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1. INTRODUCTION

Functions on M are said to be bandlimited if their
Fourier transform has compact support. Such func-
tions have many remarkable properties. In particu-
lar, they are determined by their values on certain
discrete subsets of E, such as a multiple of the in-
teger lattice, and sampling theory provides concrete
formulas for recovering the function from its "sam-
pled" values. Functions whose Fourier transforms
have support in a fractal set, such as a Cantor set,
are even more special, and should possess a sam-
pling theory that allows for a much thinner sampling
set. However, not much is known in general. In
[Strichartz 2000a], the first author presented some
results of this type for a special class of Cantor sets
first studied by Jorgensen and Pedersen [1998]. Here
we will continue the investigation, and to be specific
we will deal with just a single family of Cantor sets.
It is likely that the results presented here could be
extended to the class of sets discussed in [Strichartz
2000a].

Strichartz's research was supported in part by the National L e t R d e n o t e a Positive even integer, R > 4. In
Science Foundation, grant DMS 9970337. our examples we take either R — 4 or R = 6. Let K

© A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 10:4, page 619



620 Experimental Mathematics, Vol. 10 (2001), No. 4

denote the Cantor set defined by the iterated func- We will give both theoretical and experimental re-
tion system consisting of the mappings suits. Although some of our conclusions are ex-

, 1 pressed in precise theorems, our best answers to the
4* above questions are of an informal nature, with cer-

We may also construct K from the interval tain errors that are small but not negligible.
In Section 2 we study the asymptotic behavior

, of the sampling function. It is a special case of a
{ ~ ' \ ~ ) class of Fourier transforms of Cantor measures that

by successively deleting the middle (R—2)/R por- are called multiperiodic functions, since it satisfies a
tion of each interval. Let /i denote the associated type of multiplicative periodicity identity

Cantor measure that assigns the value 2~n to each ^ f ^ \ -
of T intervals in the nth stage of the construction. p>(Rx) = (̂ cos -Rxjfl(x).

Let A denote the discrete set of nonnegative inte- a i r ,- i i ^ J - J > • i m
. . . . _ , 1 ~. . , bucn functions nave been studied extensively Jban

gers expressible base R usmg only the digits 0 and ^ L & u J a n a r d h a n e t a L 1 9 9 2 ; Strichartz
1. It was shown in Jorgensen and Pedersen 1998] i g 9 3 i m h ] b u t ^ ^ d e g c r i b e

and Strichartz 1998 that A forms a spectrum f o r , , , l u i . - I ^ - J
r9, \ . , \ , r • r 9 -u! here does not seem to have been previously noticed:
Lz(a), in the sense that the functions |e j7 r iAa :keA J ± i J i i n * £ ,1
r
 v r v _ n i . _ _ 9 / . _ L

rn . , viewed at larger and larger scales, the graph of the
form an orthonormal basis tor Liu). In btricnartz ,. r , , ,. .,
^^^^ n , . _ . i , A , sampling function appears to converge to a limit-
2000a this result was used to show that A may be . „ . , „ n r ,_, . , , ,, , ^

_ J _ r r r^ > m g picture . We express this by showing that the
used as a sampling set for functions whose Fourier , r ~, -r>n \ ^ ^ c ̂  ^

_ . . . _ _ _ _ _ _ _ graphs of hyHrx), as subsets o r l x f , converge to
transform is supported in K. We say that a func- ,. ., , r' , . , . , . i r i 1 , £ £_ ^ . i ; . ... 7 . r i . n . a limit set 1, which is not itself the graph of a func-
tion b on K is K-band limit ea if there exists a finite ^. TTr , . , , . r v .̂  r- , , tion. We do identity a limit function
measure F supported in K such that

r . g{x) = lim fi(Rnx), (1-3)
F(x) = / e27TixydF(y). n^°°

but this function is zero almost everywhere, and
A special class of such functions are the strongly K- (1-3) does not in fact describe what one sees. The
bandlimited functions of the form limit set T consists of the x-axis together with a

/

countable number of vertical line segments, and has

e (f(y) dfi^y) (1-1) the appearance of a chaotic comb.
In Section 3 we study the behavior of the trans-

fer ip G L2(JJ). In other words, F = ^pdji. But there lates of the sampling function fi{x — A) that appear
are many other K-bandlimited functions, such as in the sampling formula (1-2), but this time viewed
cos ax or sin ax for a G 2KK. The sampling formula on a fixed finite interval. We find that if A G A is
for lf-bandlimited functions in [Strichartz 2000a] large, we can find A' from a fixed finite segment of A
says that so that £i(x — X) is approximately a constant times

(x — Xf)ft(x — A') on the interval. The precise rela-
F\x) — 2^ ^W^\x — ̂ ) C-2) tionship between the interval, the segment of A and

