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Let E be an elliptic curve defined over the finite field
¥q of q elements. We say that E has almost prime
order over the degree-p extension if

Mp = Mp(E/¥q) = - ^ - y

is prime. Note that E(¥qv) is a subgroup of E(¥qS)
whenever r | s; this means that #E(¥qP) is divisible
by #E(Fq), and that the ratio of these two numbers
can be prime only if p is prime. (There are two
trivial exceptions: q = 2, p = 4, #E(F2) = 5; and
q = 3, p = 4, #£(F3) = 7.)

In this paper we are interested in almost primality
of E(¥qP) for fixed small q and variable p. The mo-
tivation for this study comes from public key cryp-
tography, where elliptic curve groups should be of
almost prime order in order to avoid the Silver-
Pohlig-Hellman attack on the elliptic curve discrete
logarithm problem; see, for example, [Koblitz 1998,
p. 133]. Curves defined over small fields often have
special efficiency advantages. The case that has
been studied most extensively is the nonsupersingu-
lar curves defined over F2; the most detailed study of
such curves is [Solinas 2000]. These are also the only
curves defined over small fields that are currently
used in industrial applications; see [FIPS 2000].

According to Hasse's Theorem, if we set

a = a(E/¥q) = q + l-#E(¥q)
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and Corollary. The smallest prime that divides Mp is at
T2 — aT + q = (T — a)(T — a), least p — 1, and if p > max(3, q+1—a), then it is at

, ^ <r,( /—n j - \ x l o A ^ n J /east 2p — 1.

where cnGdJ (v a ~~ 4g j , then a — 4g < 0 and
p _ -I 2 Proof of Proposition. First suppose that / is a prime

Mp — — . divisor of Mp not dividing q + 1 — a— \a — 1|2. Let
/ be a prime ideal of Q(a) lying over Z, and let F be

Thus, Mp is a generalization of the Mersenne num- t h e corresponding residue field. Since l\\a- 1|2 and
bers, as we see by replacing a by 2. The conjecture / divides \ap - 1|2, it follows that either a mod / or
that follows is based on an analogous conjecture for s m o d / h a s e x a c t o r d e r p i n F T h u s ? p | / _ i if /
Mersenne numbers (see [Wagstaff 1983]). s p l i t s o r ramifies in Q(a), and p 112 - 1 if I remains
Conjecture A. For fixed E over Fg, ̂ e number M{x) prime.
of Mp <x that are prime is asymptotic to N o w suppose that / is a prime dividing q + 1-a.

7 Writing
log log x,

l oS^ ap - 1 _ (1 + (a - l))p - 1
where 7 is Euler's constant and log denotes the nat- a — 1 a — 1
ural logarithm. = p + Q ( a _ 1} + Q ( a _ i)2 + ... + ( a _ ^
Our purpose in this paper is to discuss the heuristics
of this conjecture and give some numerical evidence. we see that if / = p, then

2. PROBABILITY OF PRIMALITY p a* ~ 1 ^ Z _ i = M .
a — 1 a — 1

Recall that the Prime Number Theorem, stating
that the number of primes < x is asymptotic to I f l ^ V and / and F as before denote a prime ideal
x/ log x, can be interpreted informally as saying that o v e r l a n d i t s residue field, then without loss of gen-
the probability that an integer n is prime is 1/ log n. eral i tY w^ may assume that a - l e l . If I \ a - 1,
This is because then the above equality shows that Mp = p2 ^ 0

n +1 n n + 1 n 1 (mod 1). If / \ a — 1, then the same equality still
log(n + l) " 1 ^ ~ 1 ^ 7 " 1 ^ = toi^' § i v e s ( « P - l ) / (« - l ) ^ ^ IH remains prime or ram-

ifies in Q(a), this means that l\Mp. If / splits, then
In the same way, Conjecture A can be interpreted l j ̂  Q n l y .f _P _ 1 € J ; g i n c e ^ _ x ^ 7) t h i s m e a n s

as saying that the probability that Mp is prime is t h a t _ m o d 7 h a g e x & c t o r d e r p i n F> a n d SQ l ^ x
a b ° U t _ ^ l o g p (mod?)- °

