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1. INTRODUCTION

Erdos and Szekeres [1935] proved that every permu-
tation of {1, 2 , . . . ,p 2 +l} has either an increasing or
a decreasing subsequence of length p + 1. This re-
sult inspired Ulam to investigate the expected value
Ln of the length of a longest increasing subsequence
in a random permutation of n numbers. The Monte
Carlo simulations he conducted [Ulam 1961] led him
to conjecture that the answer is asymptotic to Cy/n,
for some constant c > 1. Based on more exten-
sive computations, Baer and Brock [1968] conjec-
tured that c = 2. Hammersley [1972] proved that
TT/2 < c < e, and presented heuristic arguments for
the value c = 2. Logan and Shepp [1977] proved
that c < 2, and Pilpel [1990] presented an elemen-
tary proof of this inequality. Finally, Versik and
Kerov [1977] settled the conjecture by proving that
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been studied in [Baik et al. 1999; Borodin 1999; 4. Compute the mean, cd(n), and the standard de-
Odlyzko and Rains 2000]. viation, crd(n), of the Q(S^) 'S .

The multidimensional generalization of the mono-
tone subsequence problem was first considered by For K sufficiently large, one expects that cd(n) will
Steel [1977], who conjectured the existence of a con- be close to E[cd(n)} (to within ad(n)/VK), and if n
stant that generalizes the Hammersley's constant is sufficiently large, then E[cd{n)\ should be close to
c to the d-dimensional case. The correct general- cd. The determination of whether n is sufficiently
ization was found by Bollobas and Winkler [1988]. large is a difficult problem. One usually runs an
Let Vd — [0, l]d be the unit cube in d dimensions experiment for the largest value of n that is prac-
and let n random points sc(l), cc(2), . . . , x{n) be tically feasible, given the current computational re-
chosen independently from the uniform distribution sources. Unfortunately, however, it has been discov-
on Vd. These points form the underlying set of a ered through experimental investigations (Catherine
random order Pd(n) with a partial ordering given McGeoch, private communication, 2000) that the
by x(i) < x(j) if and only if xk(i) < xk(j) for all values of n that need to be considered in order to
k = 1 , . . . ,d. Let the height Hd(n) be the number get a good approximation for cd are not computa-
of elements in a longest chain (totally ordered sub- tionally feasible. In particular, according to Mc-
set) of Pd(n). We are interested in the asymptotic Geoch, n — 109 points for d — 3 is not sufficiently
behavior of the random variable large to suggest an estimate for c3. Thus, we would

Hd{n) need to consider n at least as large as 1010. Since
QvnJ — nxjd • the standard dynamic programming algorithm for

Bollobas and Winkler [1988] showed that, for each computing the length of a maximal chain is quad-
d > 0, cd{n) converges in probability to a constant r a t i c i n n, solving even one example with n = 1010

cd. For convenience, we restate their theorem here. points would typically take a few weeks on a modern
workstation. In order to develop reasonable statis-

Theorem 1.1 [Bollobas and Winkler 1988]. For d = ^ Q n e w o u W n e e d g e v e r & 1 y e & r g A Q e q u & U y a c u t g

1,2,..., define cd = h m s u p ^ E[cd(n)}. Then: prohlem is with the memory requirements for such

1. cd < e. an experiment: storing 1010 d-dimensional vectors in
2. For all e > 0 and S > 0, there exists M(£, S) such RAM is impossible on almost any advanced worksta-

that n > M(e, S) implies tion, and storing them on disk would substantially

[ ff (n\ "I slow down the algorithm.

Yfd
 Cd — £\ > 1 — -̂ Hence, the main challenge for an experimental ap-

proach to estimating cd lies in the design of feasi-
d^oo d ~~ ' ble computational experiments that estimate cd(n)

Except for c2 = 2, no other cd is currently known for for verY l a r § e n- I n t h i s PaPer> w e propose an ap-
d > 2. It is not even known whether the sequence proach that addresses both the computational effi-
{cd} is monotonically increasing in d. It is not hard c i e n c y a n d t h e memory issues. The core idea be-
to conceive a computational experiment that would, h i n d o u r approach is the observation that a maxi-
hopefully, lead to approximate values of Q , for some m a l c h a i n "close" to the diagonal of the unit cube
d > 2: Vd — [0, l]d must exist as n —> oo. We present a

theoretical justification of this observation and use
Experiment 1 (Naive determination of cA x ^ - r x x x x ,L , ,

v d/ this fact to construct sequences that converge to cd.
1. For a large integer n, randomly generate a set Based upon geometrical considerations, we conjec-

S of n points from the uniform distribution on ture that each of these sequences converges at essen-
Vd = [0, l]d. tially the same rate. We present experimental data

2. Compute the height Hd(S) (i.e., the length of a to support this conjecture, and then use this conjee-
maximal chain in S) and cd(S) = iJrf(S')/n1/d. ture to derive, from the data, estimates for { Q } , for

3. Repeat these computations K times to obtain d = 3,4, 5,6. The intervals for cd for those values of
Cd(S1),cd(S2), • • •, cd(SK). d are:
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d cd from ( 0 , 0 , . . . ,0) to (1 —r, 1 —r, . . . , 1 —r); each

2 [1 998 2 0021 s u d l Po lyg°n h a s volume r ^ ^ l - r ) .
o ^ o(?o' 9 Qfifil 2. A d-dimesional cube of side r defined by [1—r, l]d ,
4 [ 2 W , 2*521] whose volume is rd.

5 [2.583,2.589] ^ yr>^

6 [2.607,2.617] ^ ^ j^S^?

