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1. INTRODUCTION

An earlier paper [Brinkmann 2000] described a soft-
ware package that provides an environment for com-
puter experiments with automorphisms of surfaces
with one puncture. The purpose of this paper is to
present the mathematical background of an exten-
sion of this package that computes triangulations of
mapping tori of such homeomorphisms, suitable for
further analysis with SnapPea [Weeks 1993].

Pseudo-Anosov homeomorphisms are of particu-
lar interest because their mapping tori are hyper-
bolic 3-manifolds of finite volume [Thurston 1986a].
The software described in [Brinkmann 2000] recog-
nizes pseudo-Anosov homeomorphisms. Combining
this with the programs discussed here, we obtain
a powerful tool for generating and analyzing large
numbers of hyperbolic 3-manifolds.

The software package described in [Brinkmann
2000] takes an automorphism <p of a surface S with

This research was partially conducted by Brinkmann for the Clay o n e puncture (given as a Sequence of Dehn twists)
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in G homotopic to a loop around the puncture of graphical user interface with an online help feature
S. The map / and the loop a determine <p up to is also available,
isotopy [Brinkmann 2000, Section 5.1].

In Section 2, we describe an effective algorithm ^ C O M p u T | N G T R ,A N G U L A T |ONS
for computing a triangulation of the mapping torus
of cp: S -> S, given only f.G^G and a (Theo- Let <p: S -> S be an automorphism of a surface
rem 2.3). We also present an analysis of the com- S with one puncture, represented by a homotopy
plexity of this algorithm (Proposition 2.4). The first equivalence / : G ->• G of a finite graph G and a loop
part of the software package is a program (called cr in G representing a loop around the puncture of
jmt) that implements this procedure. The program S (see Section 1). There is no loss in assuming that
jmt prints its output in an intermediate human- / : G -> G maps vertices to vertices and that the
readable format. restriction of / to the interior of each edge of G is

In Section 3, we explain how to use the software an immersion.
discussed here and the isometry checker of Snap- In this section, we outline an effective procedure
Pea to solve the restricted conjugacy problem in the that computes a triangulation of the mapping torus
mapping class group (i.e., the question of whether of (p given only / and a. To this end, we construct
two pseudo-Anosov homeomorphisms are conjugate a simplicial 2-complex K and a face pairing e with
in the mapping class group). This problem was pre- the following properties.

viously solved in [Mosher 19861 and [Hemion 19791. , m i T^\ • i i • ± x
_ , , r r

 L. , 1. The space \K is homeomorphic to a torus.
One distinguishing feature of our solution is that
much of it has already been implemented. 2- F o r e a c h 2-simplex A of K, there exists a 2-

Section 4 presents sample computations that ex- simplex A' of K and an orientation reversing sim-

hibit some of the capabilities of the combination of P 1 1 ^ 1 homeomorphism eA: A -> A' such that

SnapPea and the software discussed here. eAf — eA-

The Appendix discusses the second program in 3. The space K/e is homotopy equivalent to the
the software package (called jsnap), which converts mapping torus of / .
the intermediate format of imt into SnapPea's tri- . Tr T , ^ / T^\ 1 J T_X • *n

. . n, r n. r. T̂  , r 4- I* w e ^ t M = (cone over K) e and obtain M
animation me format, Since SnapPeas format is r ,^ , . ,, . , ,, , , , .

° from M by removing the cone point, then M is
rather complicated, it is not easy to generate input o . . , , ,. ,. , ,, r , - ,.

^ i r i i a o-mamtold (in particular, the links of vertices
files for SnapPea, and i snap may be of independent , , , o i \

^ r in M are 2-spheres).
interest because it allows users to generate input for
SnapPea without having to understand SnapPea's In this situation, M' is homotopy equivalent to the
file format. mapping torus of / , and this in turn is homotopy

Immediate applications of the software described equivalent to the mapping torus M^ of (p. As M' is a
here include an experimental investigation of pos- 3-manifold, Mf is homeomorphic to M^ [Johannson
sible relationships between dynamical properties of 1979, p. 6].
pseudo-Anosov homeomorphisms (as computed by The triangulation of K induces a triangulation of
the first author's train track software) and topologi- M, i.e., the tetrahedra of M are cones over the tri-
cal properties of their mapping tori (as computed by angles of K. The vertices of K give rise to finite
SnapPea). For example, one might look for a rela- vertices of M, and the cone point is an ideal vertex
tionship between growth rate and volume. Another corresponding to the torus cusp of M^. By comput-
area where the package described in this paper has ing the links of vertices, SnapPea recognizes finite
already been used is the study of slalom knots as vertices (whose links are 2-spheres) and ideal ver-
introduced by Norbert A'Campo [1998]. tices (whose links are tori or Klein bottles).

