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References j n e a c n ^egree n > 0 and its eigenvalue An/k equals (n + k)!/n!.

A more intriguing fact is that all zeros of pn(x) lie in the convex
hull of the set of zeros to Q(x). In particular, if Q(x) has only real
zeros then each pn(x) enjoys the same property. We formulate
a number of conjectures on different properties of pn(x) based
on computer experiments as, for example, the interlacing prop-
erty, a formula for the asymptotic distribution of zeros etc. These
polynomial eigenfunctions might be thought of as a generaliza-
tion of the classical Gegenbauer polynomials with half-integer
superscript, this case arising when our Q(x) is an integer power
o f x 2 - 1 .

1. INTRODUCTION

A real polynomial in one variable is called hyperbolic
if all its zeros (counted with multiplicities) are real.
Different properties of hyperbolic polynomials and
criteria for hyperbolicity were studied extensively
in the beginning of the century; see, for example,
[Polya and Szego 1976, Chapters 5 and 6]. In the
1960s and 1970s the interest to hyperbolic polynomi-
als (mostly in the case of several variables) was revi-
talized due to the fundamental contributions of I. G.
Petrovsky and L. Hormander to the theory of lin-
ear partial differential equations with constant coef-
ficients. But some new results were obtained even in
the case of one variable; see [Nuij 1968], for example.
Later V. Arnol'd and his students wrote a number
of papers on hyperbolic polynomials motivated by
their application to potential theory [Arnol'd 1982;
1986; Rostov 1989; 1999].
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A typical context in which hyperbolic polynomi- The intriguing detail is that, in general, DQ is nei-
als appear is the spectral theory of Sturm-Liouville ther a positive-definite nor selfadjoint operator in
problems or, more specifically, the theory of orthog- which case the above properties are expected.
onal polynomials; see [Chihara 1978], for example. __ _ . . .. . _ _ . .
AT i • j.- A. i • Convention. Unless mentioned explicitly, Q is always
JNamely, given some nonnegative suppor ted on an in- . , r , , _. . ~

. r 71 . . r . t , . . rb f v , ^ a monic polynomial of degree k. For a given Q, we
terval a, b weight function w(x) wi th wlxjdx > 0 , , , ,, . . , , , , n ^ i

r ., r . -, . i r / \ i denote by a the minimal root and by p the maximal
one gets a family or monic polynomials \rn(x)\, A c ̂ , x , r ,, , ,, , ,,
, / x . r . T . root of Q(x) , and further, when we use these let ters,

degrn(x) — n, satisfying a condition ,, tl t r ^ ,
we assume all the roots ot Q are real.

rb

/ w(x)ri(x)rj(x)dx = ^ - . T h e m a i n results are as follows.
J a

Theorem 1. (a) For any Q(x), the operator Z>Q has
It is well known tha t each n(x) is hyperbolic and all one poiynomiai eigenfunction Pn(x) in each de-
its zeros lie on [a, 6]. The classical polynomial fam- gree n > Oj wM eigenvaiue Xnk = (n + k)\/n\.
ilies such as Hermite , Laguerre, Jacobi polynomials ( b ) For anyn>0 aU the zeros ofpn^ bdong to the

(and their special cases such as Chebyshev, Legen- convex hull C o n V g of the set of zews of Q ^
dre and Gegenbauer polynomials) arise in this way.
Besides hyperbolicity among the main propert ies of Corollary 2. / / Q(x) is hyperbolic, each pn(x) is also
orthogonal polynomials one should ment ion t h a t hyperbolic and its zeros lie between the extreme roots

a and (3 of Q(x).
(I) all the zeros of ri(x) are simple (and real);
(II) t he zeros of any pair of consecutive orthogonal Theorem 3. If Q{x) is hyperbolic and a < (3 {which is

polynomials (r^x), ri+1(x)) are interlacing; t ha t to say, Q(x) has distinct roots), the zeros of pn(x)

is, ai < ai < a2 < a2 < • • • < a;_! < a^x < au not only belong to (a , /?) but are all simple.