log g p Recall two classical asymptotic results from analytic
Indeed, if the conjecture holds, then the probability number theory [Hardy and Wright 1979, pp. 348 and
that Mp is prime is roughly M(qp) - M(<f~logp). 351, Theorems 425 and 429]:
But

log log(^) - log log(^-logp) = - log p~logp J2 ^J-~lo&x t3"1)
ir primes l<x

^ logp
P / IN"1

3. HEURISTICS Primes Kx ^ '

Proposition. p\Mp if and only if p\ q + 1 -a. Ifl^p (The second is Mertens' Theorem.)
25 a prime divisor of Mp, then I = ±1 (mod p), and NO W ? th e probabilistic interpretation of the Prime
/ = 1 (modp) if I splits or ramifies in Q(a). Number Theorem says that the probability that a
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random integer n is prime is 1/logn. The condi- the former case ap has about a 2/1 chance of equal-
tional probability that n is prime given that it is ing 1 in either of the two residue fields at Z, whereas
not divisible by any prime < x is in the latter case it has about a l/l2 chance of equal-

1 / ., \ - l , ing 1 in the unique residue field at I. Compared to
TT I 1 — - I ~ e7- the probability that I divides a random integer, the

o primes i<x ̂  ' § probability 2/1 is twice as great and the probabil-
by Mertens' Theorem. We now take n = Mp ~ ity l/l2 is negligible. Because half of all primes I
qp~x. By the above Corollary we can take x=p-l. SP1^ a n d half remain prime, these two effects cancel
This gives us the following heuristic formula for the each other out asymptotically. However, in Remark
probability that Mp is prime: 1 above we might want to redefine p' as the smallest

log(p - 1) e
7 logp p r i m e S U c h t h a t pf ~ 1 ( m ° d P^ a n d ^) = L

6 7 rsJ .

(p — 1) logq logq p 3. In Remark 2, in the case when / splits it is not
Then the number M{x) of Mp < x that are prime ^ u i t e c o r r e c t t o s a ^ t h a t t h e Probability that I \ Mp

is approximately 1S aPP r o x i m a t e ly 2A- Rather, by the Proposition m
Section 2, this probability is zero if / ^ 1 (mod p);

V^ _£*: ^ X^ - ° i and if I = 1 (mod p), then it is approximately 2p/l.
° ^ MP<X P ° ^ logx P The reason for the latter expression is tha t ap is in

ogq the subgroup of (Z/p)-th roots of unity in each of the
~ log log x residue fields at /. Since the probability that / sat-

S^ isfies I = 1 (mod p) is roughly 1/p, the asymptotics
by asymptotic formula (3-1). This is Conjecture A. should not be affected by treating Mp as a random

integer with a l/l chance of being divisible by any

4. REMARKS ON ATTEMPTS TO REFINE THE P r™e /.

4. Discussions of divisors of Mersenne numbers (see
1. In the conjectural expression [Wagstaff 1983]) often start out by noting that 2

e7 logp must be a quadratic residue modulo / = 2/'p + 1 —
^ T T ~~Z~ i.e., V must be = 0 or —p (mod 4) — in order for I

r . . . ... . , . . r . to divide 2P — 1. Similarly, in our case a must be a
tor the probability that Mv is prime, we see trom the . . , n , , , 7 . , r , , ,. . ,
^ . . i A n . ri . rt i i square in a residue field at / in order tor / to divide
Proposition and Corollary in Section 3 that log p can , „ 1 | 9 TT . ,, . ,. .
, , , , , /rk . N .n /n f \ \ap — l\. However, in our case this condition cannot
be replaced by log(2p — I) if p > max(3, q+l — a). \ , . , ,.,. 7
A ,. , , , , , . , . be expressed simply as a congruence condition on/ .
Actually, logp can be replaced by logp, where p „ , . ,. ,\. , ° ,. .
. . .", , . . . x . . ' , \ The reason is that the condition that a is a square
is the smallest prime such that either (l) p = I . ,, . , n , , , , , ,.,.
, , N ,. x /n'\ i / / , x m the residue field can be rephrased as a condition
(mod p), or (u) (^) = — 1 and p = —1 (mod p) ,, t , . ,. f ,, T . ,
;_ %/' 9 , . ! , N TT on the factorization of the polynomial
(here D = a — 4q is the discriminant). However, in
view of other considerations tha t are ignored by the T — aT + q = (T — a ) ( T —a)
heuristics in Section 3 (see Remarks 2-4 below), we m o d u l o , (Le>> & c o n d i t i o n o n h o w t h e p r i m e z de_