The software is written in Java and should be uni- Hence, we have reduced the problem of construct-
versally portable. The programs jmt and jsnap are ing a triangulation of the mapping torus of ip to the
command line software and can be used to exam- construction of the 2-complex K and face pairing
ine a large number of examples as a batch job. A e, given only the homotopy equivalence / : G -> G
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and the loop a. The construction of K and e is the The remainder of this subsection details how to con-
purpose of the remainder of this section. struct a sequence of graphs and maps

The construction of K and e proceeds in two steps. n — C s° C Po C C Sn~1 C
We construct the 2-torus T by gluing annuli using ° 1 2 " ' 2n~2

 Pn^~X

Stallings's folding construction [1983]. Then we con- y G2n —^ G
struct a triangulation and a face pairing for each of such that
the annuli.

/ = 9n° Pn-1 O 5 n _ ! O . . . O p0 O 5 0 ,

Step 1: Subdividing and Folding where sf. G2i ->• G2i+1 is a subdivision, p{\ G2i+i -*

We review the notion of subdividing and folding G * + 2
 i s a S t a l l i n S s f o l d ' a n d ^ G2n -> Go is an

[Stalhngs 1983; Bestvina and Handel 1992]. Let i m m e rsion. Since / is a homotopy equivalence, gn

G,G' be finite graphs, and let / : G' -> G be a w i l 1 b e onto> h e n c e a ^isomorphism. Moreover,
map that maps vertices to vertices and edges to edge f o r e a c h i = ° ' ' ' • ' 2 n ' w e w i l 1 c o n s t r u c t a l o oP ^ i n

,i d corresponding to a loop around the puncture of
If / fails to be an immersion, then there exist two

distinct edges a,b in G' emanating from the same L e t *: G "> G b e i n d u c e d b ^ a homeomorphism
vertex such that f(a) and f(b) have a nontrivial ini- ^ : 5 ^ 5 ' a n d l e t CT d e n o t e a n e d § e l o oP i n G Cor"
tial path in common. We construct a new graph G[ r e s P o n d i n g *° a loop around the puncture of 5. Let
by subdividing a into two edges aua2 and subdivid- G ~ G ° ' 5o ~ f: Go ^ G, and (70 - a.

• • , i i Suppose that p0 is not an immersion. Then there

Now11/ factors through G[, i.e., there are maps e x i s t t w o e d S e s a ' 6 e m a n a t i n S f r o m t h e s a m e v e r "
s: G' -»• G; and <?: G'x -> G such that / = g o s. t e x m G° s u c h t h a t ^0(a) a n d ^ ) have a common
Moreover, we can choose s and g such that s(a) = i n i t i a l s e S m e n t - S i n c e ^0 i s i n d u c e d b ^ t h e h o m e ° -
a,a2, s(b) = hb2 and ^a x ) = g{W). We obtain a m o r P h i ^ <p: S-> S, we can find a and b such that
new graph G'2 from G; by identifying the edges a, a a n d b a r e a d J a c e n t i n t h e e m b e d d i n g o f Go in S.
and 6X. Then p factors through G'2, i.e., there is a S i n c e t h e l o oP a ° i n G i s homo*opic to a loop
map h: G'2 -» G such that g = hop, where p is the a r o u n d t h e P u n c t u r e ' « a n d b w i l 1 b e a d J a c e n t i n

natural projection p: G[ -> G^ (see Figure 1). We t h e sPe l l i nS o f a°- H e n c e ' w e c a n d e t e c t a a n d b

refer to this process as folding a, and ^ algorithmically by looking for cancellation between
the images of adjacent edges in the spelling of a0.

Remark 2.1. The notion of folds used in [Bestvina We obtain G\ from Go by subdividing a and &, and
and Handel 1992] differs slightly from that intro- we obtain G2 from Gi by folding the initial segments
duced in [Stallings 1983]. Bestvina and Handle con- of a and b. As above, we construct maps s0: Go —>
sider homotopy equivalences / : G -> G, and fold- Gi, p^: Gi -+ G2, and g\. G2 -* G such that g0 =
ing changes 6ot/i the domain and the range of / , #i0Po°So- Let ax = 50(cr0) and obtain <J2 from Po(o"i)
whereas Stallings considers maps / : G; -> G, and by tightening. Since the edges a and 6 are adjacent
folding only affects the domain G'. The notion of in the embedding of G in 5, the embedding of Go in
folds used in this paper is a slight modification of S induces an embedding of Gi and G2 in 5, and ax

the folds in [Stallings 1983]. and a2 are homotopic to a0 in S.