AEA the approximation error is a bit complicated. But
with uniform convergence on compact sets, where informally, we reach the conclusion that the space of
/i, the Fourier transform of fi (given by (1-1) with if-bandlimited functions restricted a fixed interval
<p — 1), is called the sampling function. Here we will is close to being a finite dimensional space, with ba-
be interested in a more precise description of (1-2). sis {fi(x — A7)} U {(x — \')jl(x — A')}, where A' varies
What is the nature of the functions fi(x — A)? How over the initial segment of A. This is consistent with
well does (1-2) converge? If you are only going to an information theoretic description based on the
use a finite number of terms, can you do better than thinness of the set K [Gulisashvili 1993; > 2001].
taking a partial sum of (1-2)? How can you recog- In Section 4 we study the sampling formula via
nize whether or not a function is if-bandlimited? examples, and prove one important consequence:
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the asymptotic description of the sampling function has a characteristic chaotic comb appearance cho-
in Section 2 extends to all strongly if-bandlimited sen from a certain two parameter space of such sets,
functions. The limit set T in the general case has Note that this does not give us a definitive test
the same chaotic comb appearance, and is deter- for deciding whether or not a given function is K-
mined from the function by just two parameters bandlimited, and it will not help us correct small
(the sup and inf of the function). The two types errors in data for such functions. It merely gives
of examples of iiT-bandlimited functions we exam- us a "rule of thumb". In contrast, if we depart
ine are the translates fi(x-y) of the sampling func- from the special class of Cantor sets described in
tion, and the exponentials (actually cosines) with [Jorgensen and Pedersen 1998] or [Strichartz 1998],
frequencies from K. The first type are strongly absolutely nothing is known about if-bandlimited
if-bandlimited, and so the sampling formula con- functions (for example, the original 1/3 Cantor set).
verges uniformly. But it does not converge rapidly, This is an enticing problem which demands entirely
since the coefficients F(X) — fi(X — y) are not quite different methods than those presented here.
O(X~1). Our experimental evidence shows that er- This paper mixes theoretical and experimental re-
ror is relatively smaller on the sampling interval suits. Many more experimental results are available
than overall. The second type of example is not online (see Electronic Availability at the end),
strongly if-bandlimited, and the approximation er- It must be emphasized that the experimental re-
ror is considerably worse. If we double the num- suits in all cases preceded the theoretical results,
ber of sampling points we can extend the interval The theorems were concocted to explain the pic-
of approximation by a factor of R with the same tures. On the other hand, the pictures were con-
error, but there are unacceptable errors if we try cocted to illustrate the theorems from [Strichartz
to go much beyond the sampling interval. If we 2000a]. The chicken and the egg.
look at the graphs of the approximation error, with

the x-axis rescaled, we seem to see a convergence 2 ASYMPTOTIC BEHAVIOR OF THE SAMPLING
to a limit set analogous to the asymptotic conver- FUNCTION
gence of the graph of the scaling function, but to
a completely different type of limit set. At present T h e F o u r i e r transform ft of the Cantor measure /.,
we have no explanation for this phenomenon. How- w h i c h w e c a l 1 t h e sampling function, is given by the
ever, in [Strichartz 2000b] it is shown that this type m f i m t e product
of "shape of the error" behavior is typical of other, °° . ,
more standard approximation processes, but with A(^) = J^cos f — — J. (2-1)
the £/-axis rather than the x-axis being rescaled. Fig- k==0

ure 8 was the direct inspiration for the results of For moderate values of x it is not necessary to take
[Strichartz 2000b]. very many terms in the product to get an accurate

In Section 5 we consider a different type of sam- approximation, and the number of terms need only
pling formula (actually two variants), based on the grow on the order of log \x\. Since the function is
approximations of Section 3. The goal is to obtain even we only deal with x > 0. In Figure 1 we show
better accuracy on a fixed interval (at the expense of the graph for R — 4 on four different intervals, each
much worse global accuracy). Whether or not these multiplied by a factor of 4 from the previous one.
modified sampling formulas actually work remains In Figure 2 we do the same for R — 6, now using a
unproved, but we represent some experimental evi- factor of 6 in changing the x scale. The results are
dence of their effectiveness. visually striking, but how can they be explained?

The results presented here give us a basis for as- Consider first the pointwise convergence o££i(Rnx)
serting that iiT-bandlimited functions are indeed easy as n —> oo. The limit function g is given simply by
to recognize. In the short term, all K-bandlimited ^ ^
functions are approximately linear combinations of g(x\ _ TT c o s fJL _^_\ _ nrx\ TT c o s (—Rm

x)'
a finite list of explicit functions. In the long view, k=-oo m=i
the graph of any strongly i^-bandlimited function (2-2)
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FIGURE 1. The graph of the sampling function ft(x) FIGURE 2. The graph of the sampling function ft(x)
for R = 4 on four intervals: [0,100], [0,400], [0,1600] for R = 6 on four intervals: [0,50], [0,300], [0,1800]
and [0,6400]. and [0,10800].
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here we specifically do not follow the convention of jl(Rx) — (cos ^Rx)jl(x) shows that the maximum
calling an infinite product divergent if it converges value is attained at x = 0, and also
to 0.

sup|/}(:r)| < max |A(#)|-
Lemma 2.1. For R an even integer, R > 4, the in- x>R

 I<X<R

finite product in (2-2) converges for every x. It is H o w e v e r 5 r o u t i n e estimates show that on the inter-
different from 0 when x = 0 or x = p/R™ for mte- v a l x < x < # t h e m a x i m u m v a l u e of |/i(x)| occurs
gers m > 0 and even integers p not divisible by R, w h e r e ^x) a t t a i n g i t g m i n i m u m ( t h i s o c c u r s n e a r

and 0 otherwise. Thus g is everywhere discontinu- x ^ ^ b u t n o t e x a c t l y &t x = 2 b e c a u g e ^ 2 ) _, Q)

ous' Thus this local maximum is in fact a global mini-
g{x) = lim jl(Rnx) for every x. (2-3) mum. We define the set F to be the region between

n~*°° the graphs of g(x) and bg(x). In other words,F con-
Proof. For x = p/R171, note that every factor in (2-2) s i s t s of the x-axis together with the countable num-
corresponding to k < -m is equal to one, since it ber of vertical line segments joining (x,g(x)) and
is the cosine of an even multiple of TT. Thus the fa bg(x)) for x of the form p/Rk (p an even integer
product converges to fi(p), and jl{p) ^ 0 if p is an n o t divisible by R or p = 0). It is not obvious that
even integer not divisible by R, while p,(p) = 0 if p r is closed, but we will prove this below.
has the form (2q+l)Rm. We will show F n -> F in the following sense.

