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References INTRODUCTION

Almost a century ago Voronoi [1908] formulated his
fundamental algorithm to find the perfect (real posi-
tive definite quadratic) forms in n variables. Among
these one finds the forms representing the locally
extreme lattice packings of spheres. The subject
was taken up by M. Koecher [1960], who gave an
axiomatic treatment of self-dual cones and a corre-
sponding Voronoi algorithm in this situation aim-
ing at the application of finding generators for cer-
tain arithmetic groups. Independently, the subject
of extreme forms was taken up in [Berge et al. 1992]
to adjust Voronoi's algorithm to find the G-perfect
forms, where G is a finite unimodular group and the
forms under consideration are G-invariant.

The key observation of the present paper is that a
wide range of applications can be made if one gen-
eralizes Koecher's axioms to a pair of dual cones.
The theory has here its natural setting and becomes
more transparent; see Section 2. In particular, the
perfect points live in one cone and the associated
tessellation, which leads to Voronoi's neighbouring
graph in the classical situation, lives in the dual
cone. The context of discontinuously acting groups
is treated in Section 3, where the quotient of the
resulting Voronoi graph modulo this group action
leads to a generating set for the group considered.
As an application, the last section gives an algo-
rithm to calculate normalizers of finite subgroups of
GLn(Z).

It turns out that the natural setup for a finite
unimodular group G is not just to look at the cone
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of positive definite G-invariant quadratic forms, but (iii) For every x G Vx \ Vf ° there exists y G Vf° with
at the cone of forms invariant under the transposed a(x,y) < 0.
group GtT as dual cone at the same time. Beyond the ( iv) For every 0 / x G <9Vf° there e x i s t s 0 ^ y G
results of [Berge et al. 1992] one gets a quite powerful dV2° with cr(x, y) — 0.
algorithm to find a finite generating set for the nor- (v) x G Vf ° and —x G Vf ° implies x — 0.
malizer of G in the full unimodular group GL n (Z) (vi) Let$2 be a positive definite scalar product onV2

and an algorithm to decide conjugacy of two finite and define \y\2 := \f$2{y, y)- For every compact
unimodular groups in the full unimodular group. subset A C Vf ° there exists a real number p(A) >
These two problems have been open for a long time 0 with a{a,y) > p(A)\y\2 for every a G A and
in the sense that the available finiteness proofs were y G V^°.
constructive in principle but did not result in ef- _ , ... c , , , ^ > 0 ^, u /-nno\
, ,. . ! , ,. rrn i -^ Proof' 0) Suppose ax + by £ Vf u. Then by (DC3)
tective implementations, l n e algorithms are more ,, . 1 ~o>0 . n ~ . , , N

a ,. X ,1 T ? J • r^ +u t l i e r e e x l s t s 2: G V2 with 0 > a (ax + by,z) =
effective than the ones 1 suggested in Opgenorth , x , , x ; , ,, . . , ,. /.
i n n c l A/r , ... ,1 i T i , • i acr(a,z) + ba(y,z), but this gives a contradiction,
1996 . Meanwhile they have been used extensively . , , , , , , #i. ,

, r x i x r rM A ̂  Am / r ^ A s m c e a^ ̂ ^ °"(X5z) a n d ^(^^z) a r e positive real num-
and form a central part of CARAT (see [Opgenorth v J KU' J

et al. 1998; Plesken and Schulz 2000]), a package 6rS*
for handling crystallographic groups up to degree 6. (ji) Let 0 ̂  x G V r . Since a is continuous, (DC2)
The real critical parameter is not the degree, but the i m P l i e s a ^ v) ^ ° f o r e v e r ^ V e V* ' Suppose there
dimension of the space of invariant forms. Therefore e x i s t s V G V* w i t h °(x> v) = °' T h e n ^ ^ V> . By
some groups of degree beyond 24 could be handled. ( D C 1 ) V* i s ° P e n - S o f o r e v

n
e ry z G V* t h e r e e x i s t s

A > 0 such that y + Xz G V>°. Hence
0 < a(x. v + Xz) = a(x, y) + Xa(x, z) = Xa(x, z).