^ - ^ / ^ — ^ subdivision ^ - _ 4 ^ ^ : fold ^ ^ ^ / ai = &i \

\ ^ / \ ^ 1 \ d / \ 4-" \ d ^^Z*/

FIGURE 1. Subdividing and folding.
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Note that the size of #i, i.e., the sum of the lengths Finally, we compute the map #i: G2 —>> G.
of the images under Qi of the edges in Go, is strictly / \ /L \ L j _ ,

n +u +u • r u A . . ^i(ai) = a ^i(6i) = bcdcb

smaller than the size of g0. Hence, after repeating
this construction finitely many times, we reach a SH&2) = °dcb 5i(c) = bead
map gn: G2n —> G that cannot be folded and thus 9i(d) = ddcbd <J2 — aibib2dibib2cdcd
has to be an immersion. We have found the desired
sequence of subdivisions and folds. Step 2: Triangulating Annuli

Example 2.2. Let G be the graph with one vertex and W e c a n i n t e r P r e t t h e l o o P s ** a s i m m e r s ions
four edges, labeled a, . . . ,d, embedded in a punc- c^: S1 —)> G».
tured surface 5 of genus 2 as shown in Figure 2. -

The preimage or the vertex set or G; subdivides S
jz 1 Q. into intervals, and the restriction of 0̂  to such an

/ \ ^ interval is a homeomorphism onto the interior of an
/ \ . 5 a / / \. edge in G*. Hence, we can label each interval with

^ \ / the corresponding edge in G{. We refer to this con-
\ \ / struction as spelling <Ji along S1.

/ \^ Now, for each i G {0 , . . . , 2n}, we take an annu-
1 b/ $\ i l u s M a n d spell the word a{ along one boundary

\/^ c \ / component and ai+1 along the other. We orient the
\v / two boundary components of Ai such that they are

freely homotopic as oriented loops.
FIGURE 2. The graph G embedded in the surface T h i g ^ ^ d e f i n e g ft J u i o f A &M A ^
S. The corners 01 the octagon correspond to the . . . . ^ ^ ^ . T
puncture of 5. Two faces of the octagon are glued t h e homeomorphism gn: G2n -+ G = Go induces a
via an orientation-reversing map if the edge labels gluing of A2n-i and Ao (which we refer to as the fi-
match up. nal gluing), giving us the desired torus T (Figure 3).

Figure 4 shows the gluing of Ao and A1 for Exam-
We consider the following homotopy equivalence pie 2.2.

/ : G -> G, induced by an automorphism of S:

f(a) = aedeb f(b) = bcdcbcdcb

f(c) = bedd f(d) = ddcbd !

a = abdbeded / / \
In /(cr), cancellation occurs between the underlined fold / ) \
parts of / (a) and /(6), and we subdivide a and b subdivision / ''
in preparation for folding, which gives us the maps 1 ^n a l gluing
s0: G —> Gi and g :̂ Gi —> G (see Figure 1). In order i •
to reduce notational complexity, we only change the A ~A \
labels of those edges that are subdivided. / / / / \

so(a) = a1a2 so(b) = b,b2 I *old ^ {// \
/ \ ( J\ J subdivision /

so(c) — c so(d) = d I V
G\ = aia2b2bid2aibib2cdcd

Now we fold the edges d2 and b2. FIGURE 3. Decomposition into annuli.

Po(oi) = 01 Po(a2) = b2 .
Jbix some z G {0 , . . . , 2n) and spell o>i along *b .

Po(&i) = &i Po(^) = &2 Notice that each label on S1 occurs twice, once for
Po(c) — c Po(d) = d each direction (see Example 2.2 and Figure 2). If
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a i _ _ _ * _ ^ d

f\ "So f \ \ AQ i "A\ |"

\ \ v k M \ a d j I I

\ \a* X b c X df I
\ X bi \ %X / d

FIGURE 4. The gluing of Ao and A1 for Example 2.2.

we identify corresponding intervals, we obtain the We now construct a suitable triangulation of an
graph Gi, and if we take the cone over 5 1 , remove annulus A2i+\ corresponding to a fold pit Edges that
the cone point, and identify intervals with identi- are not involved in the fold give rise to paired rectan-
cal labels, then we obtain the surface S [Brinkmann gles contained in A2i+i (see Figure 4), and as above,
2000, Section 5.1]. we easily find a triangulation of these rectangles that

Hence, we only need to extend the edge pairing is compatible with the pairing.
on the boundary of the annulus Ai to an appropri- Let a, b denote the two edges involved in the fold,
ate face pairing of a triangulation of all of A^. Recall i.e., we have Pi(a) = Pi(b) = bf. By exchanging a and
that we want to choose the face pairing in such a way b or reversing the orientation of a and b as necessary,
that the cone over T (with the cone point removed) we may assume that the loop <72;+i has a subpath
becomes a 3-manifold when we identify correspond- of the form w — abud or w = abub, where u is a
ing triangles. path that contains neither a nor b. For concreteness,