would be on weak ground if we claimed tha t composes in the splitting field of this polynomial).
e 7 l °gp ' Since the splitting field of this quartic is generally

logg p nonabelian, we cannot express the condition as a
is a bet ter formula than congruence. (However, by the Chebotarev Density

e7 logp Theorem [Marcus 1977, Chapter 8], we do know
j^TT ~^~' tha t , of the primes I tha t split in Q ( a ) , asymptot-

ically 25% satisfy the further condition tha t a is a
2. The likelihood tha t a prime / divides Mp is much square in both residue fields, 50% have a a square
greater if / splits in the quadratic imaginary field in exactly one of the residue fields, and 25% have a
Q ( a ) than if it remains prime. Roughly speaking, in a nonsquare in both residue fields.)
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q a D E p for which Mp is prime and less than 21000

2 0 - 8 Y2+Y = X3 2,3,5,7,11,13,17,19,23,31,43,61,79,101,127,167,191,199,313,347,701
2 1 - 7 Y2+XY = X3+X2 + l 3,5,7,11,17,19,23,101,107,109,113,163,283,311,331,347,359,701
2 - 1 - 7 F 2 + X F = X3 + l 2,5,7,13,19,23,41,83,97,103,107,131,233,239,277,283,349,409,571
2 2 - 4 Y2+Y = X3+X + l 2,3,5,7,11,19,29,47,73,79,113,151,157,163,167,239,241,283,353,367,

