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Invariant theory of finite groups is a subject which
has a large variety of applications, but also displays
many open questions. This applies in particular to
the modular case, where the characteristic of the
ground field divides the group order. Consequently,
much of the recent research activity went into this
area; see [Benson 1993; Smith 1997] and the refer-
ences there. For a general introduction into the in-
variant theory of finite groups we refer the reader to
the survey [Stanley 1979], or the book [Smith 1995],
which gives a problem-oriented presentation.

Research in invariant theory (and, in fact, many
other areas of mathematics as well) greatly benefits
from the availability of examples. Examples pro-
vide a means to gain experience and understand-
ing, to find or test conjectures, search for interest-
ing (counter-)examples, and sometimes to prove re-
sults. In invariant theory, new algorithms and the
emergence of faster computers have made it possible
to study problems in a way that would be impossi-
ble by hand calculations and ad hoc methods. In
fact, the computational aspects of invariant theory
have recently enjoyed considerable interest in their
own right (as is documented in [Sturmfels 1993] and
many more recent papers such as [Derksen and Kraft
1997; Kemper 1998]). With this in mind, we have
decided to assemble a collection of examples, in the

This project was supported by the Deutsche r r , , , . , , , ,.
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("invariantentheorie endiicher Gruppen"). as a research tool. All computations were done in
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the computer algebra system Magma [Bosma et al. boolean-valued function in Magma or Maple as an
1997], which has an efficient package for invariant argument. Users can define search criteria with such
theory [Kemper and Steel 1999]. We used the Sun functions. After a search has been done, the exam-
computers at the IWR in Heidelberg. Currently the pies which meet the search criterion can be loaded
database contains 5922 examples, almost all modu- into Magma or Maple, respectively, for closer ex-
lar, and takes about 100 Mbytes of storage space. amination. In the following section we present an
The database runs with Unix operating systems. example session which shows how this works. What
More specifically, we have tested the database with made it easier for us to abandon the idea of using
Linux and Solaris operating systems. standard database software is the fact that we are

The software is freely available; see Electronic dealing with a relatively small number of items, but
Availability at the end of this article. the data stored for each item is quite large.

We ask users to quote this paper when they write
articles on research which involved the database. Incomplete Data

A further problem that we had to find a way to

2 CONCEPTS OF THE DATABASE handle is the inherent difficulty of computations in
invariant theory. The algorithms require the corn-

Retrieval Functions putation of Grobner bases and the solution of large
To use the database, one cannot look at all the sev- systems of linear equations [Kemper 1996; Kemper
eral thousand examples with the "naked idea". In- and Steel 1999]. Therefore there are examples in the
stead, significant examples must be retrieved by sys- database where not all information could be com-
tematic searches. For example, a user might want puted. For example, it may happen that for some
to invariant ring the primary invariants could be com-

, . AT ,. , , , j r-ir.^1 puted, but the secondary invariants were found to
• see examples where Noethers degree bound 1916 , ' r . TT7 /

. . , j ,. ,. • i j r be out of reach. We also used an algorithm from
is violated (i.e., the maximal degree of a gener- rTT , , T . o n m l , . , r £,. . ' , ,, , , Jrl Hughes and Kemper 2001 , which for groups of or-
atmg invariant exceeds the group order G ) , , , . . . , 1 1 i Tjr ̂  , - t 2 1
, , x, . n 1 xT TT-n J . i i der divisible by p := char A but not by p calcu-

• know whether in all examples the Hubert ideal , , TT.,, , . , ,, , ,, r,,,. , . , , . , , . , . r , r T r l lates the Hubert series and the depth 01 the mvari-
(i.e., the ideal in the polynomial ring K\V gener- . .,, , , , . . . ,

,' „ . . / . . . x . ant rme; with a computational cost that is similar
ated by all invariants of positive degree) is gener- , , 1 1 , . nur v > r i mi r / i

, , , . <* 7 to the evaluation of Molien s formula. Thus for al-
ated by homogeneous elements of degree at most ^\n . ±1 i ^ i £ 1 j. J- • •
. , most) all groups in the database of order not divisi-
' ' . . r . , ble by p2 we have the Hilbert series, depth, Cohen-