We first find a suitable triangulation of an annulus we focus on the case w — abud. The first fold of
A2i corresponding to a subdivision S*. We decom- Example 2.2 falls into this case, with w = a2b2bxa2.
pose A2i into rectangles corresponding to edges that The construction in the remaining case is similar,
are not subdivided and pentagons corresponding to The loop <r2i+2 has a corresponding subpath of the
those edges that are subdivided (see Figure 4). The form w' = u'b1. Let Ao be the triangle spanned by
edge pairing on the boundary of A2i induces a pair- the initial endpoint of wf and the occurrence of a in
ing of rectangles (or pentagons as the case may be). w. We pair Ao with the triangle AQ spanned by the
Finding a triangulation of A2i that is compatible terminal endpoint of wf and the occurrence of d in
with this pairing is straightforward. w (see Figure 4).
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Let Ai be the triangle spanned by the occurrence cone of K and glue tetrahedra according to the
of b in w and the initial endpoint of w'', and let A2 face pairing. •
be the triangle spanned by the occurrence of bf in wf r™ • ^ • • i , .• r n .

. F J The program jmt is an implementation of this pro-
and the terminal endpoint of u. Observe that after _,
identifying paired edges, Ai and A2 have a side in
common, so we can think of Ai and A2 as spanning Complexity Analysis
a rectangle between b and b' which induces a trian- m, c , i • u , • • , i , . ,.

& T i i The purpose of this subsection is to obtain an esti-
gulation of the rectangle spanned by the occurrence , ,, u r , , i. J • ., ̂  - • i
° i r ~ mate on the number of tetranedra in the triangula-
of b in a2i+1 and the occurrence of b in a2i+2 (see ^ t h a t w e h a y e c o n s t r u c t e d .
Figure 4). This completes the triangulation and face W g h a y e d e f i n e d ^ s i z e o f a m a p fc. G , _ > G t o

pairing of A2i+1, which completes our construction. b g t h f i g u m o f t h e l e n g t h g ( J n t h g u s u a l p a t h ^ ^
Given the triangulation of A2i+i we have con- r ,, . , , , , r ^ , ^ , ,,

° 7 °i the images of the edges of G . ror example, the
structed above, we can think of the annulus Aoi+i • f i l £ , ^ I O O - O O T X O / L \

' ^ + i size of the first map in Example 2.2 is 23. Let SY/i)
as interpolating between the graph G2i+i and the -, , ,, . r ,

^ & & F ^'+1 denote the size of h.
graph G2l+2. In other words, we think of the fold W g g a y ^ & m a p g. Q, ^ G i s Ught i f

as occurring continuously, by identifying larger and
larger segments of the edges a and b (see Figure 5). 1 • f o r e v e lT e d S e e o f G', t h e restriction of g to the
Moreover, this continuous folding process is compat- interior of e is an immersion, and
ible with the embedding of the graphs in the surface 2. for every vertex v of G', there are two edges em-
S. This observation shows that the complex K and anating from v that cannot be folded (not even
its triangulation have the desired properties, in par- after a subdivision).
ticular Property 4. Note that tightness can always be achieved by ho-

motopy.
x^1 x^1 Proposition 2.4. Let f : G —> G be a tight homotopy

\^2 A x?1 equivalence representing a homeomorphism if of a
h* b2 b^ &2~̂  &i b2 once-punctured surface of genus g, and assume that

r.^.,nr ^ 2. r i ̂  r ^ i ^ ^ G has no vertices of valence less than three. Then
FIGURE 5. Continuous fold for Example 2.2. 7 , , , , , 7

the number of tetrahedra in the tnangulation of M^
. . . is bounded by 16(5g-2)S(f).

bumming up, we have obtained the mam result of
this paper: Proof. Since folding reduces size and annuli come in

pairs (a subdivision annulus followed by a folding
Theorem 2.3. Let f be a homotopy equivalence of a a n n u l u s ) 5 t h e n u m b e r o f a n n u l i i s b o u n d e d a b o v e b y

finite graph G, representing a homeomorphism <p of 2 5 ( / ) A g i m p l e a p p l i c a t i o n o f E u l e r c h a r a c teristics
a once-punctured surface. Then the following is an g h o w s t h a t Q h a g n Q m o r e t h a n %g_3 e d g e g b e c a u g e

effective procedure for computing a triangulation of t h e v a l e n c e o f e a c h y e r t e x ig a t l e a g t t h r e e g u b d i _
the mapping torus off. v i d i n g a n d folding5 h o w e v e r ? m a y c r e a t e add itional
1. Decompose t h e h o m o t o p y equivalence f . G - ^ G edges as well as vertices of valence one or two, so

into a sequence of subdivisions and folds, followed we need to understand the effect of subdividing and
by a homeomorphism {Step 1 in Section 2). folding on the number of edges.