Next suppose x is not expressible as p/Rm. Then A simple compactness argument [Kuratowski 1968,
the base R expansion of x is infinite and does not p . 49] shows that this implies convergence in the
end with an infinite string of all 0 (or all R-l) Hausdorff metric on any bounded region. We do
digits: not know whether F n -» F in the Hausdorff metric

x = J2 x>R~j- globally'
3=-N Definition 2.2. Let {An} be a sequence of nonempty

We then have sets in a metric space M. Let
00

cos ̂ -Rkx = cos I Yl xJ+kR~j • l i m s u p , ^ An C M
be the set of all limits of convergent sequences {xn}

If (xk+uxk+2) is not equal to (0,0) or (R-l, R-l), w i t h ^ € ^ a n d l e t

we can bound X^jlo xj+kR j away from the set of
integers, hence we will have a bound liminfn_^oo An C M

cos —R x < c be the set of all accumulation points of sequences
r .. ui , , ^ 1 1 J. 1 D ixn} with xn e An. Clearly
tor a suitable constant c < 1 depending only on n. L J

Since this holds for an infinite number of factors in lim m f A r lim mm A
11111 1111 n _ ^ . QQ I\U V- 11111 & U P n ^ , o o Sift

the product (2-2), we conclude that g(x) = 0.
It is clear that g is everywhere discontinuous, and and l i m s u p ^ ^ An is a closed set. We say the se-

the arguments above also prove (2-3). • quence {An} converges weakly to a set A (necessarily
D ^ ^ ^ - 4. - r -wo o\ u- u • 4- closed) if limsupn_,ooi4n = 11111^^00^ = AKatner than the pomtwise limit (2-3j, which is not
uniform, we will be interested in the convergence of Theorem 2.3. F n converges weakly to F.
the graphs F n of the function fx(Rnx) to a certain -mi o o • ^ r n
,. ° f^ , . . ., i r . , xi 1 r £ x- The key to proving Theorem 2.3 is the following
limit set F, which itself is not the graph of a function.
First we will describe the set F, and then explain the
type of convergence that we have. Lemma 2.4. For any real t and p an even integer,

Note that /i(0) = 1 is the maximum value of /},
and \x attains its minimum value, which we denote u(Rnp + t) = u(p I R~nt). (2-4)
by b, at a point x0 near x = 2. Indeed, the identity A(-R n^J
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Proof. Split the product defining jl(Rnp+t) at k = n. By taking t small enough we can make p,{p+Rnt) ar-
For k < n we have bitrarily close to /i(p), and fi(Rmt) arbitrarily close

^(•nn-k i r>-k,\ _ Z[ p-fc* to 1. The term fi(Rnt) is bounded above by 1 and
COS ~ 1 -LL P I Jtt 6 ) COS ~~~ x{> T 1 1 1 7 m i i • r T~\

2 2 below by b. Thus the portion of the graph Fn corre-
since Rn~kp/2 is an even integer. Thus sponding to values x + t lies between the values g(x)

n l and bg(x) with an arbitrarily small error. Thus if
T[cos-R-k(Rnp + t) = fi(t)/fi(R-nt). y > 9(x) o r V < b9(x) w e c a n find a b a l 1 a b o u t

k=0 2 (^ y) disjoint from all Fn for n > m. D

But Lemma 2.6. For any (x,y) E F and any e > 0,
^L 71- J2L ^ there exists N such that for any n > N there ex-
[[ cos-R~k(Rnp + t) = I]cos -R-k(p + R-nt), ists (Xn,yn) G rn within a distance of e of(x,y).
k=n k=0

, x Proof. If y = 0 the results is obvious, since Fn in-
tersects the x-axis at points p/Rn for p odd. Thus

When p is an odd integer the same identity holds, we may assume x — p/Rm for p even and not di-
except with a minus sign if R/2 is odd. visible by R (or p = 0), and bp,(p) < y < p,(p)
Lemma 2.5. / / (x,») £ F, ttcr* exists e > 0 «icfc ^ a s ; u m i n g A(p) > 0). We choose (xn ,yn) =
Aat fte ball o/ mdit^ 6 in the plane about (x, y) zs X + ^ ' A C ^ ^ + t n ) ) ) , where tn is required to satisfy

disjoint from Tn for all sufficiently large n. ^ < £J2' B y ( 2 " 5 ) W e w i H h a V e ^ ^ + tn)) w

jl{Rntn)jl(p) if n > m and e is small enough. But
Proof. Assume first that x is not of the form p/Rm. then we can certainly arrange that jX{Rntn) attains
We have y ^ 0, and we may assume without loss of any value between b and 1, hence \yn -y\< e/2. D
generality that y > 0. The argument in the proof . . . _ _
% T o 1 4. i, r \ n x n u . L . Proof of Theorem 2.3. By Lemma 2.6,
or Lemma 2.1 to show g[x) — 0 actually shows that
for a certain finite TV we have F C limin^^oo F n .

I JL. K . By Lemma 2.5, the complement of F is disjoint from
| | | c o s - ^ x <y/3. limsup^^F,, hence limsupn^ooFnCF. It follows

3=0 that lim infn^oo F n = l imsup n^ o oF n = F, hence
By continuity there exists S > 0 such that Fn ̂  F weakly and F is closed. •

I T-T 7T , Part of the content of Theorem 2.3 is the fact that
\T\ cos-RJt <y 2 „ . , i , ^i . . i ,
111 2 ~~ F is a closed set. This is by no means apparent

from the description, since the vertical line segments
provided \t-x\ < S. Since fi{Rnt) contains the factor i n r c a n h a v e o t h e r ve rtical line segments as limits

N in rather complicated ways. The Theorem implies
| | c o s — RH for all n > N, that these vertical line segments are also contained
j=o in F. The graphs of ft over the larger scales shown

we have \ft{Rnt)\ < y/2 for \t-x\ < 8, which gives i n Figures 1 and 2 begin to give an impression of the
the desired result. The argument when x - p/Rm appearance of F.
for p odd is similar.