1. DUAL CONES AND PERFECT POINTS - v ^ ) \ , y j v , ) \ ^ )
This implies a (x , z) > 0 for every z G V2 which

Let V l5 V2 be real vector spaces of the same dimen- g i v e g & c o n t r a d i c t i o n t o t h e a s s u m p t i o n that a is
sion n and a : Vx x V2 — ^ K a mapping that is linear n o n degenera te .
and nondegenerate in both components. Two sets >0 .
V>° C Vx and V>° C V2 are called dual cones (with (NI) S u p p o s e t h ^ J e x i s t s * G V l

x \ T ^ w l t h a ( X ' y\^
1 , , x .- ,2, ;. - ,, - n . . 0 for all y G V^0. The set Vx \ Vr° is open, so for

respect to a) if they satisfy the following axioms: , u ^.n
2 , x 1 , ,

every x G Vf there exists a positive real number
(DC1) Vf ° is open in V» and nonempty for i = 1, 2. A with x + Ax' £ Vf°. But by (DC3) there exits
(DC2) For all x G Vf ° and y G V>° one has a(x, y) > 0 ̂  yf e V^° with a(x + Ax', y') < 0, hence

°* 0 > a(x + \x',y') = a(x,y') + Xa(x\yf) > \a{x',y').
(DC3) For every x G Vi \ Vf ° there exists 0 ^ y G

V f with a (x ,y ) < 0 and for every y G V2 \ V>° B u t a ( x ^ 7 ) ^ ° b ^ ^sumpt ion , A > 0 by assump-
there exists 0 ̂  x G V f with a(x,2/) < 0. Here tion and ^ ( x ' , ^ ) > 0 by (ii). So we have a contra-
Vf° denotes the closure of Vf ° in V, for i = 1, 2. diction.

(iv) This can be proved with the same arguments
Obviously, this definition in symmetric in Vi and used in (ii) and (iii).
V2. For the remainder of this section let Vf° and , \ -n r-\ / \ \ n J / \ \ n ^ n r-
v>o u e AJ i • v AM \- i (v) By (ii) CJ(X,?/) > 0 and a ( - x , y ) > 0 for all y G
V9 be fixed dual cones in Vi and V2, respectively, «0>0 r^i r / \ A r n ^ '̂7>o AT +U

? . ' 2 ' F >J
0' V>u. Therefore a (x , y) = 0 for all j / G V ^ . Now the

with respect to a. for % — 1,2 the boundary of V,- 1 • r n r , 1, r , .u ^ M>O • • 9̂
F ' . * claim follows from the fact that V2

 u is open m V2

is denoted by ovf . Some elementary properties are , . , ,J _ 1 . and a is nondegenerate.
collected in the following lemma.

(vi) The equation is homogeneous in y on both sides,
Lemma 1.1 [Koecher 1957]. (i) Letx.y G Vf° anda.b so it suffices to prove the statement for all a G A

be positive real numbers. Then ax + by is also in and y G V | ° with \y\2 = 1. These tuples (a,y)
Vf °. form a compact subset in Vf ° x V^°. Now a(a , y) is

(ii) For 0 / x G Vf° and y G V2° one has a(x,y) > continuous, so the minimum is attained. By (ii) the
0. minimum is positive. •
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Let D be a fixed subset of V|° \ {0}, that is discrete is finite and MD(x) C M. Let M' := M\ MD(x).
in V2 and x G Vf °. Now Lemma l.l(vi) implies Let K be a real number with
cr(z,d) > p(x)\d\2 for every d E D. Consequently, • /r i . . r / J \ / \ ^ ^ - ^ m

) -N ~nr J n jxi. u r* ^ 0 < K, < mm({e} U {a(x,d) -/JLD(X) : d E M'}).
a(x, d) > 0 for every d E D and the number of d G 2)
with a(x, d) < c for a given constant c G l i s finite. Now choose 0 < S < r such that \cr(y, d)\ < K/2 for
So the following definition makes sense. every d E M and y G i?<$(0). This implies x + y G B

for ?/ G £<$(()). Consequently, for every y G -B<$(0),
Definition 1.2. Let D C V|° \ {0} be discrete in V2

and x G V^0. ^r(^+2/5 d) = °{x, d) + a(y, d)

{ < JJ,D(X) + K/2 for all d G MD(x),
> fjLD(x) + hi/2 for all d G M',
> //£>(z) + K/2 for all d G £> \ M.

(ii) MD(x) := {d G JD : //£>(#) = a(x,d)} is called the ( , . . , . .
, V • • 7 n . r nV • i Ti/r ( \ S o a ( x + Vid) > VD(X) + £ > HD(X) + K 2 for all

set of minimal D^vector's of x. Obviously MD(x) , A, . / \ v „ _. . . ,. ^ V N
fi ., , , , . , v u a u ii A ̂  n d G D \ M and x + ?/G 5 . This implies MD(x + 2/) C

is a finite set and MD(x) = MD(Ax) for all A > 0. _ . . , Nr ^ _ /nN o . . . . ; *y -
(iii) Vb(x) := {Ed€MDix) add : ad G R>-°} is called M ^ ) OT. ™* y f B ' ^ ,So W 1S P r o v e d ,

the I?- Forontf S a i n of x. , P a ? <u> foi^ ^ [ ^ " ^ ^ + y) I ̂  K/2

. , . , ,o^n • n i r̂  r * -r • T̂  i ° r all 1/ G î A (0) and the tact that K was chosen
(iv) A vector x G Vfu is called D-perfect if its D- , . .. v J _