Our estimates suggest that {cd} is a monotonically ^/^ ^^J$^j$^

increasing sequence in d, a fact that has previously 1 ^ "^^J^j^^
not been suggested by any experiments. J^ $0j^f

The outline of the paper is as follows. The next J$^J$ dr
section describes two approaches to the design of ex- jdrj$ j$
periments that build upon Experiment 1. The pre- jyj^^y^
sentation is informal, and we do not describe every y^d0j^r ~S^^
detail of all attempts that were made. The only ex- j^T^^^i0^ ^^^^
ception is for the approach that actually yielded es- JlS^r ^ ^ ^
timates for cd. In Section 3, we present the data sup- 1/TnV^ v^

rp

porting our conjecture, in addition to the data used
for deriving the estimates for cd. Technical details f 1^? 1 ; . 1 ' ° i agon

K
al v?u™ e l e m e n t o b t a i n e d ^

. . . _ _ translation of a cube of side r.
are left to an appendix. Preliminary experimental
results were presented in [Breimer et al. 20011. T , • ± u ^ ̂  •* 1 • T,T / w r

^ L J Let n points be sampled uniformly in Vd(r) to form
a random partially ordered set Pd(n, r). Denote the

2. LOCATION OF MAXIMAL CHAINS height of this set by Hd{n, r) and define the random
Since a longest chain is only a very small subset of v a r i a b l e cd(n,r) by
the set of n random points in Vd(r), we can expect Hd(n,r)
to gain an advantage over the straightforward simu- cd\n,r) — ))1/d'
lation in Experiment 1 by restricting our search for
such a chain to a small region where we are likely Intuitively, we expect that if one were to generate
to find it. Thus, our first task is to identify a region n* = \n/Vd(r)] P o i n t s i n the whole cube Vd, then
in the cube which with probability tending to 1 as a b o u t n o f t h e m w o u l d f a l 1 i n vd(r)- I f n* i s l a r S e . a

n -* 00 contains a maximal chain. It is intuitively m a x i m a l chain should exist in Vd(r); thus Hd(n,r)
apparent that a good candidate for such a region is s h o u l d approximate Hd(n*), the height of Pd(n*).
the set of points that are "close" to the diagonal, Therefore, for n sufficiently large,
say, at most a distance r from the diagonal. The Hd(n*)
justification of this observation is given in Theorem Q ( n ' r> ̂  n*i/d = Cd^n )'
2.1, which we prove using a modification of Bollobas n r n A r \ u ^^ ±

! 1 T , £ rrZ, -, -, Hence, for fixed r, cd(n,r) should converge to cd.
and Wmklers proof of Theorem 1.1. r™- . ,, ,, , . / , , , ,, , . ,

T r / N , , - r ^ This is exactly the claim of the next theorem, which
Let Vd(r) be the region of Vd = 10,1 obtained • ,. u 1 r mi -, -,

,v } , r 1S essentially an analog of Theorem 1.1.
by translating a cube of side r along the diagonal
(Figure 1). The volume Vd(r) of Vd(r) is given by Theorem 2.1. Fix d G {1, 2,. . .} and r > 0. For all

T_ t , d 1 d-\/t \ e > 0 and S > 0, there exists Mr(s,5) such that if
K,(r) = r- + dr--1(l-r); n > Mr(e,5) then

to see this, note that Vd(r) can be divided into dis- r>n / \ ^ 1 -1 c
. . . . r n P \ \ c d ( n , r ) - c d \ < s \ > 1 - S ,
joint parts as follows: u v J ~ J '
1 O 1 r ! / • / , , £ -.1 / J i\ where the constants cd are defined in Theorem 1.1.
1. Polygons pi, for 1 < % < d, defined by a (d— 1)-

dimensional cube surface of side r parallel to the Proof. An equivalent way to generate n points uni-
plane x{ = 0 and translated along the diagonal formly in Vd(r) is to generate n* points uniformly
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in Vd until n of them are in Vd(r). Thus n* is a chain in the subcube i be denoted Hd(n*,i). It is
random variable with a distribution given by then clear that Hd(n, r) > £ \ Hd(n*, i); therefore

*»•=»+*] = , r ( i - p ) » ( - £ • * ) , * = (.,!,..., £ H i ( B V ) £«,<„.,,-)
where we have let p = Vd(r). The expected value cAn> rJ > EWi*]1/* "~ (n*)1/* \E[n*]J '
and standard deviation of n* are then given by

j?r-n*l — n /n Bollobas and Winkler [1988] have shown that

std[n*] = ^Jn(l-p)/p2. y - Hd(n*,i)

Given e > 0 and for any 7 > 0, a straightforward » ^n '
application of Markov's inequality gives

converges in probability to cd\ hence the right-hand
p\ (\ eP \ < f n \ < (1 1 g^ ^ side of the last equality converges in probability to

[\ n1 /2-7; - V£[n*]/ ~ V nV2-7; J Q ? p r o v i n g t h a t t h e inequality cd{n,r) > cd holds
> 1 __ 1 —P in probability as n —>• 00. This concludes the proof

(spn7)2 that cd(n,r) converges in probability to cd. •

Thus, (n*/E[n*])^d converges in probability to 1. Essentially, Theorem 2.1 states that for every r > 0,
First we show that the inequality cd(n, r) < cd holds t h e r e i s a sufficiently large n such that a set of n
in probability as n -> 00. Since JTd(n*) > Hd(n,r), p o ints generated uniformly in a region close to the
we have diagonal "represents" a much larger "virtual set"

Hd(n,r) ( n* \ 1 / d generated uniformly in the whole cube. Thus, com-
cd(n, r) = ^ | - n *^i / d <cd{n ) yE^n^J • puting the height of this smaller set would be equiv-

c . ,, , , r x . x alent (asymptotically) to computing the height of
Since the product of two sequences that converge xl , . , , , /

r r i l . ,, , i • ,
, , .,., , - i i -TX /x n the larger virtual set. This result has several inter-

in probability also converges in probability (to the .- - i- ,- r • ^ m i r >
, , p., , ,. mj_ N xl . i , i • i r i esting implications for our experiments. The first

product of the two limits), the right-hand side of the '? , . . p,., , , . ° , is, of course, that we can restrict our search for a
inequality converges m probability to Q . , , . .

