^3-cd);

Here x,y,z are complex variables and we use the 9 ,. l9 . l0 ., l9 . ,l9x . , 7l9

' . ' , . 0 1 1 + / + u + u i51 = A 2 - ( o i 2 + O 2 2 + 6 3
2 + d 2 ) + a i a 2 - M •

convention that a;u = 1, x1 = x etc. (so that we have Vl ' ' ' ' ' ' ' J ' '
the point [l:x] in the projective space corresponding Note that A, C, F are real, while B, D, E are corn-
to 'Ki etc.). The maximum norm of T is given by plex, which is a reflection of the fact that / is a real

,,jY v, polynomial in 2 and £.
||m = sup ( , | 2 ) 1 / 2 l f ; ^ ' , | 2 ) 1 / 2 . To find the discriminant A of / , which will give us

v l i y v iyi J v ' ' ^ then the millennial equation, it will be convenient to
It is also often convenient to abandon tensor no- work for a while with a quite general function of the

tation and resort to British (or literal) notation, like type (2-1), which we go on denoting by the same
the one employed by Cayley, Sylvester, and Salmon letter / . A necessary and sufficient condition for
in the nineteenth century. Instead of a^ , with j , fc, z to be a singular point is that we have the two
I = 1,2, we denote the coefficients by ai, a2, a3, 61} equations f(z,z) = 0 and ff

z(z,z) = 0. As / is
62, 63, c, d according to the table below; observe the real, as we just observed, it is clear that the second
symmetry under reflection about the middle line, equation is equivalent to f'2(z,z) = 0. But the point
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is that it also be replaced by the equation 2f(z, z) — If we plug in here the values given in (2-3), we obtain
zf'z(z,z) = 0. We "decouple" the variables z and z, the 12-tic polynomial in the coefficients A, £ , C,
that is, we consider the system JD, E, F and their complex conjugates, with 1010

coefficients; we still denote it by the same letter A.
• ^ ' ' ~~ ' (2-2) Because of this enormous size it does not make sense

2f(z, w) — zf'z(z, w) = 0, to write it down explicitly here; it would have taken

where, if we wish, w = z may be viewed as an aux- ^U1 e m a n y Pages-
iliary parameter. Eliminating z between these two L u c k i l y ' w e c a n i n s t e a d m a k e u s e o f s o m e wel1"
equations we obtain the relation k n o w n f a c t s a b o u t i n v a r i ants of quartic polynomials.

Namely:
^(IU) = 0

(1) The ring of all invariants is a polynomial ring
where # is the resultant of the two polynomials in with two generators P and Q given by the for-

(2-2). It turns out that it is a quartic polynomial: mulae
~/ \ 4 , 3 , 2 , , /n ox P = U2 - 3^1^3 + 12^0^4 (2-5)
$(w) = uow + UiW + u2w + u3w + u4. (2-3)

and
where the coefficients u0,..., U\ are given by

Q = —2ul+9uiU2U3—27uoul—27ulu4+72uou2U4.
uo = B2- 4AD, ^ (2_6)

v,! = 2BC - ABD - 4AE, [Schur 1968, p. 45, (59) and (60)].
u2 — C2 — 4DD + 2BE - 4BE - 4AF, > (2-4) ^ The discriminant A is given by the explicit for-

u4 = £ 2 - 4DF. J
[Schur 1968, p. 52].