The last case is when x = p/Rm and p is an even 3. TRANSLATES OF THE SAMPLING FUNCTION
integer not divisible by R (or p = 0) We may as- T h e t m n s l a t e s Kx _ A) o f t h e s a m p l i n g f u n c t i o n

siime without loss of generality that g(x) = Kp) > 0. for A G A a r e t h e b a s i s e l e m e n t s i n t h e s a m p l i n g

A point near x will have the form x + t = p R771 + £, r , T , u . ,. , -, ,, u , r

, „ TTr / \ ni tormula. In this section we study the behavior ot
where t is small. We take n > m. Then (2-4) yields ,, , . ,. r ,, , , , , n ., . ,

— \ J J ^Q restriction ot these translates to a tinite mter-
*{z>n( w *( T>n-m Dn \ (i(Rnt)£i(p+Rmt) vsl. The essence of our observations is that although
PV v JJ — ̂ K P ) — jji{Rmt) the space spanned by these restrictions is infinite di-

(2-5) mensional, if we are willing to tolerate a small error
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then it becomes a finite dimensional space. This is On the other hand R~N°Xf is an odd integer, so
in agreement with the general philosophy that K- \ M \

7T / X — A — A \ 7T /X— A \

bandlimited functions carry very little information cos — ( ——— ) = ± sin — ( I
[Gulisashvili 1993; > 2001]. 2 R° ^ Ro ^

Choose a positive integer TV, and let AN denote = ± tan — f j cos — f j .
the elements of A expressible as A = ]T) Rnj with all
rij < N. Then we may write the general element of (3-3)
A as A + A' where A e AN and A' = £ Rn> with all For k > No we simply use standard trigonometric
rij > N. Consider the interval IN = {x : -aRN < identities to write
x < bRN} for certain fixed parameters a and b of n ,x — \ — \'\ n \f n /x — X\
moderate size, so that A fl IN is essentially A^. We c o s 2" \ ~R}* ) = c o s ~2 ]& C ° S 2̂  \~RF~)

will show that fi(x — X — Xf) restricted to IN is ap- / /TT A' \ TT /x — X\\
proximately equal to a multiple of (x - X)jl(x - A) x (̂ 1 + tan (^- — J tan - ^-^- J J . (3-4)
for A' ^ 0. It is somewhat difficult to specify the er- W e therefore choose
ror precisely, and we are not able to make the error ^
go to zero by manipulating the parameters, but the c , _ j , n TT c o s (^ \
estimates are independent of N. Informally, we may 2Z2 ° fc=iVo+1 \2 R J
say that to within a reasonable error, the space of
TS \. iv -j. j r j.- j. • j, j - T - j Combining (3-2), (3-3) and (3-4) in the definition

K-bandlimited functions restricted to 1N is spanned / \
by the 2 ^ + 1 functions fi(x - A) and (x - X)fi{x - A) ° f ̂  y i e l d s (3"1) W l t h

for A G AN. This observation will lead to the mod- TT /X — X\
ified sampling formulas in Section 5. Note that 1 . / \ __ 2 \ i?^0 /
{x — X)jl(x — A) is not if-bandlimited in the sense TT /x — X\
defined in [Strichartz 2000a], since its Fourier trans- 2 \ RN° J
form is a distribution, rather than a measure, sup- T T / fn ^ \ TT fx — X\\
ported on K (one might say it is if-bandlimited in x 1 1 V1 + t a n V^ ~Rk) t a n ̂  \W))' (3~5)

the broad sense). In particular, it is unbounded, ~ 0 + 1

so it does not approximate fi(x - A — A') outside an It remains to show that e(x) is not too large.
interval of the order of size IN. For A G A^ we have 0 < A < (RN - 1)/(R-1), so
Theorem 3.1. There exist positive constants a0, b0 \x — X\ < max (a I b\RN

such that if 0 < a < a0 and 0 < b < b0 then there ^ R—l )
exists e (depending on a, b and R) satisfying 0 < We may choose a and b so that a + 1/(R- 1) < \
e < 1 such that for every N and X + X' G A TO£/I a n ( j 5 < I . l n that case
A G AAT and A' 7̂  0 ^ere ea;i5t5 a constant C\> such

A ( x - A - A') = cX'(x-X)jl(x-X)(l + e(x)) (3-1) - T T / X - A N ~ TT'

e(a;)| < e for x G J w ^ h t n e w o r s t c a s e occuring when Â o = N. To
estimate the terms in the product on the right side of

Proof. Let No denote the first nonzero digit of A', (3_5) w e observe that tan f ( ^ ) converges rapidly
so No > N. For k < No we see that R k\' is an t o z e r O ) s o t h e r e a l d iff i c u i t y a r i s e s when X'/Rk is
even integer (divisible by 4 unless R/2 is odd and c l o s e t o a n o d d i n t eger. If we write A' = RN° +
k = N0-l). Thus RN0+kl +... + RN0+km t h i s h a p p e n s e x a c t i y w h e n

No-i , x / JVo-i x k = No + kj, with

JUL cos 2 I ^ / ~ 1=1 C ° S 2 V^R^J • \'/Rk = 1 + &>->-"' + Rk^~k'
(3-2) + - - - + JRfcl-^+i?-fc^(mod2).
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This leads to the estimate It is clear from the argument that the estimates on
Tj- \f e(x) improve as R increases. We have not attempted

n 2̂  ~RJ* t° find the best estimate when R = 4, but it does
. x_i not appear to be very good. It seems plausible that

< (^-(Rki-i-ki+Rki-*-k3+.-. + Rki-ki+R-ki)) . (3_!) i s j u s t t h e g r s t i n a sequence of improving

approximations, but we will not attempt to pursue

But tan £ ( ^ ) < jRN-N°-k>, so the matter here.
^ ^ ^ Figure 3 shows the sequence of graphs of p,(x — A)

/TT A' \ IT fx — X\ for i2 = 4, A ranging over the first 16 elements of
t a n V2: #*/ t a n 2^ V~^RW ^ a n d x ranging over the interval [-8,8]. The y-

i/jjkj-! r>k3-2 T?k! x-1 s c a ^ e ^n *^e subunits of Figure 3 is adjusted so as
- 2 V ' " / * to highlight the approximate periodicity of period 4

The result follows by routine estimates. • over A (starting with A — 16). The periodicity holds

- 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8

0.8 A -0.4

A = 0 A = 16 A = 64 A = 80

0.8 A -0.4

A = 1 A = 17 A = 65 A = 81

0.8 A -0.4

A = 4 A = 20 A = 68 A = 84

0.8 IX -0.4

iKMi WH - • Wd 1 Wr
A = 5 A = 21 A = 69 A = 85

FIGURE 3. Graphs of the translates £i(x — A) of the sampling function for R = 4 and A = 0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, 85 (the first 16 elements of A), plotted on the interval [-8,8]. The vertical scale of the
graphs on the third and fourth columns is respectively 5 and - 2 times the scale of the graphs on the first two.
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only up to scaling, due to the different values of the 4. THE SAMPLING FORMULA

coefficients C\> in (3-1). A . i. , , . ro, . i , on™ i ^
, 1 1 , , As indicated m Strichartz 2000aj, the convergence