T , , , ,, . Vj. longest chain to points close to the diagonal. The
In order to show the reverse inequality, we pro- J - J . I X J . I - 1

, • r-n» n i ^ T TTT. i i i^ooi i • , second is that there is no need to generate points
ceed as in Bollobas and Winkler 1988 and intro- . ,, , , , o . . , .
T , : r . , . . , I , . 1 in the whole cube, bmce we are interested exclu-

duce subcubes 01 side It along the diagonal, given . , . . . , . .
u 7-k w i \ u - is\d T^- o\ o xi j. ± • sively in the points that are close to the diagonal,
by Di = (z - l ) / t , % t]d (Figure 2). Suppose that £ is \ / . , ,, ,. . . , .
, , 1 \i \ / 11 • • 1̂ w e o n ly n e e ( l t o generate these diagonal points in

chosen large enough so that each subcube is in the ,. , , , , . , x ... ,
T r / N . ° . n i . , Ll . . a way that would be consistent with having gener-

region Vd(r), i.e., It < r. Chains in these subcubes , j , 1 r - J. - i • 1
, . , r ' . xr / \ -r . T ated a larger number 01 points in the entire cube,

combine to torm chains in Vd(r). Let a maximal A ,1 . 1 i - n - T • - i -r n
A third, and crucial, implication is that 11 one nxes

^Xi j ^ l r ^ i an r > 0, then eventually, for large enough n, a
^ / ^ ^s ̂ > -p? maximal chain should fall in this region close to the

^s' ^̂ 1 I diagonal.
"^ (^ ^ Thus, for a fixed r > 0, a Monte Carlo simulation

I t| t o determine crf(n, r) can be used to suggest a value
^ T ^ ~ - ^ for Q , provided n is sufficiently large. One might
J_-^ hope that the experiment with a large and infeasible

\ \ \ ^ ~s^ n* ̂ ^^ yields a good estimate for cd would be equiv-
-—f^J^ ^ s ^ alent to an experiment with a feasible n « n*Vd{r),