Remark. For certain reasons we call $ the focal poly-
nomial- namely in a special case it gives the foci of a W e a r e s t i11 g° inS t o u s e t h e l e t t e r s P a n d Q a f t e r

conic. Similarly, its roots may be called generalized m a k i n g t h e substitution in (2-2). Thus, using (2-7)
focj we can determine A directly by first determining P

and Q from (2-6) and (2-7).
Now we recall some salient facts connected with i n particular, we may apply the above result in
quartic polynomials and their invariants. Our main the case of our binary trilinear form. Using for the
source here has been the excellent book [Schur 1968]. coefficients A,..., F the expressions given immedi-
(However, as in [Sch] the binomial notation for poly- a t e l y after (2-1), we can determine the correspond-
nomials is employed in that reference, our formulae j n g focaj polynomial # (see (2-3), (2-4)) and from
below and the formulae there are not quite com- -lt t h e values of the basic invariants P and Q and so
parable. In addition, our invariants have a differ- t h e value of the discriminant A (see (2-5)-(2-7)).
ent normalization. In order to get back the formu- Thus we have, in principle, determined the millen-
lae in [Schur 1968] we have to multiply the num- nia\ equation in the case of a binary trilinear form.
bers u 0 , ^ I , ^ 2 J ^ 3 J u ± by 1,4,6,4,1 respectively, and

i. \ Remark. We say "in principle" because although it
In particular, the discriminant of a polynomial i s P o s s i b l e t o w r i t e d o w n t h e mi l lennial equation for

like the one in (2-3) is given by &rV f o r m w l t h n u m e r i c a l l y g l v e n coefficients, it is
beyond human - and machine - capacity to obtain

A = u\u\ul - 4u0ulul - 4ulul + 18u0UiU2ul a "closed" expression for it. However, experiment-
- 27uoUg - 4u\u\u± + I6U0U2U4 + 18uiU2M3^4 i n § w i t n numerically given coefficients o, b, c, d us-
- 80«ouit^3«4 - 6«o«?«l«4 + lUu2

0u2ulu4
 i n § Mathematics we discovered various interesting

properties which we have not been able to prove rig-
- 27Ulu4 + 144^1x^2^4 - 1 2 8 u o ^ 4 o r o u s l y g o f a r F i r g t o f a l l ? t h e m i l l e n n i a l equation

- 192uluiU3ul + 256^0^4- is always of degree 12 but A = 0 seems to be a zero
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of multiplicity 4. So factoring with A4 we obtain Example 1. Consider the trilinear form
a polynomial of degree 8; let it be denoted A, so j 1 _ i _±_ I( _ L T _ L T ?

> \

A = A4A. We call A the reduced millennial polyno- 2

mial. It appears that the equation A = 0 has real t h a t is> &i = &2 = &3 = 5, c = 0, which case in several
coefficients and, moreover, there appear to be (at respects is highly atypical. In particular, S + 2P =
least) 4 real roots and (at most) 2 pairs of pairwise 1 s o (2~8) h o l d s w i t h equality. The corresponding
conjugate roots. The real part of all roots seem to reduced millennial equation reads

be positive. It is tempting to conjecture that the 1600A8 - 6640A7 + 11164A6 + 9845A5 + 4973A4

largest real root equals the square of the trilinear _- |4QQ\3 I ofi2A2 — 2FiA -4-1—0
form.

up to a numerical multiplier. Its left hand side, the
Below we give some concrete illustrations of what millennial polynomial, admits the factorization
was just said. First we observe that with no loss 3 2 3

of generality we may assume that ||T|| = 1. This ^ ' ^ ' ^ ' '
implies, in the first place, that the millennial equa- Thus the roots are 1, | , \ with multiplicities 3,2,3
tion has the root 1 but also other simplifications are respectively.
possible. Namely, after some preliminary unitary E x a m p | e ^ A p e r h a p g m Q r e t y p i c & 1 c a g e ig

transformations [Cobos et al. 1997; 2000b] we may
then assume that d = 1, ax = a2 = a3 = 0, so there &i — 5' ^2 = 5' ^3 ~ 3' c~ ~"To + 5^
are left only the parameters b and c, these numbers i n this situation we find the roots
being subject to the restriction: 1

0.02171
N 2 + N 2 + N 2 + !|c|2 + |26i6263 + |c2| < 1. (2-8) 0.20749

We may also arrange (see again [Cobos et al. 1997; 0.43496 ± 0.29173i
2000bl) that the 6's are non-negative real numbers. 0.49134