where a, and aj are the j - t h smallest zeros of r< W e n o w p r o y i d e e x p l i d t d e t e r m i n a n t a l f o r m u l a s f o r

and rj+1, respectively; t h e c o e f f i c i e n t s o f P n ( x ) - S e t

(III) the density of the asymptot ic dis tr ibut ion of ze-
ros of Ti{x) when i —>• oo on the interval [a, b] is Q(%) = xk + qk-ix

k~x... + qiX + g0?
independent on the weight function w(x) (sup- p^x) = xn + ^ ^ - i + . . . + ttn yX + ^
por ted on [a, b]) and is given by

where
b ~ a

 ; dk

27Ty/(b-x)(x-ay —(Q(x)pn(x)) - \n,kPn{x),
( Ml ( 1 " 1 )

see [Nevai 1979], for example. ^ _ Kn + &)-
n\

In this article we part ial ly prove and mostly con-
jecture similar results for the polynomial eigenfunc- D e f i n e a n u P P e r t r iangular ( n x n ) - m a t r i x Mn as
tions of the operator / \nk n n \

/ 1 - T - 2 - Qk-i Qk-2 • • • qo 0 • • • 0 \
dk

 xo,k

*Q(f) = jZkMx)f)> 0 1 - ^ q k ^ q k - 2 ..- q0 ••• 0
a x M,k

where Q(x) is a polynomial of degree k. This op- j *.. *.. ' . . ' . . *.. \
erator can be considered as a generalization of the ~
famous hypergeometric operator . .

(x*-l)f» + (ax + b)f + c. '-. qk_2

See also Conjecture 14 in Section 2. Note t ha t most : ' * Qk-i
of the abovementioned families of orthogonal poly- Xn,k
nomials are among its polynomial solutions. V ^n-i,k *
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Theorem 4. For every n > 1 the coefficients of pn(x) convergence of measures. We call [iq the asymp-
satisfy the linear system totic measure. Many of our conjectures describe the

properties of the support of JIQ and its density.
MnA = B, (1-2)

Case of Hyperbolic Q(x)
where

Extensive computations support a strengthening of
/ an,0 \ / ° \ Corollary 2:

a^,i ' Conjecture 1. If Q(x) is hyperbolic and has at least
\ two distinct zeros, the zeros of any pair of consecu-
; ' ~ ~~ ^° * tive polynomial eigenfunctions Pi(x) andPi+i(x) are

^1 interlacing.

\ n -, / Remark. The proof of this conjecture obtained re-
cently by S. Shadrin has been added with his kind

Proposition 5. If Q — (x2 — 1)', the family {pn(%)} permission to the final version of the paper. See the
coincides up to constant factors with the family of Appendix below.

Gegenbauer polynomials with superscript 7 = I + §, C o n j e c t u r e 2 . If Q{x) is hyperboiic of degree kj the
and with the Jacobi (I I)-polynomials. (The Gegen- demity of ^ asymptotic measure m the interml

bauer polynomials C%(x) may be defined recursively , 1-1/fc
by C?(x) = 1, C?(x) = 2jx, and fa'^ is Proportional to \Q{x)\ .

This conjecture is motivated by numerical studies of
d(x) = 2 ( ^ - 1 + 7 ) a , C 7 _ i ^ _ n~2+2j C^_2(x). the distribution of zeros ofpn(x). See Figure 1, for

n n example.
See [Chihara 1978], for example.) ^

The proofs of these results are given in Section 3. P ^
The next section contains a number of intriguing °-8; JF*^
conjectures. Jr

0.6 J ^ ^

Remark. After this article was accepted for publi- a
cation, a number of conjectures presented in Sec- u^A
tion 2 were proved by H. Rullgard and T. Bergkvist ^^r
[Bergkvist and Rullgard 2001] and by S. Shadrin; a ^_^i 0.2
proof of Conjecture 1 is given here as an appendix. sf^^
The spectral properties of the operator ^)Q(/) in / r , . . . . . . , , , , . , u_
various functional spaces were recently studied in
[Shapiro 2000]. FIGURE 1. Distribution function of the measure JJ,2O

for Q${x) = x3 — x, and conjectured asymptotic dis-
tribution function r( |)/(3r( |)) /* \s3 - s\~1^ ds.