~ [ / ^ ^ for some r > 0. Thus, our general approach will be
~~~ ^ to estimate £?[cd(n, r)] for various n and r by Monte
I <r Carlo simulation, and use these values to construct

FIGURE 2. Diagonal subcubes of side 1/t < r. a finai estimate for cd.
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3. BOOSTING large. Additionally, due to statistical fluctuations,

AT ^ T . r T , ,. cd(n,r) needs to be computed many times to ob-
JNot every combination ot n and r is computation- , , . , , . r _ , N -. ,

„ . 1 J L J . * r i-xr ( M T c j_ r tarn a reliable estimate tor cd{n,r). Jburthermore,
ally equivalent to an n — \n VAr)\. In tact, lor . / \ , ,
c i n / \ / M-i/d Ji/d u- u m order to obtain ropt(n) to a reasonable accuracy,
fixed n, as r —> 0, cd(n,r) -> ( r n r i/ddi/d, which _ , , _ _ p v , P ,

, rr,i . • i • -,. , ,i , • , cd(n,r) needs to be computed for many r, hence
approaches zero. 1 his simply indicates that r is too \ , rn r xl . j ., . i.i T ,, , making the determination of rODt(n) computation-
small for the given n, and it is unlikely that a max- . ^ . Ml A

T , . r T .,, * . , . T r . ally intensive, even for a feasible n. As an example,
imal chain ot a random set with n points m Vd is 7 . . .
i x. J • -J T7- / \ r\ J.-U IL i. j T • £ J for a — 3, our simulations indicate that rOr>t(n) lies
located inside V^m. On the other hand, it n i s fixed ' p v y

T rn . ,, ! i . i ,i -i -i • Ti i m the ran^e 0.08,0.11 ; thus, to reach n* = 10 ,
and r is sufficiently large but less than 1, it is likely , , , * , «
,, , , , , n * • x r n • Tr / \ J we would need to process sets of size close to 10* or
that about n out ot n points tall in Vd\T) a n d a .

T T . . , .,, . „ ,. , larger. The result is that boosting to an acceptable
maximal chain exists withm even a smaller distance ° . °

r ,i -,. i . i mi i x- , n is still close to mfeasible.of the diagonal than r. lhese observations suggest
that given n, there exists an optimal r = ropt(n),
which yields a maximal value for Q(TI, ropt). (In fact, 4. COCONVERGENCE
our experiments suggest that cd{n,r) has a single Theorem 2.1 suggests yet another approach to esti-
maximum as a function of r.) In the next section, we m a t i n g Q S e l e c t a s e t | r .}T^ o f v a l u e s for r a n d

present an algorithm for computing cd{n, r) which consider T sequences {cd(n, n)} for i = 1 , . . . , T. By
requires 0{rnd) memory and runs in O(rn2d) time. Theorem 2.1, each of these sequences converges to
Thus, it is of practical importance to select as small t h e s a m e l i m i t Q a s n _^ OOm The p r o b l e m n o w

an r as possible for which cd(n,r) approximates cd. i s o n e o f estimating the common limit of these T
We are thus led to the following experiment sequences. Suppose cd(n) (= cd(n, 1)) converges at
Experiment 2 (Boosting). s o m e r a t e / ( n ) t o cd'
1. Select a maximal feasible n. ^n"> = Cd ~ ^ n " > '
2 . Set r = 1, and obtain an estimate for cd(n,r). Figure 2 suggests that chains in Vd(r) can be con-
3. Decrease r (r <- r-s, for a suitably chosen e) and structed by summing chains in the subcubes of side

re-estimate cd(n,r). Repeat until cd(n,r) stops r along the diagonal. Hence the convergence of the
increasing. chains in Vd(r) should be closely related to the con-

4. Find ropt(n), the r after which cd(n,r) started to vergence of the sum of chains in the diagonal sub-
decrease, cubes, which in turn should be closely related to

5. If ropt(n)n2d is much less than the available re- the convergence in each subcube. This convergence
sources, increase n (n <- n + n0, for a suitably is governed by f(n) and, thus, we are led to conjee-
chosen n0). Compute cd(n, r). Go back to step 3. ture that the order of convergence of cd(n, r) for all

6. Once a maximal n has been reached and its as- r > 0 is essentially the same.
sociated ropt(n) has been determined, compute . _. . . . , x
_ / v , \,' , . , ^ , , , , . Conjecture. There exists a function air) > 0, such
c-d(n,ropt) to the desired accuracy. Output this . ' 77

 J ^v J

\ p [, ,. , - J that, for all r > 0,
value as the estimate for cd.

A j.i r - n , o J. Cd(n.r) = Q — u(r)f(n) + o(f(n)). (4-1)
As the name of Experiment 2 suggests, given a max- v ' y ^v y j v J w v y/

imal n for Experiment 1 (determined by computa- The goal of Experiment 2 was to obtain the smallest
tional resources), we can boost up to a higher n* by r, namely ropt(n), for which /i(ropt) is a minimum,
going to a smaller ropt and, perhaps, further increas- According to our conjecture, ropt(n) should be in-
ing n as described in Experiment 2, while still using dependent of n, at least asymptotically, and this
the same amount of computational resources. Un- could be the first test of the conjecture. The con-
fortunately, boosting does not quite yield a compu- jecture suggests a strong interdependence between
tationally feasible experiment for estimating cd. The the sequences, and we might be able to exploit this
root of the problem is that ropt(n) is not sufficiently interdependence in order to get a more accurate es-
small, thus the corresponding n* is not sufficiently timate of cd. The traditional approach to obtaining
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the convergence point of the sequence cd(n) would cd at the rate at which the linear behavior arises,
be to assume that f(n) has a certain form and then i.e., o(/(n)).)
obtain a value for cd consistent with this assumption 6. Compute ed(i,j), the value to which Cd(h,i,j)
and with the observed values cd{n). The success of converges with respect to h.
this kind of approach depends largely on the validity 7. Repeat steps 4-6 to compute ed(i,j) for all (^)
of the assumption on /(n). Our conjecture allows distinct pairs i,j G T.
us to estimate cd without estimating f(n). Given n 8. Set Ld = minijG<jed(z, j) , Ud = maxijG«jerf(z, j ) .
and distinct r̂ , rJ7 (4-1) implies that the equalities 9. Output the interval [Ld, Ud] as an estimate for cd.

cd{n, Ti) = cd — fJi(ri)f(n) + o(/(n)), Since the success of Experiment 3 largely depends on

Q(n, rj) = cd- nWfin) + o(f(n)) t h e v a l i d i t y o f Conjecture (4-1), we discuss the mo-
tivation for the conjecture and how one might exper-

hold simultaneously. Resolving this system with re- imentally verify it. Consider the quantity cd{n,r).

spect to /(n), we have Keeping in mind that "n points in Vd(r)n is "prob-