• find the invariant ring of some particular group, ™ f , , ,, ^ ± • xr
r i - i • • , . -x Macaulay property, and the Gorenstem property of

or of a group whicn is conjugate to it. ,, ± . ,,, , .
the invariant ring, although in many cases not even

It should be clear from these examples that there a set of primary invariants is known. We did not
is no way to define a fixed catalogue of criteria for want to exclude such examples from the database,
which users can search the database. Therefore it As a consequence, the retrieval functions have to be
seemed impossible to us to implement our retrieval able to deal with incomplete information. For ex-
functions within some standard database program. ample, a search function supplied by a user might
In fact, the only practical way how such criteria can ask something about secondary invariants. Such a
be formulated in a language understandable to a search function, when applied to a ring where the
computer is within some computer algebra system. secondary invariants are not known, should not re-
Moreover, a user should be able to manipulate the turn "true" or "false", but "unknown". This feature
data retrieved from the database and not just look was especially hard to implement in Magma, where
at it. Therefore we have decided to base our re- there is no traperror mechanism,
trieval functions on the computer algebra systems
Magma and Maple. There is the choice to use ei- Computational Difficulty
ther one of these systems (which of course must be The computational difficulty also led to some prob-
available). We provide access functions that take a lems in the creation of the database. Usually when
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one performs difficult computations on a computer, part analogous. We start by calling the executable
one has the computer run for a while and at some InvSearch. This starts up Magma, reads in the
point when patience runs out, one chooses to inter- retrieval functions, and sets up the communication
rupt the computation and tries a different method. with the database. In the sequel we assume some
Obviously this approach is not feasible for comput- basic familiarity with Magma.
ing several thousand of examples. Instead, we im- . _ . . .

, , 1 1 i i.rr j. j, / (a) As a first example, suppose we are interested in
plemented a scheme where different steps (or groups . . . r . ^ n_. ,_ . . .

r ± \ . ,, A j_. r T . . , . the invariants of the group G = SO3 K in the nat-
of steps) in the computation of each invariant ring * , x

n \ . .
/ i i i - r r i M i.-u u r a l representation. The chances of finding the m-

are performed by different Magma processes which • r ^, - ^ ^ ^ i ? . ! -r
.,, ^. -, ,. ., Tr , variants of G in the database are much higher it

are run with a time and memory limit. If such a pro- _ r . . . . ^ .
.^,. ,, ,. .,_ .j_ j_ ., iA. we search for groups which are conmgate to G in

cess terminates withm the limit, it stores its results _ . T / T n N i i T r ^ • *r x r , .
, n , n u J. • i 4. 4. r\^ GL3(F5), rather than only for G itself. A test for this
to a file for subsequent use in later steps. Other- . v .'

,, . . , . . , - , , a ui 1S provided by the function IsGroupConjugateTo,
wise, the invariant ring is transferred to a problem . . . . J . . . . . . n

„ , ., x1 i i j i j i which is part ot the retrieval functions, bo we type:
queue , where it can then be worked on by ad hoc J r

or semi-automatic methods. > G := SO(3,5);
> T,F,U := SearchInvariants(func<R I

Efficient Information Transfer IsGroupConjugateTo(R,G)>);
When running the retrieval functions, information > T>
from the database is automatically read into Magma L 10077 J
or Maple in order to apply the search function to T h e g e a r c h t h r o u g h t h e d a t a b a s e t o o k 7 5 s e c o n d s .
the invariant rings. For reasons of efficiency it is T h e f u n c t i o n Searchlnvariants is called with a
important to transfer only that part of the infor- boolean-valued function (the "search function") as
mation about each invariant ring into Magma or a r g u m e n t . T h i s fu n c t io n has an invariant ring R as
Maple which is actually needed for the evaluation i n p u t a n d r e t u m s t r u e i f R i s t h e i n v a r i a n t r i n g o f a