2. CONJECTURES
^T c , , , r . ^ • . Remark. Suppose Conjecture 2 holds. Then, if Q(x)
We now formulate a number of intriguing conjee- . . n , /
, x J U 4 - - * . , is not an integer power of a degree 2 polynomial,
tures supported by extensive computer experiments r / u . r r , i / - i

.,, ,.rr . i • c r\ {Pn{x)} is not a system of orthogonal polynomials
with different choices of Q. Y n . . x ,J . t , 6 . -, r ^

T , , , ,, ,. , , ,.,., for some weight function w(x) supported on a,p
Let an denote the discrete probability measure r .. , . . . , . , : . r V

^ T ,, , r n x / \ T J. - i or a family obtained by taking derivatives of such,
supported on the set of all zeros to pn(x) obtained . . , P .i. , . , . P ,
, , . ,, ,, , , , r , / , since for such families the asymptotic density of the
by placing the mass multj/n at each of tne geomet- . . . . _
. n T x . ,. j_ r / \ i u . x1 zeros coincides with

ncally distinct roots Xi of pn{x), where mult̂  is the
multiplicity of the root. Let JAQ — limn^oo^ if it
exists. Here convergence is understood as the weak 2?ry (x — a)(x — p)\
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Case of Real Q(x) Case of Complex Q(x)

For fixed k and every n, define the discriminantal For a complex polynomial Q(x), we denote by Cg
hypersurface Dn C Pol^ consisting of polynomi- the support of the asymptotic measure /JLQ and called
als Q for which the corresponding eigenpolynomial it the accumulation curve.
pn(x) has multiple zeros. Here Pol^ is the space of
all monic degree k polynomials with complex coef- Conjecture 5. The accumulation curve QQ enjoys the
ficients; Pol^ is defined likewise. Theorem 3 says following properties:

that if Q(x) is hyperbolic then every pn(x) is hyper- ( a ) QQ is a planar tree imbedded in C o n V g whose

bolic and has only simple zeros. Therefore we know kaves are the wots of Q ^
that all the discriminants Dn do not intersect the ^ For a generic Q ( X ) the totd number of vertices
domain of strictly hyperbolic polynomials in Pol*. in QQ equals 2k - 2, i.e. the number of internal
An example of these discriminants for the family vertices of GQ equals k- 2. (About the notion of
Q3(x) = x3 + ax + b is shown in Figure 2. genericity see Problem 12.)

Problem 3. Find equations for Dn and study their c i x u i. ± r^n • /n - *.• r r
. belect a branch cut BC in (L consisting ot rays from

all distinct roots of Q(x) to infinity which do not
Conjecture 4. The domain of hyperbolic polynomials intersect each other or the tree SQ. Select the unique
is the limit of the intersection of the connected com- branch of Q(x)~1^k on the simply connected domain
ponents in the complement to all Dn containing this QQ := C \ BC which asymptotically coincides with
domain. 1/x near infinity. Finally choose a point x0 in fig

^__^_^_^___^^_^_____^^^___^^ and consider the holomorphic mapping * g : fig —>
1
 N ! / C defined by the integral

\PJ :D^ / T , , fx dx
\ / ^Q{X) = / .

°-5 ^v \ i V • 4 </W)
D o ^ < ^ . N x I ..'•'/ Conjecture 6. \I/Q maps QQ onto a planar tree with

^ ^ ^ ^ ! ^y' straight edges. Furthermore, the angles and the den-
^^r^^j " - .s sities of the asymptotic measure \i{x) along edges are

/ ^ ^ /' | \ uniquely determined by the combinatorics of the tree
.••'' / | v s (see Conjectures 7 and 8).

-0.5 ••'• /
/ I

/ ! \ See Figure 3 for an example.
/ I \ For a generic Q, the image ^Q(QQ) is independent

.1 ! "v of the choice of BC as above, and different choices
-1 "°-5 ° °-5 of a base point x0 will simply translate the image.