i n u • 4.1, ± is i £ 7 To this end, we introduce the notion of partial
2. Obtain the torus K as a gluing of one annulus '

£ L L J . . . j i r i j - . i L L J folds, i.e., folds where both participating edges have
for each subdivision and fold in the above decom- J ' ' , f r i

... / p . ox to be subdivided, and full folds, i.e., folds where at
position (Figure 3). , ,. , , , ,. . , ,

least one of the participating edges is not subdivided
3. Triangulate the individual annuli and construct a [Bestvina and Handel 1992]. Clearly, a subdivision

face pairing (Step 2 in Section 2). followed by a full fold does not increase the number
4. Construct a triangulation of the mapping torus of edges, whereas a subdivision followed by a partial

of the surface homeomorphism ip by taking the fold increases the number of edges by one.
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A partial fold reduces the number of possible folds Problem 3.1. Let 7 and <p be automorphisms of a
by one because the map resulting from it is an im- surface S with one puncture. Both automorphisms
mersion around the new vertex created by the fold, are assumed to be presented as products of Dehn
so the only folds that are possible after a partial fold twists on S.
are those that were available before. The conjugacy problem asks for a decision pro-

Similarly, a full fold does not increase the num- cedure to determine whether or not 7 and (p are
ber of possible folds. This means that the num- conjugate in the mapping class group of S. That is,
ber of partial folds that occurs in our construction does there exist an automorphism, y?, of S such that
is bounded by the number of folds that the map 7 = (p~1(pipl
f: G -> G admits. Since / is tight, the number of _. , . , , . L7 .. . ,.
i , , A . • 1 j j i i / \ o o The restricted conjugacy problem is slightly easier
folds at one vertex v is bounded by valM - 2. Sum- . ,, , . > r , J

i, J J, . r .1 i r i 1 . m that it assumes that 7 and cp are m tact pseudo-
ming up, we see that the number 01 possible tolas is A A . Cl , ., , . r_> . ,
. . . . Anosov. As the software described m Brinkmann
bounded by ™™i , . , , ,, , . i

2000J can decide whether or not a mapping class

E ( \( \ o\ — 0 (n\ — A o element is pseudo-Anosov we will, from now on, only
consider this simpler problem.

A complete (albeit impractical) solution for the
Hence, the number of edges after a fold is bounded conjugacy problem has been given by Hemion [1979].

by 6g - 3 + 4g - 2 = 10 g - 5. Subdivisions increase The restricted case has also been solved by Mosher
the number of edges, so the number of edges at any [1986].
point in our construction is bounded by 10 g — 4.

The number of tetrahedra belonging to one annu- Notation
lus is bounded above by 8(5c? - 2) (four tetrahedra I n o r d e r t o d e s c r i b e o u r s o l u t i o n o f t h e r e s tricted
per edge), which gives us a theoretical upper bound COnjugacy problem, we need to introduce some no-
of 16(50 - 2)S(f) on the number of tetrahedra in t a t k m L e t T S ^ S and <p: S ^ S be pseudo-
our triangulation of Mv. • Anosov homeomorphisms with isometric mapping

Similar arguments show that for fixed genus, the t o r L SnapPea will detect this and compute an isom-
time it takes to compute a triangulation is linear e* r v T ~^ v
in the size of the input. We note that in practice, L e t V S ^ Mi a n d V be the two inclusion maps
partial folds seldom occur, and triangulations tend t h a t r e a l i z e S a s a fiber o f t h e i n d u c e d fiber s t r u c "
to be considerably smaller than the bound given in t u r e s J 7 a n d ^ o n Mi a n d Mv S e t Fi = h(S)
Pronosition 2 4 a n d d e f i n e -̂ V m a sinxileLr fashion.

Let p7 : M1 —>• S1 be the map from M7 to the
circle induced by 5F7 and define pv similarly.