. , . , . , . r-., arbitrarily. LJ
Voronoi domain has a nonempty interior, lne
set of D-perfect vectors with D-minimum 1 is We do not want to consider arbitrary sets D. For
denoted by Pp. Note that x G V^0 is D-perfect example D should contain at least a basis for V2,
if and only if dim span MD(x) = n. otherwise the set PD would be empty.

Geometrically, the perfect vectors can be interpreted Definition 1.4. A set D C V f \ {0} that is discrete in
as follows. Consider an affine hyperplane in V2 con- V * i s c a l l e d admissible if for every sequence (Xi)ieN C
taining n linearly independent points of D. This V^° t h a t converges to a point x G 0V>° the sequence
hyperplane divides V2 into two open half-spaces one ODO;))ZGN converges to 0.

of them containing 0. If this half-space contains no Lemma 1.5. Let D C V^ 0 \{0} be discrete in V2.
other point of D, the vector x G V>° with cr(x, h) = 1 Then D is admissible if and only if for every x G
for all h in this hyperplane is an element of PD. This QV>° and e > 0 there exists de D with a(x, d) < e.
gives a bijection between PD and affine hyperplanes
containing n linearly independent elements of D and Proof' ' ^ ' P a r t : L e t x e dVi° a n d (x<)i€N C V>°
no elements of D in the half-space containing 0. w i t h x> ^ °- T h e s e ( l u e n c e (^ + ^)i€N lies in V>°

and converges towards x and for every i there exists
Lemma 1.3. Let Vf°, V^° be dual cones with respect d{ in D with
to a and DC V f \ {0} be discrete in V2. M D ( X + ^ } = a{x + x^ di) = ^ ^ } + a ( ^ ? ^ }

(i) Let x G Vf0. There exists a neighbourhood U of > o-(x,di) > 0.
x with U C V>° and MD(u) C MD(x) /or a// N o w t h e d a i m follows from ^ + xj _+ Q

r--\ mi £ ,• - ,- '^=' part: Let (xi)iGm be a sequence in Vf0 converff-
(II) lhe junction aD is continuous. ^ rtArtvn
v y y P ing to x G dV>°. Choose £ > 0 and rf G D with
Proof. Let B = ~BAx) be a compact ball with radius a(xid) < e- T h e r e e x i s t s ^ N with
r and center x that is contained in Vf0. By Lemma \a(x- — x d)\ < e for all i > i
l.l(vi) there exists a constant p(B) > 0 such that
cr(6, d) > p(J5)|d|2 for every b G J5 and d G £>. Let T h u s M^(^) < °"(^'d) = a(x>d) ~ a(xi - M ) < 2^
£ > 0 be arbitrary. Since D is discrete, the set f o r a11 i ^ *o, so fiD(xi) -> 0. D

Lemma 1.6. Le^ J9 C V^° \ {0} 6e discrete in V2 and
M := {d e D : a(b, d) < fiD(x) + e for some b E B} admissible. Then PD is a discrete set.
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Proof. Let (xi)iem C PD converging to x G Vf°. If ^D(V) for all d G M and equality is obtained for
£ is a boundary point of V>° then fini^i) —> 0, but all d G MD(y) and at least one d G M'. This d
this gives a contradiction since Unixi) — 1 for all cannot be in the span of MD{y) since z G M ^ ^ ) 1

i G N by the definition of PD. and hence otherwise HD{V) = &(y2,d) = a(y,d),
Assume x G Vf0. By Lemma 1.3 there exists a which implies d G MD(y). So MD(y) C MD(y2)

neighbourhood [/ of x with MD{u) C MD(x) for all and dim(M£>(?/2)) > &. Iteration of this procedure
u e U. So there exists i0 G N such that MD(xi) C yields the desired result. D
MD(x) for all i > i0. Let i > i0. Since x̂  is perfect
there are linearly independent vectors d 1 ; . . . , dn G N e x t W e W a n t t o C O n s i d e r t h e D-^°^oi d o m a i n o f