FIGURE 2. Discriminantal curves for n < 4 in the ( W i t h s o m e straightforward modifications this fact
family Q3(x) = x3 + ax + b. holds for any Q.)

Denote by ^CQ the image ^Q(CQ) of the accumu-
Example. The explicit equations of the first three lation curve.
discriminants for the family Q$(x) = x3 + ax + b are

Conjecture 7. The angles at the vertices of *Cg are
D =— jj = — + ^^ defined as follows. Fix a node v G \&Cg. Consider

9 16 361 the graph obtained from \&Cg by removing all the
36864 a6 14336 a3 b2 6912 b4 edges adjacent to v. This graph is a forest whose

~ 15353125 2042125 923521 subtrees are in one-to-one correspondence with the
The standard discriminant DQ is given by set °fthese ed9es- We set the wei9U # ( e ' v ) °f each

such edge e with respect to the vertex v equal to the
DQ = A a + 276 . number of leaves in its corresponding subtree. Then
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U \ 1 the angle e(ei,e2) between the neighboring edges e\
and e2 adjacent to v equals

0.8 \ n

e(ei,e2) = -j^(#(euv) + #(e2,v)).

See an example in Figure 4.
Let */iQ denote the image of the asymptotic mea-

sure fiQ under the transformation \I/Q. Its support
0 2 '• obviously coincides with *Cg.

" ' • • • . . # The properties of ^JIQ are completely determined
°r * '"fi in the following conjecture.

0 0.5 1 1.5 2 2.5 3 to J

Conjecture 8. T/ie asymptotic distribution */iQ o/
. • zeros on \&6Q enjoys the following properties.

. • (a) The density v{e) of ^JJLQ is constant on every
0 5 . • * " edge e of \I/CQ, and so equals v{e) — /i(e)/|e|,

• * where a(e) is the total mass of the edqe e and lei
• . # zs zts length.

_0 5 • . . (b) For a pair (i>, e), where v is some vertex and e is
• . an edge adjacent to v let U{v,e) denote the unit

-1 ' • . vektor parallell to e and pointing towards v. Then
• . for any vertex v one has the vector equation

-1-5 F • « ]
o 0.2 0.4 0.6 0.8 1 1.2 V^ v(e)U(v, e) = 0,

FIGURE 3. Accumulation curve for the polynomial eeE(v)
Qs(x) = (x-l)(x-3)(x-i) before and after the where E ^ is the index set oj aU edges adjacent
mapping \£Q. (Note that the different horizontal ,
and vertical scales affect the angles between edges.)

For a generic Q(x), these equations give 2(fc — 2)
• linear equations in 2k — 3 variables ^(e), which to-

gether with the condition Y^eeE K e) l e l = 1 allow us
to determine the densities v{e) uniquely.

0 * # With some straightforward modifications the same
' 60 . recipe works for all Q.

150 *#
 15° . Assuming that conjectures 1-8 hold, it is clear that

-o.5 90 • • . 120 * one gets in many respects the same asymptotic be-
120 * • • haviour of pn(x) if Q(x) is replaced by its arbitrary

# 150 • ̂  90 integer power Qr(x). Therefore it is reasonable to
study the solutions of the equation one gets when

1 • taking r = 1/k. In that case the "degree" of the
polynomial is equal to 1 and the corresponding dif-

." # ferential operator is thus of order 1. Furthermore
150 . 60 • Afc>n = (n + 1 ) . . . (n + fc) so for fc = 1 the "correct"

"1<5" # • eigenvalue for the n-th eigenfunction is (n + 1). In
other words, we want to compare the eigenpolyno-
mials pn of the original operator to the solutions yn

- j————-^-————j———' * i'5 '——— °f ^ e differential equation

FIGURE 4. How to determine angles. ( ̂ /Qyn) = {n + l)yn .
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Multiplying through by $[Q and setting fn = \/Qyn polynomial form a real hypersurface Degfc C Pol^
transforms this equation into f'n — (n+l)Q~1^kfn^ containing the usual discriminant Disc/, consisting
or f of all polynomials with multiple zeros. In the sim-

dlog/n := — = (n+l)Q~1/k. P^est c a s e k — 3 the discriminant Deg3 consists of
J™ all third degree polynomials whose zeros lie on some