_ . . _ abilistically" equivalent to "n* points in Vd", and
C ^ n ' T i ) ~ that Hd(n, r) < Hd{n% we conclude that
(1 - A(n, rj)) cd + A(n, r^c^n, r,-) + o(/(n)), (4-2)

, , / x / w ( \ T ^ J r n cd(n,r)<cd(n*) = c d - / (n /Vd( r ) ) .
where A(r^ Tj) = n{ri)/fiyrj). In other words, tor all

ij G [1,T], cd(n,ri) linearly depends on cd{n,r5), A lower bound can be obtained by considering the
up to o(f(n)). Further, from the functions cd(n,ri) \jT diagonal subcubes inside Vd(r) (see Figure 2).
and cd(n,rj), one can estimate A(rurj) from the There are about nc = nrd/Vd(r) points in each sub-
slope of this dependence, and (1 - A{ru Vj)) cd from cube, with heights given by Hc = (nc)

1/d(cd-f(nc)).
the intercept. cd can then be obtained by divid- Since Hd(n,r) > Hc/r: we have
ing this intercept by (1—slope). We have thus con-
structed an estimate for cd without having to make Q ( ^ , ^ ) > Q — f{nr /Vd{r)).

any statements about f(n). Further, from (4-2), ,
,, , ,i , r u u . . , Thus, setting Ar = 1 VAr) and 7r = raAr, we con-

we see that the convergence to linear behavior is at ' , \ ,
, //»/ u , ,i r ,i elude (heunstically) that

a rate o{j{n)), whereas the convergence or the se- v J J

quences themselves is at the rate f(ri). Thus, the _ *t \ < t r\ < _ f / \ ^
linear behavior will materialize at smaller n than
the actual convergence. Hence, we expect to extract motivating the observation that cd(n, r) converges at
more accurate estimates for cd in this way, given the essentially the same rate for all r. For large r, we ex-
computational resources. We are thus led to the fol- pect the upper bound to be somewhat tight, and for
lowing experiment. small r, we expect the lower bound to be somewhat

^ ^ x tight. Hence, starting from large r, by decreasing r,
Experiment 3 (Coconvergence). 6 . ' * , , * / , j

we initially expect to get better values tor Q , and
1. Select a set T = {r i , . . . , rT} of values for r. then continuing to decrease r leads to worse perfor-
2. Select a set N — {ni , . . . , n^} of values for n. Let mance, indicating that an optimal r exists. Further,

Js[h = {m, . . . , nh} for h = 1 , . . . , L. the bounds indicate that f(Xrn) < /(7 rn), suggest-
3. Compute cd(n,r), for all r G T and all n G N. ing that / ( • ) is monotonically decreasing (or that
4. For all i , j G {1,2,. . . ,T} with i ^ j , perform cd(n) is increasing in n). These were exactly the

an analysis on the pair of sequences {cd(n, r^)} observations that led to boosting (Experiment 2).
and {cd(n,rj)} for n G 3Sf̂  to obtain the slope, We now discuss the experimental verification of
Ad(h,i,j), and the intercept, Bd(/i,i, j ) , for /i = the conjecture. We have seen that the conjecture
2 , . . . , L. implies a linear relationship, up to o(f(n)). Suppose

5. Evaluate cd(/i,i,j) = Bd(h,i,j)/(1 — Ad(h,i,j)) that we observe such a relationship; can we then
for /i = 1,. . . ,L. (Here cd(/i, i, j) is a sequence of conclude that the conjecture holds? The following
estimates for cd; this sequence should converge to theorem tells us that we can.
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Theorem 4.1. Define a set of sequences c{n,r) for then not only would we provide experimental justi-
every r G (0,1] and suppose that each sequence con- fication for the conjecture, but we would also obtain
verges with respect ton to a value c independent ofr. an accurate estimate for cd.
Suppose also that c(n, r) is differentiable with respect
to r. The following two statements are equivalent. r ALGORITHMS

1. c{n,r) = c- /i(r)/(n) for some functions M(r) > B o t h experimental approaches described in the pre-
0 and f(n) and for all r G (0,1]. v i o u s g e c t i o n t r y t o g e t m o r e a c c u r a t e estimates for

2. c^n) = c(l - A(rur2)) + A(rur2)c(n,r2) for Q b y effectively "accessing" higher n without actu-
some differentiable function A(r,r') and for all a l l y c o m p u t i n g w i t h t h e h i g h e r n . Both techniques
distinct pairs rur2 G (0,1]. r e l y o n e f f i c i e n t algorithms for computing cd(n, r).

Proof. That 1 => 2 has been demonstrated with The first task is to generate n points chosen in-
A{rur2) = /x(ri)//x(r2) (the assumptions imply that dependency from a uniform distribution in Vd(r).
H is differentiable). We show that 2 =» 1. Suppose A trivial algorithm is the one that generates ran-
that the second statement holds. Then dom points in Vd and keeps only those that fall

( \ _ A( \( ( \ \ in Vd{r)^ continuing until n points in Vd(r) have
cd{n,n)-c- A{rur2){cd{n,r2) - c) ^ ^ g e n e r a t e d T h i g c a n b e h i g h l y i ne f f i c i ent5 es_

= A(rur2)Q(n,r2), (4-3) pecially if r is small, as the acceptance rate will be

where Q{n,r2) = cd{n,r2) - c. The left-hand side extremely small. A more efficient approach is to
is independent of r2, so taking the derivative of the generate random points in Vd(r) itself. This can be
log of both sides we get done quite efficiently, and further, it is possible to

, T generate the points in a sequential manner so that
-— log A(ri, r2) = —-—Q(n, r2) the dynamic programming algorithm for computing

2 2 Hd(n,r) keeps in memory only a small portion of
for all rur2 G (0,1]. The right-hand side is inde- t h e total of n points, those that are necessary for
pendent of ri; therefore so is the left-hand side. The executing the algorithm.
left-hand side is independent of n, and thus so is the T h e second task is to compute Hd(n, r). The
right-hand side. Hence, they are both equal to some standard dynamic programming algorithm has corn-
function C(r2). Let a{r2) = f ((r2). After an inte- putational complexity O(dn2) [Cormen et al. 1990].
gration, we conclude that for some functions «(n) However, since the points are generated in a sequen-
and g(n), tial manner, it is possible to design an algorithm

log.A(ri r2) = air2) + log ft(7*1) tlmt maintains a working set that takes advantage
, ~, N / \ 1 / \ of the sequential point generation. Operations need
logQ(n,r2) = -a(r2) + log#(n), i u r J X- T * ^- •

only be perrormed on this working set, resulting in
from which A(rur2)Q{n,r2) = ft(ri)p(n). Substi- a factor of r reduction in both computational com-
tuting into (4-3) we find plexity and memory requirements.

c(n,r1) = c + K(r1)g(n).
5A. Generation of Input Points

Taking a — —ft and f = a concludes the proof. • m l .̂ r . ^ . M1 , ^ , . ^. o