This approximate periodicity breaks down on the r ,, ,. r ,
. . . _ ot the sampling tormula

larger interval, as shown by Figure 4, which extends
the plots to the interval [—32,32]. Nonetheless, an „
approximate periodicity of period 8 can be recovered F(x) = 2^ FW^\X ~ *) ^4-1)
if one looks at further translates (see the section on G

Electronic Availability). Conversely, by concentrat- i g u n i f o r m i f p i g g t r o n g l y K . b a n d l i m i t e d ) m e a n i n g

ing on the even smaller interval [—3,3] one can see ,-*,
an approximate periodicity of period 2.

Figures 5 and 6 show the analogous graphs for Fix) _ [ e
27Tixt f(t) dn(t) (4-2)

R = 6. J

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
1 p . . j , . r-, p , , 1 . j — , „ p , . 1 . . „ p . . 1 . . _.

A = 0 A = 16 A = 64 A = 80

1

A = 1 A = 17 A = 65 A = 81
•j_

'o A UAAAJ 1 It IAAAA I V - A J L II /A^AI H ft 1 \ A/mv-^A/-- V V . - V A J I A-, J A A/ /W----A--- ̂ -AA
-0 2 I I I V1/ 1 1/ I VI

A = 4 A = 20 A = 68 A = 84
]_ | . . . j. . |

A = 5 A = 21 A = 69 A = 85

FIGURE 4. Graphs of the same translates fi(x — A) as in the preceding figure, plotted over the interval [—32,32].
The vertical scale is the same for all plots.
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for some / G L2(fi). This is equivalent to which yields the estimate

^|F(A) | 2 <oo. (4-3) \F(x)-FN(x)\<( V |F(A)|2Y/2

I f w e w r i t e because

FN(x) = J ] ̂ ( A ) / ^ - A) (4-4) J2 \ ^ x " A ) ! 2 = L (4"5)

for the partial sum, then T h u s t h e r a t e o f convergence of (4-1) is a conse-
quence of the decay rate of {F(A)}. Unfortunately,

F(x) — FN(x) — V^ F(X)jl(x — A), we do not know any useful criteria for getting rapid
AGA\AN decay of {F(A)}.

- 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8 - 8 - 6 - 4 - 2 0 2 4 6 8

si I | 11 I I «| r I ::i ~f
zir\\\r\ ^—^ 0/ ~ ~ -:/ - -
: 2 : ' I V l V 1 I I -»•• I I "a2 i i

A = 0 A = 36 A = 216 A = 252

« m 11 i i "i i i «i i i
:Sl l \/l 1/ I I I \-°4 I M

A = 1 A = 37 A = 217 A = 253

all I A H I I I I I I ° - 3 [ I

-0.6 / 1 / I -0.2

-o.8 L_\y i y \i i i I ~ai i i I I i
A = 6 A = 42 A = 222 A = 258

=asl V I V I I I -o^l I | - ° H I
A = 7 A = 43 A = 223 A = 259

FIGURE 5. Graphs of the translates p,(x - A) of the sampling function for R = 6 and A = 0, 1, 6, 7, 36, 37, 42, 43,
216, 217, 222, 223, 252, 253, 258, 259. on the interval [-8,8]. The vertical scale of the graphs on the second and
third columns is respectively 7 and 3 times the scale of the graphs on the first two.
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We now show how the uniform convergence im- Theorem 4.1. If F is any nonzero strongly K-band-
plies a generalization of Theorem 2.3 to all strongly limited function, then the graphs of F(Rnx) con-
.fiT-bandlimited functions. Let aF and bF denote the verge weakly to TF as n —> oo.
sup and inf of such a function (it is not clear whether
or not these values are actually attained in general). Proof. It is easy to see that bF < 0 < aF because
Let AF denote the subset of the plane consisting of K is disjoint from a neighborhood of zero. For any
the z-axis together with the countable number of given e > 0 we can choose N large enough that
vertical line segments joining \F(x) - FN(x)\ < e uniformly, so by routine limit-

/ / x\ A / T / \\ ing arguments it suffices to prove the result for FN.
\X,OJFQ[X)) and [x,uFg[xj)

In other words, without loss of generality we may
for x of the form p/Rk. assume that the sum in (4-1) is finite.

-30-20-10 0 10 20 30-30-20-10 0 10 20 30 -30-20-10 0 10 20 30-30-20-10 0 10 20 30
]_ P , . . , „ , . 1 , . „ „ , . , , _. , , . .

A = 0 A = 36 A = 216 A = 252
]_ ,

*0 J\ U A A \ \ \ \ N \ \ \ K N \\W\l\ WWrA.ArA \\l\l\ A . ^ / x ^ A ^ ._ .. . A ; A A rJ\ A. A A -. .. ^ A ̂  A ^

-o.2* 1)p r I f 1/ I R i n " /Vv v vV-
A = 1 A = 37 A = 217 A = 253

-|_ _̂̂

'n ,-Aril / \/\ f l l l f / l l l l \A I A/1 A/ L I A , - A ; J I \A -. - \ A r . A ^ -_ -_ - A r -.A/ A/1 An A A, -- -, - \ A A . A /
l i l l T i l l I TT 1 u 1 T\ TH • - v v v / v ^ "v/v v v i l l / IM/ vW v v ^"v/v

A = 6 A = 4 2 A = 2 2 2 A = 2 5 8
l i I! . .