of the search function. To decide what the relevant g r o u p c o n j u g a t e t o G . Searchlnvariants returns
data is, one might subject the search function to a t h r e e H s t g ) T F ; a n d u> w h i c h s t a n d for t h e i n v a d .
syntax analysis. Since this seemed impractical to a n t r i n g g for w h i c h t h e s e a r c h f u n c t i o n y i e l d e d t r u 8 j

us, we chose to implement a technique for dynam- f a l 8 6 j o r c o u l d n o t b e e v a I u a t e d ) respectively. Thus
ically determining the required information. More w e h a v e found e x a c t l y o n e i n v a r i a n t r i n g o f a g r o u p

precisely, information that is found to be missing for c o n j u g a t e t o G . E v e r y i n v a r i a n t r i n g is identified by
the evaluation of the search function on some ring is a u n i q u e i n t e g e r ) i t g E x a m p i e iD . These ExamplelD's
reloaded for this ring, and then included into the list a r e l i g t e d i n T F ) a n d „ S o fer> n o i n v a r i a n t r i n g h a s

of necessary information for subsequent evaluations b e e n l o a d e d i n t o M a g m a . W e i o a d the one we are
of the search function. interested in now, and look at some of its properties.

We believe that the specific difficulties we encoun-
tered in this project generalize to many other math- > R : = Requestlnvariants (T [1] ) ;
ematical databases, and we hope that the concepts > DegreePrimaries(R);
we developed will also be applicable in other con- C 2> 6, 20 ]
texts as well. > DegreeSecondaries (R);

[ 0, 25 ]
3. AN EXAMPLE SESSION > H y P e r s u r f a c e »> '

t rue
After the database has been downloaded, it requires . T̂ fr^, , £. , „ ,. _ , , ., ,. (b) Next we want to test the conjecture (Coniec-
aminimal amount of installation, ror details see the „ , , N . .r T^^^r . ^ , , r, . , . , , , , , rT,1 ture 1 below) that if K\V\ is Cohen-Macaulay,
documentation supplied with the database, l h e n , . L , . . .

, ,. . , , TV T i i then Noether s degree bound holds,
the retrieval functions in Magma or Maple can be
used. We present an example session in Magma, > CM,nCM,U := S e a r c h l n v a r i a n t s ( f u n c < R I
and remark that the usage in Maple is for the most CohenMacaulay(R)>);
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> #CM,#nCM,#U; 36 and 37 (E7 and Es), which are not included
3330 1116 1476 in the data base because of storage problems but
rr-i . i , T i n J O i ooon they can be obtained from the authors upon re-
Ihis search took 19 seconds, bo we have 3330 ex- J ^
amples of Cohen-Macaulay invariant rings, 1116 ex- ^ '
amples of non-Cohen-Macaulay rings, and 1476 ex- 6- miscellaneous examples that seemed of special in-
amples where the Cohen-Macaulay property could t e r e s t t o us> including some small representations
not be evaluated. Now we wish to single out those o f quasi-simple groups,
examples which satisfy Noether's bound from the 7. an assortment of representations up to degree 7
Cohen-Macaulay invariant rings. This can be done of groups of small order.
by giving a search range as a second argument to T h e g r o u p g i n [tem ? w e r e p r o d u c e d a s follows> F i r s t

Searchlnvar iants . The minimal number k such w e u g e d t h e S m a l l G r o u p s l i b r a r y i n M a g m a t o g e t

that an invariant ring R can be generated by invari- s o m e g r o u p g o f s m a U Q r d e r T h e n for e a c h g r Q u p a n d

ants of degree at most k is given by the function e a c h p r i m e p d i y i d i n g t h e g r Q u p ^ ^ w e p r o d u c e d

e a many "random" representations over ¥pi (1 < i < 3)
> NB,nNB,U := Searchlnvariants(func<R I by forming tensor products, symmetric powers, Ja-

Beta(R) l e Group0rder(R)>,CM); cobson radicals and other standard operations of
> #NB, #nNB, #U; representations we already had, and then extracting
3105 0 225 indecomposable representations from these with the

rT11 ,, . , T , , .p . . o i n r Meat Axe. Since decomposable representations are
Thus the conjecture could be verified in 3105 cases, , £ . , i , . , , . . . , ,1

, . . . also of considerable interest in invariant theory, we
and there is no counterexample. r , ,. „ , , . ,

formed direct sums of the representations obtained
in this way of total degree at most 7.