3. SOLVING THE CONJUGACY PROBLEM L e t G e Mod(M¥J) denote a typical element of

The algorithm from Section 2 and SnapPea's isome- t h e isometry group of Mv. As Mv is hyperbolic,
try checker provide a practical way of testing a nee- Mod(Mv) is a finite group and can be computed by
essary condition for two pseudo-Anosov homeomor- onapPea. bet Ga = cr/i(i'7).
phisms ^ , 7 to be conjugate in the mapping class Finally, pick any g e iri(M7) with the property
group. Namely, we can compute the mapping tori of t n a t i.Pi)*9 = 1 € Z. We say that such a loop
y and 7 as in Section 2, and then SnapPea's isom- represents the S1-orientation. If {pvah),g equals 1
etry checker will determine whether the two map- w e s ay t h a t ah preserves S1-orientation; otherwise
ping tori are isometric. If they are not isometric, we t n a t ^ reverses orientation.
can immediately conclude that the ip and 7 are not
conjugate. However, if the mapping tori are isomet- Retriangulation and the Fundamental Group
ric, we cannot yet conclude that they are conjugate. Before solving the restricted conjugacy problem we'll
The purpose of this section is to provide an effective need a pair of subroutines to determine the images
sufficient criterion for conjugacy. of elements of TTI(M7) under the map (p^ah)^.
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First, we need an algorithm to decide whether may happen that 7 and ip induce identical fiber
(p<p)*'- ^i{G(j) —> Z has trivial image. The idea here structures while reversing Sfl-orientation. In this
is to keep track of a set of generators for TTI(S) un- case it is possible to show that 7 is conjugate to
der the maps i7, /i, a and p^. Unfortunately, these (p~1.
homeomorphisms do not all respect common simpli- If 7Ti(Ga) has nontrivial image under (p^)* then
cial structures on M7 and M^. To fix this problem clearly Ga is not isotopic to F^. We conclude that if
one must find an appropriate set of generators in fti(Ga) has nontrivial image in n1(S

1) = Z for every
each retriangulation of M7. Then, once SnapPea a in Mod(M^) then 7 is not conjugate to cp.
finds a geometric triangulation of M7, we can push We claim that if there exists some a such that ah
the generators onto the one-skeleton of the Ford do- preserves 51-orientation and 7Ti(Gcr) is contained in
main. The isometry ah takes them to edge paths in the kernel of the natural projection, then 7 is con-
the one-skeleton of M^ where we can reverse the pro- jugate to <p, which completes our solution of the re-
cess. Finally, p^ projects the generators of 7Ti(Ga) stricted conjugacy problem. The rest of this section
to the circle where it is easy to check whether or not is devoted to a proof of this claim,
they are all contractible.

Second, we will need an algorithm which decides Isotoping Ĝ .
whether ah preserves 51-orientation. To do this, A s s u m e n o w t h a t ^ ^ h a s t d v i a l i m a g e i n ^
construct any loop g € ^ ( M 7 ) which represents the for s o m e fixed a G M o d ( M v ) . A t t h i s p o i n t w e n e e d

51-orientation. As in the previous algorithm take a w e a k form o f T h e o r e m 4 f r o m [Thurston 1986b]:
the image of g under the map (p^ah)*. Check that
this image is the positive generator of TT^S1). Theorem 3.2. Ga is properly isotopic to an embedded

The bookkeeping problem of keeping track of sur- surface that is either a leaf ofJ^, or has only saddle

face subgroups of TTI (M3) under retriangulation does singularities for the induced singular foliation of Ga.
not yet have an implemented solution. We would The boundary component of the isotoped Ga is either

be very interested in the work of any reader who is « leaf of S^dM^ or is transverse to J^dM^. •
willing to write such a program. It should be re- W e u g e t h i g a g foUows:

marked that the subroutines above do a little more
work than is strictly necessary. It would suffice to Corollary 3.3. //TTI(GV) is in the kernel of (p^)* then

keep track of a two-chain representing the fiber of Ga is isotopic to F^.

ikL. This is another straightforward problem that, , n ^ i ^ • ^ v x- n , ^ •
\ . _ ° . . : Proof, buppose, to obtain a contradiction, that Ga is

as tar as we know, does not yet have an implemented , _ . , . . , _ T-I T» mi > ̂ 1
. not isotopic to r^. By ihurston s theorem we may

isotope Ga so that the induced foliation has only
TI . . ,Al saddle singularities.
The Algorithm ° _

Let Mi = by x K be the mtinite cyclic cover of
Given two pseudo-Anosov homeomorphisms M c o m i n g f r o m ^ B y a s s u m p t i o n w e m a y lift Ga

^ ^ . 5 _> S, to Mz . Note that projection onto the second factor
. . . ,. . . _, __ _ Mz -> R gives a Morse function when restricted to

construct tne mapping ton, M~ and M^. It bnap- „ TT ,, . , , r , ,
-r̂  Vl i *, - . Ga. However this Morse function must have a max-
Fea reports that M~ and M^ are not isometric, we . m l . , , r ,. ,. r ^ i • i -̂