2 -2 -4 Y2+Y = X3+X 5,7,11,13,17,29,43,53,89,283,557,563,613,691 379,457,997
3 0 - 3 Y 2 = X 3 + X 3,5,7,13,23,43,281,359,487,577
3 1 -11 Y 2 = X 3 + X 2 - 1 2,5,7,37,67,271,281,409,449,599
3 - 1 -11 Y 2 = X 3 - X 2 + 1 2,7,23,59,179,269,383
3 2 - 8 Y 2 = X 3 - X 2 - 1 3,7,11,13,19,23,31,37,43,47,83,193,557
3 -2 -8 Y 2 = X 3 + X 2 + 1 2,3,5,7,13,19,71,199,257,479,503
3 3 - 3 Y 2 = X 3 - X - 1 2,5,7,11,17,19,79,163,193,239,317,353
3 - 3 - 3 Y 2 = X 3 - X + 1 5,11,31,37,47,53,97,163,167,509
4 1 -15 7 2 + i r = I3+/3 3,5,7,17,37,43,67,79,163
4 -1 -15 Y2+XY = X3+(3X2+P 5,7,31,59,167,227,379
4 2 - 3 Y2+(3Y = X3 2,5,7,13,29,61,383,401
4 -2 - 3 Y2+(3Y = X3+/? 2,3,5,11,23,31,43,149,157,193
4 3 - 7 Y2+XY = X3+/3X2 + 1 3,5,11,31,53,61,383
5 0 -20 Y2 = X3 + 1 5,67,101,103,229,347
5 1 -19 Y 2 = X 3 - 2 X + 1 2,7,73,79,113
5 - 1 -19 Y2 = X3+2x+l 2,5,17,31,37,47,97,179,269
5 2 - 4 Y 2 = X 3 + X 3,5,17,47,53,181,227,353,401
5 -2 -4 Y 2 = X 3 - X 3,5,13,19,29,37,43
5 3 -11 Y 2 = X 3 - X + 2 5,7,19,43,167,227,311
5 - 3 -11 Y 2 = X 3 + X + 1 2,7,13,17,29,31,37,43,211
5 4 - 4 Y 2 =X 3 +2X 3,5,7,53,97,107,239
5 _4 _4 Y2 = X3-2X 2,3,7,17,43,61,137,151,167,191,317,397
7 0 - 7 Y2=X3+X 3,17,23,29,47,61
7 1 - 3 Y 2 = X 3 - 2 5,13,19,23,103,107,181
7 - 1 - 3 Y 2 = X 3 + 2 2,7,11,29,43,53
7 2 -24 y 2 = X 3 + X + 3 7,19,29,59
7 -2 -24 Y2 =X3+X-3 3,7,11,23
7 3 -19 y 2 = X 3 + X + l 2
7 - 3 -19 F 2 = X 3 + X - 1 2,5,7,31,89
7 4 - 3 y2 = X 3 - l 5,7,17,43,47,127,223
7 -4 - 3 F 2 = X3 + 1 5,11,53,59,109
7 5 - 3 F 2 = X 3 - 3 2,19,61,71,167
7 -5 - 3 F 2 = X3+3 2,5,11,17,103,191
8 1 -31 Y2+XY = X3+(3X 3,19,23,139,167
8 - 1 -31 Y2+XY = X3+X2+pX 7,11,19,47,59
8 3 - 7 Y2+XY = X3+X2+/3X + 1 5,19,37,41,47,59
8 - 3 - 7 Y2+XY = X3+/3X + 1 5,7,11,19,31,73,139,233
9 0 - 4 Y2 = X3 + (1+/3)X 3,59,223
9 1 -35 F 2 = X 3 + X 2 + / 5 2,5,11
9 - 1 -35 y 2 = X 3 + (l+/3)X2 + (l+/3) 23
9 2 - 8 Y2 = X 3 + (l+/?)X2 + (l-/3) 3,5,13,79,83,97,157,233
9 - 3 - 3 Y"2 =X3+/?X + 1 2,5,7,11
9 4 -20 Y2 =X3+/3X2 + (1+^) 11,13,37,167,223
9 -4 -20 Y2 =X3 + {-l+(3)X2-l 5,13,19,41,103,313
9 5 -11 Y2 = X 3 + (l+/3)X2 + (-l+/3) 7,29,37

TABLE 1. For each a and g we list the discriminant D of the quadratic imaginary extension generated by a, the
equation of one of the elliptic curves with the given value of a, and the primes p such that Mp is a prime of at
most 1000 bits. By definition, (32 + (3 + 1 = 0 when q = 4, (33 +[3+1 = 0 when g = 8, and /32 + 1 = 0 when q = 9.
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None of the possible adjustments that one would 5. TABLES
make as a result of the above considerations would ^ , i n , , i „ y-,/-™ \ m i»i 1

. „ . , . , r
 F o r each Q < 10 a n d a = q + 1 - #J5(FQ), Table 1

cause a change asymptotically in the coniectural for- . ,, ,. . . , ^ £,, , ,. .
I P ,,-/ N ™ . , T, *• S l v e s the discriminant D of the quadratic imaginary

mula tor Mix). Moreover, experience with Mersenne , , , , ,, £ - , ,v y ^ . . extension generated by a, the equation 01 one 01 the
numbers suggests that a refined conjecture is not n . ,. .,, ,, , £ , ,. ,

0 0 J elliptic curves with the given value of a, and a list
likely to be significantly better than the crude one, r n • , . , „ , . . r x

_J . _ r , T ' of all primes p such that Mv is a prime of at most
at least not in the range of values where computa- 1 ~~~ , .
tions are feasible. T ,, , U1 ^ . , r ^ 2 , v , 1 n 1

In the table (3 is a root of X2 + X + 1 = 0 when
,. _ _ , n g = 4, a root of X 3 + X + 1 = 0 when 9 = 8, and a