MD(Xi) C MD(x). For these vectors one has a ^ ' P e r f e c t v e c t o r *• J t i s d e f i n e d a s t h e s e t o f l i n e a r

combinations with nonnegative coefficients of the
G{Xi — x/iiD(x), dj) — 0, finitely many vectors in MD(x) and forms a cone in

for 1 < j < n. Now a is nondegenerate. This implies v l ° b a s e d a t t h e origin. This cone can be described
that Xi - x/fiD(x) = 0 for al i i > i0. D i n a d u a l waY bY finitely many linear inequalities of

the form <r(y,.) > 0 with certain j / G V1( A vector
From the proof of this lemma there follows also a 0 / y G Vx with a(y, z) > 0 for every z € MD{x) and
corollary: ff^ z) = 0 for n - 1 linearly independent z G MD{x)
Corollary 1.7. Le^ x,y 6e D-perfect vectors and let is called a direction for x. The directions of x corre-
di,...,dk, with k>n, be vectors from the intersec- spond with the walls of VD(x), i.e., for a direction y
tion of MD(x) and MD(y) containing a basis ofV2. of x the set W(y) :— VD(x) ("I {z € V2 : er(y, z) = 0}
T/ien there exists 0 < A G M swc/i i/iai x = Ay. belongs to the boundary of VD(x) and is a cone of
„ , r , , , . ., . ... , dimension n- 1 in V2.
The proof of the following proposition shows a con- Tr ,. . - ,. . .»>0 ,,
, *\ ,, , , , , .. r, r i. i. I f a direction y of x lies in V r , then

structive method to calculate a D-perfect vector.
Proposition 1.8. If D C V f \ {0} » dwcrete »n V2

 (i) a ^ ' d ) ^ ° f o r a11 d G ^ a n d

and admissible then for every y G V>° i/iere exists (ll) a ( y ' ̂  ~ ° f o r a11 z G W^y>'
xePD with MD(y) C M^z). F r o m (j) i t foUows that MD{x + Ay) = MD(x) n
Proo .̂ Let A; be the dimension of the span of MD(y). W(v)' s o f o r any A > 0 the vector x + Ay is not
If k = n we are done. So assume fc < n. One ^-perfect. The second point shows that W(y) is in
can calculate 0 ^ z G Vx with <r(z, d) = 0 for all t h e boundary of V|° and also that y is a boundary
d G Mcfo). Without loss of generality, z i V^0 P o i n t o f Vf°- Therefore the directions of x that are
(otherwise take -z). Now consider y + Xz for non- i n Vf° are called blind directions. Otherwise, if y is
negative real A. By the choice of z there exists a n o t contained in V|° there exists for admissible D
Ao such that y + Xoz G dV>°. By assumption D is a v e c t o r d e D w i t h ^ ^ . ^ < °- A s s h o w n i n t h e

admissible, so fiD(y + Xz) -> 0 for A -> Ao. The P r o o f o f L 8 o n e c a n find a A > 0 such that x + Ay is
continuity of fiD implies that there is a Ax G (0, Ao) ^-perfect and MD(x)nMD(x + Xy) generates W(y).
with fjtD(y) > fiD(y + \lZ) > 0. Let M be the fi- T h e v e c t o r x + XV i s c a l l e d a neighbour of x (in the
nite set of all d G £> with cr(y + Xxz,d) < fiD(y). direction y).

Clearly MD(y) is a proper subset of M, and for T h e o r e m ^ If D Q v f \ { 0 } M t e r e t e in V2 and
all d€M':= M\MD(y) one has a(z,d) < 0 and a d m i s s i 6 / e then the D.Voronoi domains of the D-

a(y,d) > nD(y). Define perfect vectors form an exact tessellation of V>°.
, . (HD{V) — <y{Vid) A Exact means, that every wall of a D-Voronoi do-

X a(z,d) / ' main is a wall of exactly two D-Voronoi domains.

2/2 :=y + X2z. proof L e t X i ^ G pD w i t h X i ^ ^ W e h a y e t Q

Obviously 0 < A2 < Xi and for all d G D\M one show that Vn{x\) and Vo(a;2) have no interior point
has a(y2,d) > HD{V) since <r(y, d) > ^o(y) and in common. Suppose x G Int(VD(xi))nInt(VD(x2)).
<r(y + XiZ,d) > HD(H)- By construction a(y2,d) > Without loss of generality, assume cr(xi,x) = 1 and
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a(x2,x) < 1. There exist d i , . . . ,dk G M D ( X I ) , k > Let ft be a subgroup of Aut Vf° that acts properly
n, containing a basis of V2, with discontinuously on Vf0, that is,

x = Aidi H h Xkdk (j) for every x G Vf ° the stabilizer ftx := {w G fi :

for all A, > 0 with £* = 1 A, = 1. By Corollary 1.7 at ^ = x) i s finite> a n d

least one of the du say du is not in MD(z2) . Now (») f o r e v e i T * ^ V^° t h e o rbit zft := {xw: w e V}
has no cluster point in Vf .