Now/ n - Qllkyn sodlog/ n - dlogyn + (l/fc)dlogQ real affine line in C.
and therefore we get r » L i +<^ ~n- J ±-L ±- £ T ^

to Problem 12. Find the equation for Deg f c .
1 _ n+1 1/k 1
— dlog2/n — ~~~Q ~ T~ cllogy. j n the first nontrivial case k = 4 our computer ex-

r-,,. . r ,, , ,. / J 1 w ^ 1/k c . periments led us to:
This implies that hm^oo^dlog yn)/n = Q~ ' . Since
2/n corresponds to p n it is therefore natural to expect: Conjecture 13. Deg4 is the analytic continuation of
r . Q T (T \ (° ^e se^ °f a^ convex ^-tuples of points on C such

that their convex hull admits an inscribed circle.
1 p'n(x) _ 1
— lim T-r- — i - The last conjecture deals with a more general class

v of operators. Take a (fc+l)-tuple of polynomials
uniformly in compact neighbourhoods. Q^ Q k u . . . , Qo? where Qk is monic of degree k and
Computer experiments suggest that this is indeed e v e i T o t l i e r Qi i s of degree at most i. Define the dif-
true. ferential operator t)gfe,Qfe_lv..,Qo = DQk +DQk_1 + • • • +

By solving the first-order equation above, one gets Q̂o •
fn(x) = e

( n + 1 )^Q ( x ) Conjecture 14. Conjectures 5-13 holdforQQkiQk_lt..,iQoas well.
or

/ \ _ e n Q x Remarks. 1. The accumulation curve GQ introduced
y/Q{x) above has a strong resemblance with Stokes lines oc-

It is of course not reasonable to expect that yn(x) c u r r i n § i n t h e t h e o r ^ o f d i f f e r e n t i a l equations with
approaches pn(x) in any sense (note that yn(x) has s m a 1 1 Parameter and asymptotic expansions, [Cod-
no roots!). However, the ratio between two con- d i n S t o n a n d Levinson 1955; Wasow 1985]. The role
sequtive eigenfunctions may be asymptotically the o f a s m a 1 1 P a r a m e t e r in our case is played by 1/An,fc
same that is* when k is fixed and n -> oo. Using the asymptotic

expansion methods the first author was able to prove
Conjecture 10. In C \ S g , Conjecture 9 in some neighborhood of infinity.

l i m 'Pn+1(x) _ 6^Q(X) 2. As mentioned to the second author by M. Kont-
n-*°° Pn(z) sevich the integral ^Q(X) = f* Q(x)~1/k dx consid-

uniformly in compact neighbourhoods. ered on the plane curve yk = Q(x) apparently has
A r r i • • . properties similar to the properties of Strebel differ-
An even stronger form oi this coniecture is: . i . , i . ,.

entials and might serve as their generalization.
Conjecture 11. In C \ CQ,

lim P"fr) - f ^ l ) ("+1)/2 3- PROOFS

n_,oo (e*Q{x)y \ tfQ ) Proof of Theorem 1. Let Pol<m be the linear space of
uniformly in compact neighbourhoods. all polynomials with complex coefficients whose de-

_. gree is less or equal m. To prove (a), note that the
Remark. Coniectures 2 and 5-11 have been proved ,. r ^ . ., , i i • m m-i 1 r

J ^ action or dn m the natural basis x , x , . . . , 1 of
Bergkvist and Rullgard 2001 . D , c . . , , . \ ' . ...