1.06247 ±0.07727i
Remark. In this situation the interpretation of (2-8) .
is that, given the values of 6, the point c moves inside x a m P e • 6 a m

an ellipse € in the complex plane, which is centered &i = | ; b2 = | ; b3 = ^; c = — ̂  + ^i.
at the origin and has minor axis parallel to the ab- rp^.g ^ m e ^ e r o o t s a r e

scissa axis and major axis parallel to the ordinate -̂
axis. It will be convenient to put Q Q127861

5 = « + « + ft P = WS. l^l
Then the equation of (£ can be written 0.875813 ± 0.146734i

0.993718 ± 0.00898095z
x2 y2 _

I _ g _ 2P 1 — S + 2 P "~ Remark. In all our computations we have taken the
6's and c to have rational values. If we instead

with x = Rec, y = Imc. The foci of <£ are at the t a k e n u m b e r s i n d e c i m a l n o t a t i on , an amusing phe-
points ±2VPi. In general, we have S + 2P < 1. n o m e n o n t a k e s p l a c e . Namely, apparently due to
In the case of equality the ellipse <B degenerates into t h e f a c t t h a t t h e m a c h i n e n 0 l o n g e r c a n m a k e c e r .
a segment and the foci become the extremities of t a i n c a n c e l l a t i o n S ) t h e d e g r e e turns out to be 18, not
this segment. Similarly, if P = 0, that is, at least ^2!
one of the 6's vanishes, the ellipse becomes a circle
and the foci shrink to the origin. Say that 63 = 0

, . r , ,. , , , rp, 3. SOME GENERAL NONSENSEmaking no reality assumptions on Oi and 62. Inen
(2-8) reduces to |&i|2 + |62|2 + |c|2 < 1 which equation Leaving the binary case, we once more return to the
defines a ball in C3. general arena. We have seen (Section 1) that it is
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helpful, in the complex case K = C, to pass to the singular ray, we conclude that the discriminant must
complexification of the underlying Hilbert spaces. vanish,
That has led us to ask whether it might be possible • ,
to give a formulation which is valid directly in the ZA(A) = U .
complexified situation. Indeed, it is the case! This is
in line with the bold general ideas of H. Weyl [1939] T h i s i s a n algebraic equation in A of usually very
and R. Howe [1989] in invariant theory. high degree.

There are three cases corresponding to the series n Ul ~ , , , . , . , ,
_. _ _ , ~ ,. Problem. Determine this degree in each concrete case,

of simple Lie groups A, BD and C corresponding
to the cases K = C,R,H respectively. Another interesting observation: the coefficients

Let Vi,V2,V3 be three finite dimensional vector of A(A) are algebraic invariants,
spaces over the complex numbers C, with generic
elements denoted x,y,z. Let V^V^Vg be the dual
spaces, with generic elements denoted u, v, w. The 4- SINGULAR VALUES OF TRILINEAR FORMS VIA
corresponding dualities will be written [xu] etc. MINIMAX PRINCIPLES
A (general linear group). Assume that T(x,y,z) W e r e c a 1 1 t h e notion of approximation numbers, s-
and S(u,v,w) are trilinear forms on Vx x V2 x V3 numbers or singular values of a linear operator L
and V; x V2 x V3 respectively. Consider the following ( t h e s e w o r d s a r e u s e d synonymously in the current
expression: literature; for a historical account, see the excel-

lent book [Pietsch 1987]). The singular values G\ >
$ = $(A) - T(z, y, z)S{u, v, w) - X[xu][yv][zw]. <j2 > . . . of a linear operator L between two Hilbert

For A fixed the equation $ = 0 defines a cone on spaces, which for simplicity are assumed finite di-
the product of the above two products. We are in- mensional here, are defined to be the eigenvalues of
terested in the singular values, that is, those values (£*£)1/2- It is well known that these numbers de-
of A for which the cone has a singular ray. s c r i b e t h e distance of L to lower-rank operators