a(x2 ,x) - Aio-(x2,di) + ] P \ia{x2,di). Then the group Oad := {wad : w e ft} acts on V^0

i=2 where wad is the unique element in GL(V2) with
Each summand \ia(x, di) is greater or equal A; and a(xw, y) = a(x, ywad) for every x G Vi and y G V2.
equality does not hold for the first one. Conse- For every x G Vf° the set H{x) := {?/ G V^° :
quently cr(x2,x) > ^2i=1Xi = 1. But this is a con- cr(x,y) = 1} is a compact, convex subset of V|°.
tradiction to our assumption a(x2,x) < 1. (That H(x) is bounded follows from Lemma 1.1). If

Exactness follows from the fact that for every we denote by x* the center of mass of H(#), then *
neighbour y of a ^-perfect vector x the D-Voronoi defines a map from Vf ° to V^0 with the property
domain VD(x) and VD(y) have a common wall. _ d > 0 > 0

m i j j j I , i , r - k t r • \*^Q) — Jb U 1OI d l l X kz V i , W t A L I I Vi

The next stage to show is that every D-Voronoi v f l i

domain of x G PD has only finitely many neigh- because g~ad is a linear invertible map that maps
bours. We have shown the exactness, so it suf- H{x) to H(xg) and the center of mass is respected
fices to show that for every d G D D V^0 the set by linear mappings [Vinberg 1989, p. 28].
{x G PD - d G MD(x)} is finite, but this follows from The action of fiad on V^0 is again properly dis-
Lemma 1.1 (vi) and the fact that PD is discrete. continuous. To prove this we assume that f2ad acts

It remains to show that the D-Voronoi domains properly discontinuously and that fi does not. (The
cover V^0. Let y G V^0 and x G Pp. If y £ VD(X) roles of fi and Oad are swapped for simplicity of no-
then there exists a direction z of x with cr(z,y) < 0. tation). If the stabilizer Qx of a point x G Vf° is
Let Xi := x + Xz be the neighbour of x in the di- not finite, then (ttx)

a>d fixes x* which contradicts the
rection z. Since A > 0 one has a(xi,y) < a(x,y). properly discontinuous action of Oad. If the orbit x£l
This leads to a sequence x, Xi, x 2 , . . . with cr(x, y) > of x G Vf° has a cluster point x0 in Vf° then x*Oad

a(x1:y) > Now Lemma l.l(vi) and the dis- has a cluster point XQ because * is obviously con-
creteness of PD imply that there are only a finite tinuous.
number of z G PD with cr(z,y) < a(x,y). Conse- Now we consider the case that D is a subset of
quently there exists k G N with y G Vr>(xk). • V^° \ {0}, discrete in V^0, admissible and invariant
Definition 1.10. The graph TD of D-perfect vectors u n d e r t h e a c t i o n o f n^'
is the graph with vertex set PD and edge set E = Lemma 2.1. Let x G Vf0 and w G £1 T/ien
{(x,y) G P D X P D : a: and y are neighbours}. ...
L J (i)/iz)(x^) = iiD(x),
The next corollary follows from Theorem 1.9. (j|) MD(xw) — MD(x)(ojad)~1,
Corollary 1.11. Let D C V^° \ {0} &e discrete and i\W)VD(xw) = VD(x)(vad)-1.

admissible. Then TD is a connected, locally finite In particular, fi acts on the graph YD.
graph.

Proof. Let d G MD(x). Then

2. DISCONTINUOUS GROUPS fiD(x) = a(x, d) = a(xww~\d)

In this section we want to consider sets D that are = a(xw,d(wad)~1) > fiD(xw).
invariant under a group acting properly discontin- A p p l y i n g ^ t Q ̂  Q n e g e t g ^{xw) > (x)_ U g .
uously on V>°. Let V>°, V>° be dual cones with i n g ^ ^ ^ rf/ g M z ? ( a ; u ; ) i n g t e a d o f d £ MD{X)

respect to a. For t = 1,2 we define i n t h e a W e q u a t i o n s h o w s ( i i ) a n d ( m ) foUows

Aut V>° := {g € GL(V<) : V>°g = V>0}. from (ii). D
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If fi has only finitely many orbits on FD one can (ii) Find a subset D C V|° \ {0}, discrete in V2, ad-
apply the theorem of Bass and Serre [Serre 1977; missible and invariant under fiad.
Dicks 1980, p. 21]. Together with the results in the (iii) For x G Vi find a method to calculate MD(x).
previous section one gets the following theorem that (iv) Calculate the directions for x. There exists an
allows the reconstruction of the group from the finite algorithm to solve this [Opgenorth 1996].
graph TD/ft. (v) Prove that fi has only finitely many orbits on PD.