L ° o J Pol<m is given by an upper triangular matrix with
Call a polynomial Q G Pol^ degenerate if its ac- nonzero diagonal entries An?fc = (n+k)... (n+1) for
cumulation tree QQ is not a trivalent graph with any n < m. Thus for each n > 0 there exists
2k — 2 distinct vertices. The set of all degenerate and unique monic polynomial pn(x) which is the
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eigenfunction of DQ corresponding to the eigenvalue By construction we have that cko+no ^ 0.
An,/e = (n+k)\/n\. Assume that k < k0 + n0. Then

In order to prove (b) recall that by the well-known k

Gauss-Lucas theorem the zeros of <// lie in the con- \n,kP^%n° = (QPn)
vex hull Conv^ of zeros to (p where (p is a polynomial ^
in 1 variable with complex coefficients. Moreover, — {ckQ+nQxk°^n° +h.o.t.)
any zero of cp' lying on the boundary of Conv^ is a ax
multiple zero of (p. Let us now assume that pn(x) = ck +n ° ^— xko+n°~k + h.o.t.
contains a zero not lying in ConvQ. Then we can al- (Aco+no—/cj.
ways choose such a zero K of pn(x) which lie on the _n (fco+no)! ^no_(fc_fco) | u

— kc\-\-Ttc\ /i \ t ~i IJL.O.L.,

boundary of the convex hull ConvQPn of the zeros of {ko+rio—k)\
the product Q(x)pn(x). Since pn(x) satisfies (1-1) w M c h i s i m p o s s i b l e b y t h e a s s u r n p t i o n k > ko. Thus
one gets that « should have the same multiplicity w e m u g t h a y e k > k o + ^

both in Pn(x) and Choose an i with 0 < i < n0 and write Qpn =
dk . . . . .. cxk+i + other terms. Then

— (Q(x)pn(x)),
dk

which is impossible by the assumption that K does Xnkp^xn° = -r-rQ(x)(Qpn)
not lie in ConvQ. D ,fc
Proof. Corollary 2 If Q(x) is hyperbolic with the min- = rf^^^^^* + ° t h e r t e r m S ^
imal root a and the maximal root /? then Convg = (fc + i)\ i

[a,/3]. Therefore by Theorem 1 all zeros of pn(x) = C J\ X% + ° t h e r t e r m S '

*• *' Since i < n0 while the left hand side is a multiple of
To prove Theorem 3 we need a number of additional xn° this implies that c = 0. This proves the second
statements. claim. •

Recall that pn{x) denote a monic eigenpolyno-
. T r i r 4.1. j-ix 4.- i 4. -N Proposition 3.2. // Q has at least two different roots,

mial oi degree n tor the differential operator Do = 77
r
7 _ ,

/ TZ. / , fc\^/ \ u /-»/ \ • • i • i £ all the roots of pn have multiplicity at most k — 1.
(d1*/dxK)Q(x), where Q(x) is a monic polynomial of J y F y

degree k. This means that the polynomials Q and Proof. Select a root of pn. Changing the independent
pn satisfy the relation variable x —> x + 7, we may assume that this root

dk is equal to zero. Since Q has at least two different
^^(QPn) = *k,nPn roots, Q ^ xk. Thus Lemma 3.1 applies and we

where An,fc := (n + jfe)!/n!. h a v e no<no + ko<k. •
Lemma 3.1. W n̂fe p n = p^xn° and Q = Qxk° where Remark. We get an even lower bound on the multi-

p^ and Q have nonzero constant terms. If k0 < ]fe, plicity in the case when the root of pn is also a root
then k0 + n0 < k and the polynomial Qpn is of the °* Q-
form Proof of Theorem 3. By Proposition 3.2, all the roots
Qpn = xkJrn + ck+n_1x

kJrn~l H h ck+nox
k+n° of pn are real. Assume that pn has a multiple root.

+ck-ix
k~1 H + cfc xfco+n° Changing x —>• x + 7 we may without restriction as-

sume that this root equals zero. Lemma 3.1 thus im-
where cko+no / 0. p l i e g t ] i a t t h e polynomial Qpn has at least two con-
Proof. If n0 = 0 there is nothing to prove. We may secutive vanishing terms away from the ends. But
therefore assume throughout the proof that n0 > 0. since all the roots of Qpn are real, this is impossible
Write by Lemma 3.3 below. •