A = 7 A = 43 A = 223 A = 259

FIGURE 6. Graphs of the same translates p,(x — A) as in the preceding figure, plotted over the interval [—32,32].
The vertical scale is the same for all plots.
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Now if x is not of the form p/Rm, or x has this rows). On the large interval the maximum error de-
form with p odd, creases from around 15% for N — 3 to around 6%

F(Rnx) = v - F(X)a(Rn(x _ XR-")) f ° r N = 4 t 0 a r ° U n d L 5 % f ° r ̂  = 5* T h e S m a l l e r

^ ' Z-/ ^ '^ ^ ''' intervals show the behavior of the approximation on
For n large enough, all the terms XR~n are very t h e sampling interval and its vicinity. The sampling
small, and so we can show that \F(Rnt)\ can be interval increases roughly by a factor of R for each
made arbitrarily small for t close to x. On the other increase of N. For N = 3 it is [0, 21], for N = 4 it
hand, for x = p/Rn with p an even integer not di- i s [°> 85J> a n d f o r N = 5 J t i s [°> 3 4 1 1 - T h e maximum
visible by R (or p = 0) we have by (2-5) error on the sampling interval decreases from around

4% for JV = 3 to around 1% for JV = 4 to around .5%
r (K [x +1)) for jy _ 5 ^phe e r r o r increases considerably once we

= y^F(A)/i(jRn~mp + i?n£ — A) move away from the sampling interval. For exam-
V F(\\r,(mt \Wn-u T?™+ nrn-nX\ P l e, w h en N = 4 the error jumps to around 3% near

— ̂ ^—1-^—-—;
 J-^ r -. x = —20, whose distance to the sampling interval

u(Rmt — Rm~nX)
PV ; is comparable to the maximum distance to a sam-

When n is large enough Rm~n\ is small for all A in pling point within the sampling interval (near the
the sum. Similarly when t is small enough Rmt is midpoint x = 42.5). This seems to illustrate the in-
small. Thus fi{p+Rrnt—Rm~n\) « jl(p) and/i(i?mt— tuition that the sampling formula should do a better
Rm~n\) « 1, so job interpolating than extrapolating. In [Strichartz

^ A n ^ 2000a] it is shown that in this case we have slightly
F(Rn(x + *)) « 2L FWttRnt ~ X)KP) stronger decay of the sample values than the square

= F(Rnt)g(x) summability in (4-3), namely the summability con-
dition

and F(Rnt) can take on all values between aF and
bF. The rest of the proof is the same as before. • 22 \F(X">\ < °°* (4"8)

AGA

In other words, when viewed on a large scale, all
strongly tf-bandlimited functions look pretty much H e r e we_ w i l 1 § i v e a m o r e P r e c i s e e s t i m a t e t h a t i m "
the same, except for the two vertical stretching fac- ^ i e s ^ '̂
tors aF and bF. Lemma 4.2. For F(x) = ji(x-y), for any e > 0 there

The simplest way to create interesting strongly exists c (depending on e any y) such that
jRT-bandlimited functions is to take translates of /i,
as fi(x - y) is given by (4-2) with f(t) = e~2^. | F ( A ) | < J l ( _ ^ + e))™R~k™ (4-9)
The sampling formula (4-1) in this case is just V2 \i? — 1 / /

- / x v ^ - / A x - / AN where
/x(x - y) = 2 ^ M(A - y)ii{x - A) (4-6)

AGA \ = Rkl+Rk2 + --+Rkm, 0<kx <k2 < ••• < km.

or equivalents, pmof TQ e s t i m a t e ^ ^ ^ = | /}(A-y)| we only use

fa + y) = YJKx- A)A(» + A). (4-7) the terms in (2"1) wi th k = kr Note that

AGA —M. = R^ + '-' + ̂ -'-y . ! m o d 2

This may be regarded as an addition formula for the ffij ~~ j^kj ^~ '
sampling function. Note that (4-5) is the special s o

case x = y of (4-6).
Figure 7 shows the approximations FN and the er- c o s Z[( } = sin — ( X "* ^-R 3~1 ~y\

ror for the function F(x) - fi{x -10.3) when R = 4. 2\ RkJ J 2 V i ^ /
The values AT = 3,4, 5 are shown, all on the interval TT Rkl -\ h R1**-1 — y
[—160,400] (second, fourth, and last rows), and also ~ 2 Rks
on the interval [-10 • 4iV~3,25 • 4N~3] (first and third (4-10)
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F(x) G(x) Error
i t 1 1 1 I 1 1 r———~ T • • • ' •"

0.8 I °-8 I 0.04 A A A
06 A A ° ' 6 A A ° -0 2 \\\\\ A
0.4 A \ A °-4 \ A \ A \ f\

-0.4 -0.4

-0 .61 11/ y y y | -o.61 i y y y y j - ° - ° 6 1 y i
-10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25

. -̂  —
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o i i l l i l l I j ii J i 0:2 i l l 1 1 1 I i .ill 0 ilwl LIILIW ̂  11 u •• ii Ui hntil 4i i T ̂  in r̂ itr

-100 0 100 200 300 400 -100 0 100 200 300 400 -100 0 100 200 300 400

FIGURE 7. The sampling formula approximation and error for the function F(x) = £i(x — 10.3) for R = 4. Top
two rows: G = F3, on the intervals [-10,25] and [-160,400]. Next two rows: G = F4 on the intervals [—40,100]
and [-160,400]. Last row: G = F5 on the interval [-160,400].
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Now for fixed y we can find TV large enough so To see that (4-9) implies (4-8) observe that if we
that if kj-i > N then fix km = fc, then there are exactly (^) choices of A.

Thus the sum of these |i^(A)| is estimated by

\#1 + - + #'-1-v\<{£l+e)#'-1 (4-n) cO{lilti+£)YR~k-
(for kj-i < N we can also have (4-11) at the cost When we sum over m < k (with k still fixed) the
of a multiplicative constant, and there are at most estimate is
N such). Using (4-10) and (4-11) we obtain , , p x N k

m ,

|-^(A)| < J^ J^ cos — f J Finally, the sum over k is estimated by a convergent
j=1 geometric series because

(TT( R \\™ 1 Rkl Rk™~i

-C\2\R^ + e)) R^lF>''lV^> l + \{lTl+e)<R

which establishes (4-9). • for e small enough.