T , r^ ,o>n \ rrM 7 i • n i (vi) Find a method to calculate a generating set for
Theorem 2.2. Let D C VT \ {0} be admissible and , , .,. . ^ r ^ r ,
,. , . ^ 7 ^ ^ A >vAn , • 7 7 . the stabilizer m \l for L>-perfect vectors and to

discrete in v2 and il < Aut vf actmq properly dis- , . , ~ . , r
. ^ n 7 ,7 ^ • r^uA • • ca lcu la te a n e lement w G SZ w i t h X\W = x2 for

continuously on Vf such that D is U\ -invariant .
and the residue graph TD/Q is finite. Let xu . . . , x\ l j 2 D'
be representatives of the D-perfect points spanning a Remark 2.4. The stabilizer of a perfect vector x per-
connected subtree T ofYD andTi the finite set of all mutes the directions of x. Since the directions of
y G TD — T that have a neighbour in T. For every a jD-perfect vector contain a basis (6 l 5 . . . , bn) of Vi
y G Ti choose an element wy G ft with w~1(y) G every w G Stab^x is uniquely determined by the
{#i , . . . , Xi}. Then permutation of the directions. This gives a theoret-

n , n . n . _ , ical, but in general inefficient method of calculating
x y ' ' y ' the stabilizer. A similar argument holds for testing

where Stab^ x denotes the stabilizer of x in $7. /n whether two /^-perfect vectors are in the same orbit
particular the group ft is finitely generated. under O or not.
_ . _ . In the examples given in Section 3 we describe
This theorem can be formulated as an algorithm in , LL r -, . ^ , , ,_.

_ .. ° better ways of doing these calculations,
the following way.

„ _ n The last proposition of this section gives a sufficient
1. Calculate a 12-perfect vector X\. bet Li = {xA, . . . c ., n ., r ^ / o n ^ . ,,

L J criterion for the finiteness of LD/\1 when 1/ is the
_r

2_. ' . . _ intersection of the closed cone VT° with a lattice.
2. It Li = 0 terminate, else take x G Li
3. Calculate a generating set Sx for Stab^ x and set Proposition 2.5. Let L be a lattice of full rank in V2,

S = S U Sx. D - L H V|° \ {0} and O a subgroup of Aut Vf0 t/iat
4. Calculate the set i? of directions of x and a set acts properly dis continuously on Vf °. Assume that

R! of representatives of the orbits of Stab^ x on D is admissible. If there exists a finite subset V of
R. D such that the cone

5. Calculate N(R!) = {y G PD : y is a neighbour of ( |
x in direction r G i?'}. C = ^2_^avv : av eR, av > Oj

6. For every y G N(Rf) check if there exists a z G v G y

Li U L2 and a w G fi with 2/w = z. contains a fundamental domain for the action o/Jlad

If no such z exists set Lx — L\ U {y}. on V^0, then TD/ft is a finite graph.
-7 c i. / r1 ^ r i ~r r \ r i ^ ^ i. o P r o o / : W e define a subset
7. Set L2 = L2 U {x}, Li = Lx \ {x}. Go to step 2.
Now L2 is a set of representatives of PD/Q,, and S ^ 2 / 5
is a generating set for fi. where ?/y := n ^ v G y i; and n is the dimension of

V2. For an arbitrary x G Vf0 and y G M one
Remark 2.3. If one wants to apply Iheorem 2.2 to , / \ ^ / \ / \ / \ 1 .

. i 1 r o 4.- i J- h&s a(x,y) < a(x,y) + a(x,yv-y) = a(x,yD), this
a special example of a group i I acting properly dis- , , . , T * ^ ' n . ' „ ,

. ^o^n T . i i shows together with Lemma 1.1 the finiteness of M.
continuously on a cone Y f , one has to consider the T „ , , , , ^ / N T i .
P „ . . , Let x G rV> and d i , . . . , cL G Mn(x) linearly in-
following problems. , , ^ T , n *. • r j , 1 ,

dependent. The cone C contains a fundamental do-
(i) Find a dual cone V^0 and a bilinear form a such main for the action of Jlad on V^0, so one can as-

that Vf0 and V^0 are dual cones with respect sume without loss of generality that the sum d0 :—
to a. di~\ h dn is contained in C. This implies that d0



Opgenorth: Dual Cones and the Voronoi Algorithm 605

can be written as d0 = Ylvev avv w ^ h nonnegative (iv) B(G) := B(SF(G)) is called the Bravais group of
coefficients av. Now G. A group G is called a Bravais group if G =

n = <r(x, d0) — y ^ ava(x, v).
vev Remark 3.2 (compare [Brown et al. 1973; Opgenorth

But a(x,v) > 1 for every v G V, so 0 < av < n and 1 9 9 6 ] ) ' L e t G ^ G L « ( Z ) b e finite'
Vv-do = ̂ 2vev(n - av)v G V^°. Also (i) B(G) is finite and ®(B(G)) = B(G).