lhe generation 01 points is illustrated in Jbigure 3,
Thus, not only does the conjecture imply a very for the case of d — 2. First, an "origin" point,
specific linear relationship between all pairs of se- t(i) — (t(i),t(i), . . . , t(z)), is generated along the
quences, but, if for some value of c, that same linear diagonal. Then a point is generated from a uni-
relationship holds for all pairs of sequences (i.e., all form distribution on one of the hypercubes pk(i),
ri 7̂  rj)i then the conjecture holds. Experimentally, k — 1 , . . . , d, where pk(i) is the [d— l)-dimensional
this means that c(h,ri,rj) in Experiment 3 should cube with origin at t(i) and the fc-th coordinate set
converge (with respect to h) to the same value for to zero. In this way one can generate n points in
all distinct pairs ri^r^ or, equivalently, the interval Vd(r). The probability density of the origin point
[Ld, Ud] should be small. If this were to happen, coordinate t(i) is uniform up to t(i) = 1 — r and



590 Experimental Mathematics, Vol. 10 (2001), No. 4

then decaying like (1 — t(i))d~l for t(i) > 1 — r. This 3. Generate a random vector —{vi, v2,..., vd} with
density is shown in Figure 4, for the case d = 3, each ^ in [0,min{r, 1—£;}].
r = 0.5. Further, instead of generating the origin 4. Generate a random integer k from {1,2, . . . ,d}
points in a random order, we generate the n order and set vk = 0.
statistics for the origin points. 5. Generate input point

h y yi x{%) = {t{i) + vu t(i) + v2, . . . , t(i) + vd}.

y^ / / 6. Set tprev = t(z), i = i+1 and go back to step 2 if
ŷ  / i <n.

/ x{i+iy /
vd[ry ° / / The detailed implementation of step 2 is given in

/ / / Section 7A. The following considerations prove the
/ /i-(z+i) / correctness of the algorithm. One can show that

/ z* / / step 2 generates the order statistics for the distri-
/ P2^ / x(i) / bution of the origin coordinate, where the origin co-

/tii) • v f\ ordinate distribution is uniform from 0 to 1—r and
/ / then decaying like (1 — xy"1 from 1—r to 1, at which

/_ /_ point it is 0. The remainder of the algorithm then
o ̂  ^ l takes that as origin point and generates a point on

one of the (d-l)-dimensional faces of side r given
FIGURE 3. The sequential generation of points in ^ x _ Q
Vd(r) illustrated for the case d = 2. ^ , •,• , ±. , / i , > • • i\

v ' The next proposition states two (almost trivial)
ordering properties that the points sc( l) , . . . ,x(n)

Density of the Origin Point Coordinate^ h a v e > w h i l e t h e s e properties might seem trivial,
\ they are of key importance to the algorithm for com-
\ puting the height of the n points in Vd(r), as we shall

07 \ - see in the next section.
>. \
| 0 6 \ Proposition 5.1 (Ordering properties). Suppose points
Qos- \ - a?(l) , . . . ,a?(n) are generated according to the algo-
= \ rithm above. Then:
JD04" \

o0.3. \ - 1. Ift(i) > a j ( j ) , then x(k) > x(j) for all k>i.
d=3;r=o.5 \ 2. If i < j , it cannot be that x(i) > x(j). More

\ precisely, P[x(i) > x(j)] = 0.
0.1 - \ ^

X^^ Proof. The first claim follows because x(k) > t(i) for
°° 01 °2 °3 04 °5 °6 07 os 09 1 ^ > it Le^ ̂ e o r igin point of x(i) be t(i) and let

r i ^ l i n r A r, u , , . , j -x r • • • x r j > i- One of the components of x{i) is t(i)\ there-FIGURE 4. Probability density of origin points for J
£ . ^ . r /-\ , ! , ;, xl^ _ 3 r = Q5 o ^ fore faofc component of x(i) must be less than the

corresponding component of x(j) with probability
Algorithm 1 (Sequential generation of input points). 1, proving the second statement. •

1. Set i = 1 and tprev = 0.
n n * + u - ^ • • - 4 . 5B. Computing Hd(n, r)
2. Generate the z-th origin point

Although the ordering of the origin points does not
t(z) = (t(z),t(z),...,t(i)), guarantee that the projected input points {x(l),

where t(i) G [tprev,l] is the i-th order statistic «(2), . . . , x(n)} are ordered, it guarantees the order-
(given that the (i-l)-th order statistic was at ing properties stated in Proposition 5.1. Property 2
tprev) of n points generated from the distribution ensures that a newly generated point can never be
of origin points such as the one in Figure 4. below a previously generated point. Therefore, the
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Iteration i Iteration i + 1 Working Set

/ ' ® / ' >y B \ / '' . // 0 v
barrier pointy barrier point ®/

/•• Hx / / H / / /

/ g x barrier pointy / g

r barrier * r barrieri+i

FIGURE 5. The working set at iteration i and i + 1. Key: a represents a discarded input point, ® represents a
working set input point, and • an origin point.

height of newly generated points can be immediately remove the current barrier point and re-
computed without considering future points. At it- place it with x(j).
eration z, property 1 ensures x(i) has a height of at iii. If h(x(j)) < /i(#barrier) then remove x(j)
least h(x(j)) + 1 for all x(j) < t(i). Among these from the working set
input points, the x(j) with maximum height is iden- iv. Iix(j) is below t(i) and the barrier point is
tified as the barrier point and the rest are discarded. not defined then set x(j) to be the barrier
The remaining input points (all x(j) > t(i) plus the point
barrier point) define the working set for iteration d. Add x(i) to the working set
i + 1. The height of x(i + 1) can be determined by e. If h(x(i)) > hmax then set /imax — h(x(i)).
inspecting only the points in the working set 5. Return hma^/n1^d.

Hd{n,r) is computed using the following proce-
dure where t and x are the origin point and pro- T h e algorithm computes the height of each x[i) as
jected input point as generated by sequential gen- t h e i n P u t P o i n t s a r e generated. x(i) is given a de-
erator described above. h(x) is the height of the f a u l t h e i S h t o f L E v e r y i n P u t P o i n t f o r m s a c h a i n o f

maximal chain ending at point z, and ^b a r r i e r is the h e i S h t 1 w i t h i t s e l f a s t h e beginning and end points.
barrier point The new input point is compared with every x(j)

in the working set to find the highest chain which
Algorithm 2 (Computation of Hd(n, r)). can be continued by x{i). Each x(j) is also com-

pared with t(i) to determine if it is below the bar-
1. Set /imax — 1- Tier. If x(j) is below the barrier, it either is re-
2. Using Algorithm 1, generate t(l) and x(l) and moved from the working set or (in the case where

add x(l) to the working set h(x(j)) > /i(^bamer)) replaces the current barrier