BD (orthogonal group). Assume that our spaces ,r^ . r n r T ,, ,. T ,T x ni . ? . i T X • aAL) =mm{\\L — LAI : dimlm(LA < i}.
each are equipped with a nondegenerate quadratic
form, written (x.x) etc. If T(x.y.z) is a trilinear AT , ,, , ,, £ T , / rx ^ ,,
_ ' \« ii Note that the norm of L equals a1(L). Furthermore
form on Vi x v2 x v3 we may consider the expression ,, . . . , ,

the minimax principle reads
$ = $(A) - T(x, y, zf - X(xx)(yy){zz)

( T \ - ' 11^11
and ask the same question, namely, for which val- (J3\lj) ~~cod^1^<- oS^w' \\u\\
ues A does the corresponding cone $ = 0 possess a \\T \
singular ray? = max min ———,

dimW>j O^ueW \\u\\

C (symplectic group). Finally, we equip the same
spaces each with a nondegenerate alternating form, which can be translated to results on bilinear forms
written (x,xf) etc. If T(x,y,z) is a trilinear form on using the standard equivalence. These facts moti-
Vi x V2 x V3 we may consider the expression vated us to perform some numerical experiments
$ = *(A) = T(x, y, z)T(x>, y', z') - X(xx')(yy')(zz') w i t h t h e t r

r
i l i n e ,a r ^ T(x> ?' *) tTeat*d a s o n e ;

parameter families of bilinear forms with x, y, and
and repeat the same question. z, respectively, as parameter.

Our problem is to determine the singular values in Introduce the two by two matrices A^ Bi, d by
each of the above cases. Eliminating two of the vari-
ables (and the corresponding dual variables) there T(x, y, z) = \ \ XiyTA{z = V " yt zTBiX
remains only one variable, say, z (and the corre- % %
sponding dual variable, w) there remains only an _ \^ z. x

TCv
equation of the form f(z,w) — 0. As there exists a i
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With the trilinear form in Section 2 in inhomoge- Then the numerical results above indicate that for
neous notation, with d\ = a2 = a3 = 0 and d = 1 Example 2
we have . A( NM • II n / \ii

max mm A{x,y)\\ — max mm ±HI/ , 2)
, v . v . v |M|=i||y||=i ' " ' " ||y||=i lk||=i M V * ' " '

^ ( o & J * B o = ( o 6 j ' C o = ( o £ ) ' = iKi^i l lc^a : ) l l
A 1 = ( 0 b 2 \ B ^ f 0 1 * ) d = f ° M and

\&3 c j ' * V6i c / * \b2 c ) ' m i n max |U(^ ,y ) | | = min max ||B(j/,^)||
11*11=1 ll»ll=i H " | | y | | = i | W I = i M V ' "

We have now both maximized and minimized the = m a x min llCfz, x)II.
first and second singular values of the matrices INN1 INN1

Note also that when dim 3ii = dim !K3 one has

E XiA-ii / Vi-E'i') / ZiC>i - 1 1 / 1 / \ | | • I I T O / \ l l

^—' ^—' max mm LAfx.j/) = max mm LBfi/.z)
i i i | ,y | |= 1 |N |= 1H v ' ^ H | | y | |= 1 | N |= 1 l l ^ ' 1̂1

over complex vectors x, y and z of unit length. The (and symmetrically in the other coordinates), so
results we have are only numerical and for the binary there are many equivalent ways of writing these op-
case with dimWj = 2 for j = 1,2,3. In the binary timizations.
case this optimization can be reduced to vectors of ^ „ . , T ^ - J • • • • i r x -r

F Open Problem. Find a mmimax principle for trilinear
forms and relate the singular values to the solutions

( s,io2 rrkQ a \ to the millennial equation.
sinX J ' w i t h ^ i ^ [ ° ^ ) ' <?2G[0,27r).
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