F(x) G(x) Error
1 FA A A | A A A A A A A A 1 1 f A J n A 1 n a Fl I

0.8 • I 0.8 A A I A A A A
o.6 o.6 A A ° - 4 A A A
°'4 ° ' 4 0.2 A A A \\

:H 'IIIIIIIIIIIIIIIIIIIIIII 4j : I V IVV* I :« 111 1
-1 I V v V [ V V V V V V V V 1 I. . v 1 , . . .v.l -0.8 if . I

-10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25 -10 -5 0 5 10 15 20 25

-40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100

1 f ' , u % ' * , I I ' I [ I

-100 0 100 200 300 400 -100 0 100 200 300 400 -100 0 100 200 300 400

FIGURE 8. The sampling formula approximation and error for the function F{x) = COS(2TTX/3) with R = 4. Top:
G = F3 on the interval [-10,25]. Middle: G = F4 on the interval [-40,100]. Bottom: G = F5 on the interval
[-160,400].
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Note that (4-9) is not a very rapid decay rate. It do not have any explanation for this apparent be-
is slightly worse than F(X) = O(X~1), so the con- havior.
vergence in (4-8) is due largely to the fact that the
set A of samples is quite thin. 5. A MODIFIED SAMPLING FORMULA

At the other extreme of if-bandlimited functions n n , , ~ ̂  r

. __ . ... . . . . Suppose we only have access to values of the func-
that are not strongly ii-bandlimited, we nave the ,. ^ n , . > , T J. - - \ m i

. . o • P r Tr «. tion r on a fixed interval i , containing AN- Inen
exponentials e y for a frequency y in K. bince , , ^ v r , / /( ^ , ,
__ . . . . , . . we could use the sampling formula (4-1) only to
K is chosen to be symmetric about the origin, we ,, , , ~ c ,. , u ,. „ . ,

_ _ , . T the extent of finding the approximation JbN given by
can replace the exponential by sines and cosines. In / . .v „ , , r , , . ,. . , ,

^ . n , r /„ rt\ . i i. i . (4-4). If the error of this approximation is deemed
this case we nave the analog of (4-2) with t being ; , x, x , ^ . ^ , ,

° v ' J ° too large, there seems to be nothing to be done,
replaced by a discrete measure supported on {±y}. . . AT .
„ . , n , i , X-./AN i since we cannot increase N to improve accuracy.
We have no decay for the sample values F(A), and „ ,, ,, - c ,. o , ,, , n

r _ _ ^ . v y _ However, the results of bection 3 suggest that all
the convergence of FN to F is not uniform over R. , • - , - /A t \ u - ^ J

. . m • i ™™ i • • • ^ e remaining terms in (4-1) may be approximated
However, as shown in btncnartz zOUUa , it is uni- T , u . ,. r ., £ ,. / >Nw XNL J ' on / by multiplies of the functions (re - X)u(x — A)
form on any compact set. £ . A m l . , ,, , , , r_ _. _ . . . . for A G AN- -Lhis suggests that we look tor an ap-

In f igure 8 we show the approximations and er- . r ,, r
n _ . N / r t / X T - , , , n proximation of the form

rors for b (x) = cos(27rx/3j, K = 4, and the same
in Figure 9 for F(x) = COS(3TTX/5), R = 6 (see the ^ (F(X)fi(x - A) + aA(x - A)/i(x - A)),
web site for more examples). We observe that the A^A^v
error is quite substantial, even in the sampling in- We now propose two variants of this idea, called
terval. The most striking feature of this da ta is tha t the symmetric and nonsymmetric modified sampling
the shape of the error appears to converge. That formula, in which the coefficients ax are obtained
is, the graphs of F(RNx) — FN(RNx) appear to be by sampling JF at some points in the vicinity of / .
converging to a limit set. The limit set appears to The price to be paid for trying to get more accuracy
have a nonempty interior and a fractal boundary, locally is that we wreak havoc globally: the modified
and is of an entirely different nature than the limit sampling formulas must break down entirely once we
sets seen for strongly i^-bandlimited functions. We move outside a neighborhood of / .

F(x) G(x) Error

-10 0 10 20 30 40 50 -10 0 10 20 30 40 50 -10 0 10 20 30 40 50

oi I j ; ^ ' 1 0.2 \ ~ 1
°-6 • ^ . - * * 0 .6 >

-0.2 > kM $m*%*$%^*.^ *^• $*$ ^ - j -0.2 - M ̂  t :^i< ̂ & f ^W>%^m*^ % ii: '̂  r " ; : - t * r * *' ̂ ' :<:,

- 0 ^ 6 •' ' ' * \ r ^ "* ~ ™ ' ' ' * ^ "* ' "Hi5.fr WJ'!

- o . 8 * - o j * : „ .~* • ^ - " • - • ^ , . ^ I ( , - 0 . 2 • .

- 5 0 0 50 100 150 200 250 300 - 5 0 0 50 100 150 200 250 300 - 5 0 0 50 100 150 200 250 300

FIGURE 9. The sampling formula approximation and error for the function F(x) = COS(3TTX/5) with R = 6. Top:
G = F3 on the interval [-10, 50]. Bottom: G = F4 on the interval [-60,300].
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For the first variant, the nonsymmetric one, we TT /A — A' — 2RN~1\ _
will sample on Ajv and Ajv + 2.RN~1. Note tha t ° ° S 2 V ~R!° / ~

as before, while if they first differ at RN~X then
£(A-A'-2i? JV-1) = 0

ir/X-X'-2RN~1\ 7T 37T
cos-( ^ Z I j = c o s - or cos—.

if A ̂  A'are both in AJV, since if A and A'first differ 2\ R J 2 2
at Rk for k < N - 1 then Thus