. , 7 . ^ ' . imum. The induced foliation of Ga has a singularity
conclude that 7 cannot be conjugate to y>. lms x ,, . . , , ,, . . , .,

. . _ . . r . , i . at this maximum, but this singularity cannot possi-
resolves the issue for a vast majority of possible pairs U1 , , , , . , ., m i . . , -,. ,.

r . bly be a saddle singularity. This is a contradiction,
of 7 and y?. n

Now, suppose SnapPea reports the two mapping
tori are isometric. We cannot yet conclude that the Thus we may isotope ah so as to obtain Ga — F^.
two automorphisms are conjugate. It may be that Cutting along F7 and F^ we obtain a map h'\ S x
7 and (p have homeomorphic mapping tori but are / -> S x / that takes 5 x 0 and S x 1 to S x 0 and
not conjugate because they give rise to distinct fiber 5 x 1 , but not necessarily in that order. It may be
structures in the resulting three manifold. Also, it that ah reverses the 51-orientation.
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It follows that h!, and hence ah, is isotopic to a twists with respect to the set of curves of Figure 6.
map that preserves fibers. (See, for example, [Wald- We equip the surface with a normal vector field,
hausen 1968, Lemma 3.5].) Letting h0 = (O7I)|JF7 When twisting with respect to a curve c, we turn
we find that either 7 = h^tpho or 7 = hQ1(p~1h0 right whenever we hit c (and left for inverse twists).
depending on whether ah preserves or reverses S1- The set of these Dehn twists generates the mapping
orientation. This completes the proof of the claim class group [Lickorish 1964].
and thus shows the correctness of our algorithm,
which we sum up in the following; theorem. X / A / X X / \ ^ \

/ \ / U \
Theorem 3.4. Let 7 and ip be pseudo-Anosov home- __y x^xj^ ^ ^ ^ ^ S ^\r~-\ ^ ^ - - ^
omorphisms of a once punctured surface, S. The ^^^Z^^CT^^^^IZ c °—~H^C^ '^~^) \ d0 (]
following is a procedure to decide whether the two —-. ^C/V^di ~^-—^^\^yY^/ ^ ^
mappings are conjugate in the mapping class group \ f / \^ [ y^ /
°f S, if SnapPea is allowed as a subroutine. ^^\J^/ ^^-VAJ-^

1. Apply Theorem 2.3 to obtain the mapping tori, FIGURE 6. A set of generators of the mapping class group.
M 7 and M<p.

2. Using jsnap and SnapPea, determine whether or W e first Present an example for which we can eas-
not M1 and M^ are isometric. If not, then 7 is '^f verify correctness.
not conjugate to (p. Example 4.1 (Figure-eight knot). An ideal triangulation

3. Using SnapPea, enumerate all isometries between o f t h e complement of the figure-eight knot knot can
M7 and M^. k e expressed as a gluing of two tetrahedra [Thurston

4. Determine whether any of these isometries are 1997 pp 39-42 128-1291- see Figure 7
S1-orientation and fiber preserving. If none are, According to SnapPea (see the Appendix for the
then 7 is not conjugate to (p. Otherwise, 7 is i n p u t u s e d ) 5 t h e fundamental group of the resulting
conjugate to <p. • m a nifold M has the presentation

The complexity of this algorithm depends on the TTI(M) = (x,y\ yxxxyxyyx - 1). (4-1)
complexity of SnapPea, which we treat as a black
box in this paper. We modify this presentation by a sequence of Tietze

transformations [Lyndon and Schupp 1977, II.2], ob-

4. SAMPLE COMPUTATIONS taming

We present some sample computations illustrating ^M^ ~ (X'y'Z I yxxxVxWx = *> V = zx)
the power of the software discussed here. We de- — (x,z | xzxxzxzxz = 1)
fine surface automorphisms as compositions of Dehn &. /x z \ xzxzxxzxz = 1).

d e

b c

FIGURE 7. The complement of the figure-eight knot (left) can be expressed as a gluing of two ideal tetrahedra.
Triangles are glued such that the line style and the direction of arrows are matched.
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The last of these is the presentation of the funda- The train track software identifies (/?asa pseudo-
mental group of the complement of the figure-eight Anosov homeomorphism with growth rate
knot given in [Burde and Zieschang 1985, Exam- . 0 n/io/iGn^Q
pie 3.8]. A^2.U4249U5^,

Now let S be a punctured torus, and let <p: S -* S and SnapPea finds that the mapping torus M^ is
be given by a hyperbolic 3-manifold of volume V « 4.93524268

m — D~1D i with one torus cusp.