QPn — QPnX The following lemma is almost certainly well known,
= Cfco+no£

fco+n° + higher order terms. but we prove it here for the convenience of the reader.
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Lemma 3.3. Let s — an+rnx
n+m + • • • + amxm be a Hence, the coefficients of the polynomial pn satisfy

real polynomial with an + m / 0 / am. / / am+i == the identity
GWH+I = 0 for some i = 1 , . . . , n - 2 then s is not n ( m + k)\ n ml
hyperbolic. ^ f m + 1 ^ aniiqm+k-i = <W ̂  a">™^Ti *

7n=0 m<.i<n 771=0

Proof. Without loss of generality we may assume i<m+k
that m = 0. First we treat the special case s = It implies the equalities
anxn+an_ rx

n~ rH ha0 where r > 2 and an_r ̂  0. ^
Then «s(n~r) is not hyperbolic and consequently 5 is /^ an,iQm+k-i — T~L~an'm' ra = 0 , . . . , n.
not hyperbolic (since the derivative of a hyperbolic ^"^"/c ™
polynomial is hyperbolic). _, ~ _. . . .

^i . , n . . r . u The equality for m = n is trivial since an n — qk = 1.
The special case 5 = anxn H h arx

r + a0 where ;, J n'n^ ^
o i / n T_ i i x x i i 2 x i -I-he other equalities define the linear system (1-2).

r > 2 and ar ̂  0 can be reduced to the nrst case by i-m-i/ ,
i i - x ii. i • i n /i / \ Since det Mn = . n (1 —An k/^ik) T- 05 this system
looking at the polynomial xns(l/x). iij=ov n,*/ J,AC/ ?- > J

T .̂ „ , u T i , j , ,, has a unique solution. •
rmally the general case may be reduced to the

second case by a suitable number of derivations. • Applying Cramer's formulas to the linear system
Proof of Theorem 4. The Laplace transform of a
polynomial p(x) is Corollary 3.4. The coefficients of pn(x) equal

/»+oo n - 1 / . \ - 1

L\p](t)= e-txp{x)dx, t>Q. ^^ .^ .TTh^^L) ,
If a polynomial pn satisfies (1-1), then , - n 1 J L -n • xi~ J J.

* v J where % — 0 , . . . , n — 1 and where Dn^ is the deter-
T \ ̂  (n \~| r r\ 1 minant of the matrix obtained from the upper trian-

[dx^^Pn)\ ~~ L[AnP^' gUlar (n-i) x (n-i)-matrix
Standard properties of Laplace transformation im- Mn i =
ply that / \n,k n n \

L[\ntkpn]=\n,kL\Pn]J
 Ai* ,

. , 1 - T — — Qk-i qk-2 ••- qo '" 0

[ Hk 1 ^ i fjk-i-1 Ai+i?fc

^ Q P » = t ' i [ Q j ) J - ^ t < (0Pn), , .. .. .. ,
J ^_0 x=0

L i=0 -1 i=0 ' - . grfc_2

= Q(-|)[«, i - • ft-i

r n -, n ., I 0 ••• 0 1 - ^ - ,
L\pn}=L V a n / U V o n — , V A"-1- f e /

L ~ ^ ' J ~£ ' * &2/ replacing the first column with the numbers

n ( 0 ^ ^ r ^ r 11 V ^ - \ n ( d \ \ l \ (0 , . . . ,0 ,%, • • • ,^-2,gfc-i)-
y at/

 i = 0 \ at / [t j Corollary 3.5. / / £/&e swm o/ roofs o/ a polynomial
n k ,. .v, Q(a )̂ vanishes, the same is true for every pn(x) with

Proo/". According to Corollary 3.3,

1 J 0<i<n,0<j<fc 1 — T
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Hence, an?n_i = 0 if g&-i = 0 . • / — 1 vanish at these points. Integrating by parts 21

- n ^ f re r\t \ • ,-L 7 • ; / \ times the right-hand side of the integral and using
Corollary 3.6. It Q(x) is even, trie polynomials pn(x) . . _

.., T .7 . .., ,, v i i the previous remark we arrive at
with even n are even. Likewise with even replaced
by "°M"- T - A f1 nW(r)a (T)HT