F(x) G(x) Error
0.6 f I —j, | 0.6 | 1 —jr 1 0 Q1 r • 1 " A ' — |

A / \ °'4 A / \ / \
0.2 / \ / \ 0.2 • / \ / \ / \

0 ~ / \ \ A o - / \ \ A ° V/"\ / ^ ^^ 7V

\ \/ "°-4 \ \/ "°'01 \ /
-°-el I \J VI -°-6l I \J \J\ \ \ \j

- 4 - 2 0 2 4 6 8 - 4 - 2 0 2 4 6 8 - 4 - 2 0 2 4 6 8
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-10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30

i r 1 1 -i r 1 1 r——<—•—•—•—'— — i — • — • — • — • — — • — • — • — — • — • — -

-40 -20 0 20 40 60 -40 -20 0 20 40 60 -40 -20 0 20 40 60

FIGURE 10. The symmetric modified sampling formula for the function F(x) = fi(x — 10.3) with R = 4. Top two
rows: G — G'2 on the sampling interval [—4,9] and the slightly larger interval [-13,18]. Bottom rows: G = G3
on the sampling interval [—16,37] and the slightly larger interval [—52,73].
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G'N(x) = ] T F(X)jl(x - A) agrees with F(X) on A^.
xeAN We have been unable to prove estimates for the

^ ^ /F(X + 2RN~1) F(X) \ accuracy of the modified sampling formulas, but we
"̂  2-j \ 2RNlu(2) 2RN~1) ~ ) ^ x ~ ' have some experimental evidence. Note that G'N

XeAN and G'x have the same number of terms as FN+I-

is a strongly jFf-bandlimited function that agrees However, the width of A^ and A^ is greater than
with F exactly on AN U (AN + 2RN~1) = A^. We AN but smaller than A^+i. In Figures 10 and 11 we
call this the nonsymmetric modified sampling func- show the performance of the symmetric and non-
tion because the original sampling set AN forms the symmetric modified sampling formulas on the func-
left half of A^. tion F(x) = fi(x - 10.3) with R = 4 that may be

To get the symmetric version we translate Af
N by compared with the standard sampling formula in

—i?^"1 to form A^ = (AN — RN~X) U (AN + i?^"1) . Figure 7. As expected, the error blows up rapidly as
Since AN — A^- i U (A^-i + RN~X), we have we move outside the sampling interval. Inside the

A" _ r\ p * - ^ i i A i i (\ A.OJ?N-I\ sampling interval, the error is about 2% for iV - 2
AN - {AN_, -R ) U A,v U (A^_! + m j , a n d 1 % for N = 3 for t h e s y m m e t r i c v e r s i o n ? a n d

so AN is situated symmetrically in the center of A^. about 8% for N = 2 for the nonsymmetric verison.
Again it is easy to verify that The nonsymmetric version does not perform as well

as the standard sampling formula, and the improve-
GN\X) — 2^ F(X)fi(x — X) ment in the symmetric version is not dramatic.

X<EAN In Figure 12 we show the performance of the sym-
4_ V ^ (F(X+2R ) F(X) \ , _\\-( _ \ ^ metric modified sampling formula for the function
\ ^ i V 2RN-1(i(2) 2RN~1){ )f^{ ] F(x) = COS(2TTX/3) with R = 4, to be compared

EV\ . D N - I \ J?{\ P ^ - 1 ^ with Figure 8. The error is around 2% in the sam-
+ ^2 (—2RN~l 2 ^ - ^ ( 2 ) ) Pling interval for both N = 2 and 3"~a dramatic

AeAiv-i ^ ^ improvement over the 20% error in Figure 8. More-

x(x-X-RN~1)fi(x-X-RN~1) over, the visual appearance of G'{ and Gg on the

F(x) G(x) Error
1 n A i l n A i ° - ° 6 H A

0 8 / \ 0.8 • / \ / \

° - 4 A A ° -4A A °-°2 \^ „ / \
0.2 \ / \ o.2 \ / \ A o j—^y \ > ^ \ — f v—0- \ / \A — °- \ / V/ \ — -°-°2 \ / \

-0.2 \ / \ \ / ~°-2 \ \ \ I -0-04 \ / \
~° - 4 \ / \ / \ / ^ \ / \ / W "0-06 \- ° - 6 H V V \J\ ~0-6 II V V V\ -o.o8 II \.
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^ -j_

JMWW * t i^^r
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-0.6 [ i v y v v I -Q-61 i v y v i - ° - 6 1 i v
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FIGURE 11. The nonsymmetric modified sampling formula for the function F(x) = ft(x — 10.3) with R = 4. Here
G = G7

2 on the sampling intervals [0,13] and [-9, 21].
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sampling interval is acceptably close to that of F. This limited evidence suggests that the symmet-
Figures 13 and 14 show the performance of both ric version is better than the nonsymmetric version,
the symmetric and nonsymmetric modified sampling For strongly if-bandlimited functions there does not
formula for F(x) = cos(37rx/5) with R = 6, for seem to be much point to using this approach be-
N = 2. In both cases we again have dramatic im- cause of its poor behavior outside the sampling in-
provement over Figure 9. The error is about 0.5% terval. But for if-bandlimited functions with more
for the symmetric version and 3% for the nonsym- singular Fourier transform, the symmetric modified
metric version on the sampling interval. sampling formula provides an attractive alternative.

F(x) G(x) Error
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FIGURE 12. The symmetric modified sampling formula for the function F(x) = COS(2TTX/3) with R = 4. Top two
rows: G = G{ on the sampling interval [—4,9] and the slightly larger interval [—13,18]. Bottom rows: G = G'%
on the sampling interval [—16,37] and the slightly larger interval [-52,73].
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FIGURE 13. The symmetric modified sampling formula for the function F(x) = cos(37ra:/5) with R = 6. Here
G = Gf2 on the sampling intervals [-6,13] and [-18,25].

F(x) G(x) Error
-| r r 1 1 r r 1 i l ' ' • •

0.2 0.2 0.01 / \ / \ M '

0 2.5 5 7.5 10 12.5 15 17.5 0 2.5 5 7.5 10 12.5 15 17.5 0 2.5 5 7.5 10 12.5 15 17.5

0.8 fl il II II I I 0 8 • 1 f\ f[

0.4 0*4 /|

- 1 0 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30

FIGURE 14. The nonsymmetric modified sampling formula for the function F(x) = COS(3TTX/5) with R — 6. Here
G = Gf2 on the sampling intervals [0,19] and [-12,31].
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