, _ , s-^n r ^>o (ii) 9r>0(G) is an open cone in ${G).
yv-d.-yv-do^ Lj=ltj# dj G V2 m N ^ a c t g p r o p e r l y d i s c o n t i n u o u s l y o n y>o(G)7

for 1 < i < n; that is, d{ G M. Thus we have by A ̂  h^Ah'11 for h G iVz(G).
proved that for every x G PD there exists an element (iv) JVZ(!B(G)) = {/i G GLrf(Z) : h~13r(G)h~tT =
K; G fi such that M fl MD(xw) contains n linear ^(G)}.
independent elements. (v) NZ(G) is a subgroup of finite index in iVz(!B(G)).

It was shown in the proof of Lemma 1.6 that a r , „ i r , i r ̂ <T /m\
„ . . , i , i i Lemma 3.3. Let G be a finite subgroup of KJLAL).

vector x G PD is uniquely determined by any subset m, rr>o/^>\ J rr>o/Ar\ ^ i -±u
r _ _ , N , . J . . r _

 J
n . . . . Then 3r>0(G) ancf 9r>0(Gtr) are dual cones with re-

of MD(x) that contains a basis of V2. Since M is , ,
siT)f'Cf TO

finite there are only finitely many subsets of M that
contain a basis of V2, and consequently there are cr : y(G) x 7 (0*) —^ R : (A,B) \-> trace(AB).
only finitely many x G PD such that M n MD(x) p r o o f A x i o m ( D C 1 ) h a s a l r e a d y b e e n g t a t e d i n Re_
contains n linearly independent vectors. D m a r k 3 2fii)

The positive definite matrices in M ^ form a self-
3. BRAVAIS MANIFOLDS OF FINITE UNIMODULAR dual cone with respect to a [Koecher 1960; Opge-

GROUPS n o r t h 1 9 9 6 ] ; t h i s i m pn e s (DC2).
In this section the methods developed in Section 2 To prove (DC3) let A G 7(G) \ J > 0 ( G ) and B G
are used to calculate the normalizer of a finite uni- RsyX

m positive definite with t r a c e r s ) < 0. Then
modular group. This is done by calculating the C := T,9eG9trBg is a positive definite matrix in
graph of G-perfect forms. In his classical paper ^ v^ ) W1^h
Voronoi treated the case where G is the trivial group ^ G) = V trace(AgtTBg) = V t r a c e ( ^ ^ t r 5 )
represented by the d x d unit-matrix [Voronoi 1908]. ~^G ~^G

In this case the normalizer is all of GL^(Z) acting —\C\\(ATi\ n
on the space of symmetric d x d matrices, denoted
by Mgx^. Remark 3.4. It follows from the proof of Lemma 3.3

that the map
Definition 3.1. Let G be a subgroup of GLd(Z).
(i) The normalizer NZ{G) of G is defined by * : R*£ ~~^ ̂ ^ : A ^ ]G\ S ^ ^

NZ(G) := {h G GLd(Z) : bTxGh = G}. i s a projection on J(G t r) that maps positive definite

(ii) JFYG) := {A G Rdxd : gAgtT = A for all g G G\ matrices to positive definite matrices and has the
is called the space of invariant forms of G. The property
set of the positive semidefinite elements in ̂ (G) tia,ce(AB) = trace(.A(i?7r))
is denoted by 3r-°(G). The set of positive definite dxd

denoted is denoted by ̂ °(G) and is called the f o r a11 A G 7^G> a n d B G R ^ '
Bravais manifold of G. (?> 0(G) is nonempty if L e t D : = {^ := {?tTx)* - x £ Z }• T h e n for

and only if G is finite.) e v e r y A G J ( G ) and x G Z
(iii) For a subset X of E ^ the Bravais group of X a(A, qx) = trace(A^trx) = trace(>Ar t r) = xAxtr.

is defined by o , k, r A ^^n/^\ • ,1 1 . .
So HD(A) for A G 9r>u(G) is the usual minimum

B{X) := {̂  G GLd(Z): ̂ ^ t r = A for all .A G X}. /i(A) of i as a positive definite quadratic form and
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the set MD(A) consists of the orthogonal projec- (ii) [Berge and Martinet 1991; Opgenorth 1996] A
tions onto the lines spanned by the shortest vectors. matrix A G 9r>0(G) is G-extreme if and only if A
An algorithm for calculating the shortest vectors is is G-perfect and eutactic.
described in [Pohst and Zassenhaus 1989]. _ . . . , _ r . „ f T . .