3. Set the height of x(l) to 1 (h(x(l)) — 1). point After iteration i, the working set includes only
4. For i — 2 to n the barrier point and the points that are not below

a. Using Algorithm 1, generate t(i) and x(i). the origin point t{i) (see Figure 5). This defines
b. Initialize the height oi x(i) to 1 (h(x(i)) = 1). a subset of the Vd(r) which has volume O(Vd{r))r.
c. For every point x(j) in the working set Since n points are uniformly distributed in V"d(r), it

i. If x(i) is above x(j) and h(x(j)) > h{x{i)) is expected that the working set contains rn points.
then set h(x(i)) = h(x(j)) + 1. Since the algorithm must iterate over the working

ii. If x(j) is below t(i), if the barrier point is set for every newly generated point, the expected
defined, and if h(x(j)) > h(xharT[er), then number of point comparisons is O(rn2). Therefore,
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using a very small r not only increases the number 1. The coconvergence of {cd(n,r)}, leading to esti-
of virtual points n* but decreases the memory re- mates of { Q } .
quirements and the number of computations by a 2. The (asymptotic) independence (and uniqueness)
factor of r. of ropt(n) with respect to n, for d = 2,3,4, 5,6.

Proposition 5.2 (Correctness of Algorithm 2). Suppose The coconvergence simulations aim to confirm that
that h(x(i)), for i = 1, dots, n, is computed accord- for every pair of radii, r{ ^ r$, and sufficiently large
ing to Algorithm 2. Then: n, there exist constants A and B, depending on r{

1. h(x(i)) is equal to the height of the longest chain a n d r^ s u c h t h a t

ending at x\i). c(n, n) = B + Ac(n, rj) + e.
2. /imax is equal to the height of the longest chain in

Vd(r). The e signifies an error term composed of the o(f(n))
term, which governs the rate of coconvergence, and

Proof. At the first iteration of the algorithm, x(l) ,, , ,. , • -, n > , • . . - m i
& / x the statistical fluctuations in measuring c. lhese

is assigned the correct height of 1. Each xii +1) is n . ,. , •, , . , M n u , n
° ° v y fluctuations can be made arbitrarily small by tak-

compared with all asm, ? < i, with the exception . . T n r _ TT .
F W 7 ' J — ' F mg a large enough sample for computing c. Having

of the x(j) < til) which are guaranteed by Proposi- , , . , i J D D //i /t\ • J.- ^ r
V J / v ; & J F obtained A and ±?, 5 / (1 -A) is an estimate for cd.

tion 5.1 to be bellow xii + 1). The maximum height ^T n , -, , -.. , , u ,
v y G We selected n and r according to the scheme

of these points is represented by the barrier point
Therefore, all possible maximum length chains end- n G {Ll02+01A;J : k G [0,40]},
ing at x(i + 1) are evaluated and h(x(i)) is set to r e {0.01,0.005,0.001,0.0005,0.0001}.
the maximum height. The second statement follows
directly from the first by taking the maximum of all T h e number of trials used for computing cd(n, r) was
hixii)). • heuristically selected to obtain roughly the same de-

gree of statistical accuracy (within the given compu-
f% FXPFRIMFNTS tational requirements) for each n and r. In principle,

the larger the number of trials for a given n and r,
We now sumarize our results and the calculations the more accurate the estimates will be.
used to obtain them. We discuss the case d = 3; Figure 7, left, exhibits the convergence behavior
for the other dimensions we just provide graphs and of c3(n,r), for the five values of r. Even for n =
tabular data. We have performed computer simula- io 6 , it is not clear to what value these sequences are
tions to support the following claims: converging.

I key: I
r = 0.01

2.4 - r = 0.005 - 2.4 -
r = 0.001 y ^ : ^ v 5 ? g ^ - J ,-:-y5s^ -

r = 0.0005 _ _ - ^ / /''''<'''.-•'•••'•<-•"' '.-X

I r = 0.0001 I ^ ^ ^ ^ ^ / /'/'/ ;/'""••'' / /
2.2 - / ^ \ , ' ' ' ' . . '•'_. . . .--••••" - 1 . 1 - / / ' / / / ' / ' ' ' / ' /

£ 2 - / / / / / - 5 2 - / / / / /•' / /

/ / ' -'' / / / // ' / / •' / / I key: "]
/ / -'' / / / // ' / / •' / / r = (0.01, 0.005)

1 o / / / / / i n / •'/ / / •'' ;' •'' / r = (°-01 / °-001)
'•° / / / / ' " ' •a " / // i/ / •' / / r = (0.01,0.0005)

/ / / / / / / ' // / •' / / r = (0.01, 0.0001)
/ / / / / / ,'/ •/ i ; / / r = (0.005, 0.001)

/ / / / / / • ' A-' •' ;' ;' / r = (0.005, 0.0005)
/ / / / / ' / / / / ; ••' / r = (0.005, 0.0001)

1.6 - / / '' / ' - 1.6 - •' ' / •' : / / r = (0.001,0.0005) -
/ / / / / / / ; / ;' / / r = (0.001,0.0001)

_/_/_, t t / _ / , M _ / , / ; / ,/../,,,./ /, ,.' r f (?-?0 .°.5/ .P.-000P •
100 1000 10000 100000 1e+06 100 1000 10000 100000 1e+06

n n

FIGURE 7. Convergence of c3(n,r) (left) and of c3(/c;i, j ) (right).
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{rj,rk) d = 2 d — 3 d — ̂  d — 5 d = 6 summarizes the results, displaying the estimates for

(.01, .005) 1.9985 2.3636 2.5144 2.5887 2.6105 Cd °btainec^from each of the ten pairs of sequences
(.01, .001) 1.9978 2.3627 2.5139 2.5864 2.6145 for each d = 2, 3,4, 5,6.
(.01, .0005) 1.9982 2.3629 2.5151 2.5868 2.6153 A s further evidence for our conjecture, we con-
(.01, .0001) 1.9985 2.3628 2.5165 2.5892 2.6156 ducted experiments to investigate whether ropt(n) is
(.005, .001) 1.9999 2.3631 2.5207 2.5867 2.6158 independent of n. Our second series of simulations
(.005, .0005) 2.0001 2.3638 2.5195 2.5866 2.6156 used these values of n and r:
(.005, .0001) 2.0006 2.3632 2.5192 2.5866 2.6167
(.001, .0005) 2.0010 2.3658 2.5204 2.5827 2.6118 n G {50000,100000,200000,300000},

(.001, .0001) 2.0015 2.3643 2.5186 2.5837 2.6096 r {0 .01,0.02,0.06,0.08,0.10,0.14,0.20,0.30,1.00}.
(.0005,-0001) 2.0018 2.3663 2.5168 2.5832 2.6074 l ' ' ' J

TABLE 1. Estimates of cd obtained from various pairs
of sequences for d — 2,3,4,5,6. 7 „ I ' ' ' ' ^~ ' 1 ' ' key: ' i

M ' ' ' ' i.5i / " ^ \ n = 300,000

2.31 /•/~-'^<\ n = 200,000

? o I - -, ^ - ^ \ n = 100,000 - -
~ . / \ i / \ r» ' •' ""'" ^ ^ ~ — - _ 1 n = 50,000 I
Given cd\n,Ti) a n d cd(n,rj) for n = n1,...,nh,

 2-29 j •-. ^ ^ ^ ^ T ^ - - ^ ^
we can estimate Ad(h,i,j) and Bd(h,i,j) for h — | 227i. . ... ~ ~ ~ ^ ^ ^
2 , . . . , L as in Experiment 3. The estimate given ° 2-26 * .... ~~~~~~"----:
by B(h,i,j)/(1—A(h,i,j)) should converge with re- 2.24 - ...
spect to h to Q , independent of which part icular pair 223 "
i, 7 is used. The behavior of this rat io is demon- I • ' > ' > ' ' ' •—-^

0.1 0.2 0.3 0 4 0.5 0.6 0.7 0.8 0.9 1