4. SOURCES OF EXAMPLES AND ATTRIBUTES STORED ft s h o u l d a l s o b e o f i n t e r e s t w h a t i n f o r m a t i o n w e

All finite groups with noncyclic Sylow p-subgroup store for each invariant ring. The following is a par-
(p = char K) have an infinite number of nonisomor- tial list of attributes that we store for an invariant
phic indecomposable representations over K. Thus ring K[V}G, wherever they could be computed,

there is no way in which the representations covered ^ rpke ground field K
in our database can reach any level of comprehen- t, ,. . r rr

r , . . . , 2. the dimension of I/,
siveness, and some degree of arbitrariness is there-
fore unavoidable in the choice of what linear groups 3 ' S e n e r a t o r s o f Gi
we included in the database. This also means that 4- s o m e properties of G, such as the group order
for a user it will be a matter of luck if an invariant and whether G is a p-group (p = char if) or a
ring he or she is interested in will be contained in solvable group,
the database. In order to obtain a selection of ex- 5. some properties of the representation V, such as
amples which is not too biased in one direction or irreduciblility, or whether G acts as a (pseudo-)
another, we decided to take our examples from the reflection group,
following sources: 6 . primary invariants,

1. all subgroups of GL4(F2), 7. secondary invariants,

2. all 2-subgroups of GL5(F2), 8. fundamental invariants, i.e., a minimal system of

3. all 3-subgroups of GL4(F3), generators of K[V]G,

4. all subgroups of GL4(F3) which can be generated 9- syzygies, i.e., algebraic relations between the fun-
by at most two elements, damental invariants,

5. all the exceptional irreducible complex reflection 10. "module-syzygies", i.e., linear relations between
groups in characteristic 0, according to the classi- the secondary invariants over the subalgebra gen-
fication in [Shephard and Todd 1954], apart from erated by the primary invariants,

the generating invariants for the groups number 11. the depth of K[V]G,
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12. the Hilbert series, Conjecture 4 [Kemper 1999, Conjecture 22]. The de-

13. the Cohen-Macaulay and Gorenstein properties, 9™e of the Hilbert series H(K[V]G, t) (as a rational

and whether K[V]G is a complete intersection, a function in C(t)) is at most -n.

hypersurface, or a polynomial ring. Conjecture 4 is true in the Cohen-Macaulay case,

since in this case it is equivalent to Conjecture 3. We

5 SOME CONIECTURES verified the conjecture for all 1116 invariant rings in
the database which are not Cohen-Macaulay.

We conclude this note by adding a few conjectures
which have all been confirmed by the database. In Conjecture 5. If K[Vf is Cohen-Macaulay and G <

the following, G < GL(F) is a finite linear group in SL(F), then K[V]G is Gorenstein.

dimension n :— dim(l/ j . Conjecture 5 is true in the nonmodular case by a

Conjecture 1. / / K[Vf is Cohen-Macaulay, then r e s u l t of Watanabe [1974a; 1974b]. 1916 examples
Noether's degree bound holds, i.e., K[Vf is gener- i n o u r database satisfy the hypothesis of Conjec-
ated by homogeneous invariants of degrees at most t u r e 5> a n d a 1 1 a r e Gorenstein. On the other hand,
\Q\ we have 893 examples which are Cohen-Macaulay

but not Gorenstein (where the groups are not con-
This conjecture generalizes the fact that Noether's tained in SL(V), of course),
degree bound holds in the nonmodular case, which
was recently proved in full generality [Fleischmann E L E C T R ONIC AVAILABILITY
2000]. We have 3330 examples of Cohen-Macaulay
invariant rings in the database. Of these, 3105 are The database, with documentation and software for
known to satisfy Noether's bound, and for the rest the retrieval of data, can be obtained from ftp://
generating invariants are not known. On the other ftp.iwr.uni-heidelberg.de/pub/kemper/DataBase/.
hand, the database contains 133 examples that vi-
olate Noether's bound. Another generalization is REFERENCES
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