The complement of the figure-eight knot is homeo- These applications only show a small part of all the
morphic to the mapping torus of (p (we will verify possibilities. The train track software computes a
this soon). Given this composition of Dehn twists, plethora of information about surface homeomor-
the train track software of [Brinkmann 2000] de- phisms [Brinkmann 2000], and SnapPea allows for
termines that <p is pseudo-Anosov with growth rate a detailed analysis of (hyperbolic) 3-manifolds. We
A « 2.61803399, and SnapPea determines that the believe that the combination of the two packages

mapping torus M^ is a hyperbolic 3-manifold of vol- may become a valuable tool for topologists.

ume V « 2.02988321 with one torus cusp.
Moreover, the train track software computes the APPENDIX: GENERATING INPUT FOR SNAPPEA

following topological representative f:G->Gofip,
where G is a graph with one vertex and two edges. I n o r d e r t o § e n e r a t e i n P u t f o r S n a P P e a ' t h e o u t "

put of jmt has to be translated into SnapPea's tri-
/ (a) = ba angulation file format by a second program (called

f(fy — bba jsnap). The purpose of this section is to discuss

a = abab ^ e intermediate format, which allows for quick and
easy generation of input for SnapPea.

This yields the following presentation of the funda- T h e intermediate format admits two types of in-

mental group of the mapping torus M^ of (p: p u t l i n e s ? for tetrahedra and for gluings. An input

7ri(Mv) = (a, b, t\iat = ba, ibt = bba). l i n e defining a tetrahedron has the form

A few Tietze transformations show that 7T1(Mip) is
 T vi V2 V3 v±,

the fundamental group of the figure-eight knot com- w h e r e ^ ? ̂  a r e d i s t i n c t i a b e i s o f t h e vertices,

plement: Tetrahedra are glued implicitly if they have three

n^Mtp) = (a, 6, t\iat = ba, ibt = bba) vertices in common, and they can be glued explicitly
^ / , , , _ _ , T-T 1 \ by entering a line of the form

= \a,t I taatatata = 1} J &

^ (a,c | acacaacac=l). G vi v* v* w± w* w^

As before, we have obtained the presentation given where v1,v2,v3 and wuw2,w3 are the labels of two
in [Burde and Zieschang 1985, Example 3.8]. f a c e s o f tetrahedra. In this gluing, the side [vuv2]

Finally, the presentation of TTI(M^) computed by i s g l u e d t o t h e s i d e [^1^2], the side [v2,v3] is glued
SnapPea is to the side [u>2, ^3], etc. Empty lines and comments

^ beginning with / / are also allowed.
TTI(M^) ^{x,y\ xyyyxyxxy = 1), Although the four vertex labels of a tetrahedron

agreeing with Presentation (4-1). have to be distinct, two or more vertices of a tetrahe-
Alternatively, we can run the isometry checker of dron may be identified after gluing. Distinct vertex

SnapPea on the two objects in order to see that we labels are only needed in order to uniquely specify
get the same hyperbolic 3-manifold in both cases. the sides of tetrahedra.

„ . r r o While SnapPea's format is an extremely efficient
Example 4.2 (Genus 3). Let b be a surface 01 genus 3 , ,. r , . , ,. , , ,.

. r . ° representation 01 tnangulations, understanding it
with one puncture, and let <p: b —> b be given by . ^ , mi .

^ ° J requires some ettort. lne program jsnap acts as
<p — DdQDCQDdiDCiDd2D~\ an interface between SnapPea and the human user.
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If you can draw or visualize a triangulation of a 3- [Burde and Zieschang 1985] G. Burde and H. Zieschang,
manifold, then you can also enter it into j s n a p . Knots, de Gruyter, Berlin, 1985.

As an illustration, the gluing of Figure 7 is en- [ H e m i o n 1 9 7 Q ] G H e m i o n 5 « O n t h e c l a s s i f i c a t i o n o f

coded as follows: homeomorphisms of 2-manifolds and the classification

T a b c d of 3-manifolds", Ada Math. 142:1-2 (1979), 123-155.

T b c d e [Johannson 1979] K. Johannson, Homotopy equivalences
G b e d a c d of 3-manifolds with boundaries. Springer, Berlin,
G c b e a b d 1979.

G c e d a c b [Lickorish 1964] W. B. R. Lickorish, "A finite set of

Feeding the above five lines into j snap yields an en- generators for the homeotopy group of a 2-manifold",
,. % , , , . , ,. . G

 J
 o V f i i r , Proc. Cambridge Philos. Soc. 60 (1964 , 769-778.

coding of the triangulation in SnapPea s rile format; v n

this was the input given to SnapPea in Example 4.1. [Lyndon and Schupp 1977] R. C. Lyndon and P. E.
Schupp, Combinatorial group theory, Ergebnisse der
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