s t r a t ed in F igure 7, r ight , tor a — 3. Sect ion 7B Radms

explains how A(h,iJ) and B(h,iJ) were estimated FIGURE 8. Dependence of cd(n,r) on r for various
and shows some sample behavior for the case d — 3. values of n.

It is clear that these curves are all converging to
the same value, supporting our conjecture via The- For each pair (n, r), over 350 samples were used to
orem 4.1. Further, the convergence occurs earlier as obtain cd{n,r). The results are plotted in Figure 8.
compared with the convergence of c3(n, r), in accor- The figure shows that rop t(n), the radius that maxi-
dance with the expected o{f(n)) behavior. Thus, we m i z e s cd(n, r), appears to be independent of n, and,
propose a range for c3 by taking the range of values further, since the curves appear very nearly parallel,
to which these curves are converging. Similar plots the function n{r) itself appears to be independent of
are shown in Figure 9, for d = 2,4,5,6. Table 1 n ? a s required by the conjecture.

2.1 • ^ i I 2.1 | i
keyj

r = 0.01
r = 0.005
r = 0.001

2 " r = 0.0005 " 2 " / ^ ^ ^ ^ ^ ^ 5 5 * •—•• " ^ - «
I r = 0.0001 I ^ ^ _ ^ r ^ r r ^ r r r r ^ ^ / ,'">''';'"*" ^?'""•••'/

1.9 - / ^ / ' ' ,•••'.,-•-"" - 1.9 - / f>/; / ? / ' /

c" 1.8 - / / /'' / / - 3 1.8 - / / / /' / /'/ / /
u / / / / v I I / / / / : / /

/ / ; ' ••• '' ' //' ' / •'' ;' •'' / k e y :

« 7 / •' / / , y I .7 ' / / •'' / / r = (0.01,0.005)
I V / / / / / " L / '/ ,7 ;' ; •' / r = (0.01,0.001)

/ / / / / / // , / / •' / / r = (0.01,0.0005)
/ / / / / / / ' .'/ / •' / / r = (0.01, 0.0001)

/ / '' / / / •/ ,7 / ; / / r = (0.005,0.001)
1 6 - / / •' ' ' - 1 6 - / . ' ' ' ; / / / • / r = (0-005,0.0005) _

/ / -' , / ' / /,' <! ! : : / r = (0.005, 0.0001)
/ / / / / / / ' / • ;' / / r = (0.001,0.0005)

/ / / / / / •',' / / ; / / r = (0.001,0.0001)
/ / / , / / / / / / ; / / I r = (0.0005,0.0001) I

1 . 5 I • • • / ' • • " ' • • • ' • • • ' • ! • • i ' 1 . 5 ' ' • " ' • •' • • • • • • ' •' /• • • ' ' ••• • • • ' • • • • '

100 1000 10000 100000 1e+06 100 1000 10000 100000 1e+06

n n

FIGURE 9. Convergence of cd(n, r) and cd(k; i, j ) , for d = 2 (this page) and d = 4,5,6 (overleaf).
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2 . 6 | • • • • • | 2 . 6 I M M . • • • • • |
key:
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/ / / / ' ;'/ '7 / •' / / r = (0.005,0.0001)
, , ; / / / , , : ' ;i •' : / / r = (0.001,0.0005)
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FIGURE 9 (continued). Convergence of Cd(n,r) and Q(/C;Z, j ) , for d = 4,5,6.
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7. SOME TECHNICAL DETAILS to approximate Ad(i,j) by a sequence Ad(h, ij) for
7 cy T

7k. Generating the Order Statistics for the Origin Points ' " ' '

Here we provide the details for the generation of Obtaining Ad(h, i,j). For every g = 2 , . . . , / i , compute
the order statistics of the origin points. Suppose we the average A^ of {ad(k\i^j)}^=g. Compute the
wish to generate the i-th order statistic. Let £prev standard deviation 5^ of {ad(k;i, j)}j!=p. Select the
be the coordinate for the ( i - l ) - th order statistic. If smallest g = g0 for which 5(fif) is the minimum to
i = 1 then £prev = 0. Define within 0.01. Output A^go) as an approximation for

Vd(r) = rd+drd-1(l-r)] Ad(h,iJ).

, drd-ii The approach is designed to accommodate the sta-
-——, 0 < / < 1—r, tistical noise and the fact that the convergence of the

F(l,r,d) = < a(k,i, j ) 's might not have occurred at the beginning
I v 1 ^ l - r < / < l ; of the sequence.

^ Vd\r) The procedure for approximating Bd(i,j) is simi-

{
Vd(r)u rd lar to the one for Ad(i , j):

d—l ' — ̂  — T/ ( T'
dr d^r) Obtaining Bd(h, i, j). Compute bd(k;i,j) = cd(nk,ri) -

1 - (VJrM\ -v\\1/d 1 r<i < y < i . Ad% h j)cd(nk, rj). For every g = 2,...,h, c o m p u t e
[d[)[ )] ' Vd(r)--1' the average flW of {bd{k'^j)}h

k=g. Compute the
G-l{u,l,n,k,r,d) standard deviation 5{h) of {bd(k;ij)}%=g. Select the

= 3>(l - (1-F(/ r d)) (1 — u)1^71"^"1"1^ r d) smallest g = g0 for which 5^ is the minimum to
within 0.01. Output B^ as an approximation for

(Note that $( •, r, rf) is inverse to F( •, r, d).) Now B (h i j)
generate uniformly a random number u G [0,1].
Then the z-th origin point, t(i) = ( t ( i ) , . . . , t ( i ) ) , Figure 10 demonstrates the behavior of A(h,i,j)
is given by and S(/i, i , j) for d = 3. As can be seen, conver-

. .N ^_i , . 7X gence occurs quite soon. The cases d = 2,4, 5,6 are
m ) = G m,£Drev,n,z,r, a), . ., , , ^ , TX. , . . , ^

w v p 7 7 7 7 / 7 similar and do not convey additional insight.
where n is the total number of points to be gener-
ated, r is the size of Vd(r) and d is its dimension.
A tedious but an elementary exercise (see [Billings- 8 ' CONCLUSIONS
ley 1986]) shows that this procedure does indeed We hope that the observations we have made, based
generate the correct order statistics, and we do not upon our experiments, can be rigorously proved,
include that analysis here. Our data seems to provide ample support for the

Conjecture on page 587, but a rigorous justification
7B. Method used to obtain Ad(h, i, j) and Bd(h, i, j) is certainly desirable. The translated cube Vd(r)
We briefly elaborate on step 4 of Experiment 3 (co- was chosen on the grounds of simplicity. The ana-
convergence). For a pair of sequences given by ru r^ log of the Bollobas and Winkler's theorem can be
let proved for similar diagonal volume elements with

\ (h i\ — r (r) r\ -r (n r\ slightly different shapes. It is not clear what the
( . optimal such shape is, in terms or rate or conver-

a>d{k\i,j) = — ' . (k = 1 , . . . ,40). gence to cd with respect to n. The behavior of cd
d^ '•?' with respect to d (other than being monotonic and

Assuming that constants Ad(i,j) and Bd(i,j) exist, converging to e) does not appear to display a sim-
Ud(k;i,j) would approximate Ad(i,j). However, the pie enough behavior that would lead to an immedi-
o(f(n)) term and the statistical noise require that ate conjecture for the constant cd as a function of
we take a more robust approach to get more reliable d. We hope that further experiments will provide
results. We, therefore, use the following procedure some guidelines toward a theoretical understanding
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FIGURE 10. Convergence of the estimates for Ad(k;i,j) (left) and Bd(k',i,j) (right) for d = 3.
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