5. In the case of Mersenne numbers, the attempt to - ^ 2 , 1 n u n r™ , , ,
_ ' . root of X1 + 1 = 0 when q — 9. The values a = ±4

refine the con ectural formula for the probability of , A , . /» 1 n X - I J J
J . J when g = 4 and a = ± 6 when q = 9 are not included,

primality by replacing log(2») by log (2 op) for suit- , . . . , ,, , . ,, n/r .
_ 1 / \ 1 i r i -m because it is easy to see tha t in those cases Mv is a

able 0 — blp) has not been very successful. Ehrman r ,
no^Ti ^ w 4- ff noQQi 1, ^ ^ i • perfect square. The values a = 0,-3 when 9 = 4,
1967 and Wagstaff 1983 have argued for replacing n _I_>I _i_c v. o J o o c r u

! / x , , /«, x , , , -r o / 1 ,x a = 0, ±4 , ± 5 when g = 8, and a = - 2 , 3 , - 5 when
log(2p) by log(2op), where b = 1 if p = 3 (mod 4) n n ,. , , . ,, ,

n 7 r. / i . x i n i. g = 9 are also disregarded, since those values come
and 0 = 3 if p = 1 (mod 4), and they discuss ev- r 1V ,. i n i 1 i- u r

^ v y ' J . from elliptic curves denned over proper subnelds of
idence that there are fewer Mersenne primes with ^ , , n , , ., ^j ^. u ,,

f 7 1 ^ 0 a n d hence lead to composite Mv. finally, the
p satisfying the former congruence. This b equals , , o , , o ro , £, , , r 7/ , , rtf, -, i i . values a = ±2 cannot occur when q = 8 Schoof
the least value of / such that 21 p + 1 could possi- .. Q^7i
bly be a prime divisor of the p-th Mersenne num- ^ ,' ,, ,, . ^ , , . .,,
_ _ 1 TTT rr- i i i Below we compare the results in lable 1 with
ber. But Ehrman and Wagstaff did not take into r* - ± A T ^ -4. 1. , ,, ,

, , N , Conjecture A. Ihe conjecture predicts that
account the fact that if p = 7 (mod 12), then nei-
ther 2p + 1 nor 8p + 1 can be prime (since they are ^/oiooo^ „ _ ^ 1 _ lft<y lft<rr9ioooN ^ H ^
divisible by 3), and so the smallest value of V would m ^ > ~ \og q

 l o g iog(<z ^ ~ i o g g '
be 5; thus, one should take b — 5 rather than b = 1
when p = 7 (mod 12). And indeed, looking at all The last column gives the average of M(21000) over
Mersenne primes with p > 3 and p < \06, we see all values of a for the given q.
that for 7 of them p = 1 (mod 12), for 11 of them
p = 5 (mod 12), for 10 of them p = 7 (mod 12), and q j ^ Af S ° f
for only 3 of them p = 11 (mod 12). In other words,
it is a little misleading to say that the congruence 2 16.81 19.00
p = 3 (mod 4) works against primality of 2P - 1; in 3 10 '60 10 '43

fact, both the heuristic argument and the numerical * . '
evidence support such a conclusion only when the j ^ QQ 5 QQ
congruence p = 2 (mod 3) also holds. g 5 gQ 5 QQ

In any case, it seems that the divisibility proper- 9 5.30 4.13
ties of 2P — 1 behave in too irregular a manner for
congruence conditions modulo 4, 12, or other num- Taking into account the limitations on available
bers to correlate well with primality. For example, data for a function that grows as slowly as log log x
the same argument that was used above to predict and also the lack of evidence for a more refined con-
that there would be more Mersenne primes withp = jecture, as discussed in Section 4, we conclude that
7 (mod 12) would also tell us that more Mersenne the preceding table is in reasonable agreement with
primes would have p congruent to 2 (mod 5) than Conjecture A.
would have p congruent to either 1, 3, or 4 (mod 5).
But although the congruence p = 2 (mod 5) is sat- Ani,KinkXXf. cn^^civiTc
- . c j u i - x r i i ^ - i / i T V T • / oiooo -j. ACKNOWLEDGMENTS

lsned by 6 out of the 14 Mersenne primes < 21UUU, it
is satisfied by only 3 out of the 19 Mersenne primes I thank the anonymous referee for very helpful sug-
between 21000 and 21000000. gestions and simplifications.
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