J-n.m — An,2l I Qn \x)Qm\x) ax

Proof. According to Corollary 3.3, we have to prove l

that Dn,i = 0 for alii = n - 1 mod 2 if qj = 0 for all _ x f / ^ J ^ ) / ^ ^ _ ^21 T
7 1 J O T > x r 1, l • 1 / -> / \ ~~ n ' 2 Z / ^nK^JHm \X ) UX — J-n,m-

j — k — 1 mod 2. But for such a polynomial Q(x) J_i Am?2/
and odd n - i, the determinant DUji is equal to S i n c e 0 ^ Xm,2/ / An,2/ / 0 for m ^ n, one has

n A An,fc\ £_ /n,m = 0. Therefore the family {pn(
x)} is orthogo-

V ~ A~7/ aetMn > i , n a l o n t h e i n t e r v a l j _ 1 ? jj w i t h r e s p e c t to the non-
j=i+imod2 negative weight function (x2 — I)1. D

where the matrix Mn^ is obtained from Mn^ by Proposition 5 follows since a system of polynomials
deletion of all even columns and rows. It remains orthogonal on [—1,1] with the weight function Q =
to notice that the first column of the matrix Mn^ (x2 — l)1 coincides (up to constant factors) with the
vanishes. • Gegenbauer polynomials C%(x) with 7 = / + | . •

Example. It is easy to calculate the coefficients of the
polynomials pn(x) in the case when Q(x) has only APPENDIX: PROOF OF CONJECTURE 1 BY S. SHADRIN

two terms. Indeed, let Q(x) = xk - axk-m where The interlacing property of the pn 's in the case when
1 < m < k. Then the system (1-2) can be easily Q h a s only real zeros was proved by S. Shadrin. The
solved by Gauss elimination: proof consists of three lemmas, of which Lemmas

an,i = 0 if i 7̂  n mod m, A.I and A.3 are apparently well known.

tJjf Xnk \ - 1 Lemma A.8. If Rn and i?n+i are strictly hyperbolic
an,n-mi = —& H I ^ ~ T ~ / polynomials of degrees n andn+1, respectively, Rn+

J~ zRn+i ^ hyperbolic for any sufficiently small e.
for all natural / such that ml < n.

Proof. For any sufficiently small e the n real zeros of
Proof of Proposition 5. We start with the following Rn+£Rn+1 are located in some small neighborhoods
statement. of the n simple real zeros of Rn and the (n + l)-th

Lemma 3.7. Suppose Q = (x2 - 1)', for I a natural r e a l z e r o h a s a v e r y b i § absolute value. •

number. The eigenpolynomials pn(x) andpm(x), for Lemma A.9. If Q has only real zeros, any linear com-
n^m, satisfy the orthogonality condition bination apn + (3pn+1 with real coefficients of the

/

1 polynomial egenfunctions ofDq is a hyperbolic poly-

(x2 - 1) pn{x)prn(x)dx = 0. nomial.
Proof. Take the polynomial family {qn}, where qn =

 Proof- Applying to apn+f3pn+1 some high power DQN

(x2 - l)2lpn. One checks directly that pn = q£l)/\n,2i o f t h e i n v e r s e operator one gets

and that qn satisfies Xn,2iqn(
x) = (x<2 - ^)lQnl)- Take _N a 3

x 8Q (<Xpn + PPn+l) = jN~Pn + Jfi Pn+1
In,m= (X2 - l)lpn{x)prn{x)dx. &

J-l = jN-{Pn+SPn+l),
In terms of ^ ' s the integral / n ? m can be rewritten as n'k

± where e is arbitrarily small for the appropriate choice
In,m = An>2i / q{nl)(x)qrn(x)dx. of N (since 0 < An>fc < An+i>fc). Thus, by Lemma

J-1 A.I, the polynomial VQN(apn +/3pn+i) is hyperbolic
Both qn(x) and qm(x) have zeros of multiplicity for sufficiently big N. Assume that apn + f3pn+i

at least / at ±1 , so their derivatives of order up to is nonhyperbolic and take the largest No for which
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