T , ( , N rr>o/^\ L. • This was already proved for the case G — {Id\ by
Let (Ai)ieN C 3r>0(G) be a sequence converging . J F l dj J

to A G <97>°(G). Then det(^) converges to 0. By Vo5°nO1 i i y u ^; .
TJ • , , ! . , \ - J J- i ^ remains to give a method for calculating SA

Hermite there exists a constant c depending only . . . . . . ° / ^ N r _ . ^ .
,, , 7 T ,_, L /r»\/7 ^ i , 7-, r the stabilizer in i\MG) tor a Bravais group G and a

on the degree d such that u(B)d < cdetB for ev- „ r . *v ^ _ . o rt/r x , .
... i n ., D Trorfxd r, ,, / n G-perlect matrix A. By Remark 3.2(iv) this means

ery positive definite B G R™;• Consequently /i(Aj , , x. r
, n x, , . ^ . s y m

1 . ., i calculating generators for
converges to 0; that is, Z) is admissible.

A matrix A is now called G-perfect (instead of SA = {g G GLd(Z) : gAgtr = AAgJ(G)gtr = &(G)}.
D-perfect) if MD(A) contains a basis of ZF(Gtr). A.-
M. Berge, J. Martinet and F. Sigrist gave a similar L e t * d e n o t e t h e s e t o f d i rections for A. Since A is
definition for G-perfect forms [Berge and Martinet ^-perfect 31 contains a basis Ru . . . , Rn of J(G t r).
1991; Berge et al. 1992]. Instead of the projection A s P o i n t e d o u t i n R e m a r k 2A t h e s t a b i l i z e r of A
7T they took the orthogonal projection (with respect m d u c e s a Permutation of ft. So
to the trace) onto 7(G). In general this projection SA = {g€ GL d(Z) : gAgtr = A and
does not map positive definite matrices to positive qR qtr G f t f o r l < z < n )
definite, but Theorem 3.6 does hold for both defini-
tions. W. Plesken and B. Souvignier [1997] describe an al-

gorithm to calculate generators of
Before stating the theorem the following definition r , N ,
is needed. Aut A = {g £ GLd(Z) : gAg* = A}.

d d The basic idea of the algorithm is this: If m is the
Definition 3.5. The Hermite function 7 : {A € Rsym | m a x i m a l e n t r y o f t h e d i a g o n a i o f A a n d M i s t h e

A positive definite } -> R is denned by s e t o f v e c t o r g 0 ^ x 6 z ^ w i t h xAa.tr < m > t h e r o w s

of a matrix g G Aut^4 are elements of the finite
n(A) set M. They construct the automorphisms row by

~ (detAY' r o w ; that is, they construct a matrix X G ZrXd

with rows from M and try to extend this matrix
to a matrix Y by adding a row from the vectors

for all positive definite matrices A G Rsym. Ob- o f M F o r finding t h e n e x t r Q W t h e a u t h o r s u g e

viously 7(AA) = j(A) for all A > 0. A matrix g e v e r a l c r i t e r i a A g e n e r a t i n g s e t f o r SA c a n n o w b e

A € J>°(G) is called G-extreme if the restriction o b t a i n e d b y a d d i n g t h e c r i t e r i o n that for 1 < i < n
of 7 to 5F>°(G) obtains a local maximum at A in t h ( + 1 ) ( + 1 ) t r i x y R y t r h a s t o c c u r a s

\ '' a left upper submatrix of one of the matrices in ft.
A positive definite matrix A G Msy

x
m is called en- A n a l t e r n a t i v e m e t h o d t o calculate the stabilizer

tactlc l f of A in NZ(G) is to calculate the stabilizer SA-i of
A'1 in A^z(G

tr), since SU-i = 5^r. In this case one
A = 2_^ axX x has to replace the set 3? by MD(A).

xeM(A) Plesken and Souvignier give in the same paper
an analogous algorithm to decide whether or not

with positive coefficients ax, where M(A) denotes t h e r e exists for two positive matrices A and B in
the set of minimal vectors of A. Rsym a m a t r i x x € GLd(Z) with XAXtr. If such

a matrix exists the algorithm constructs one. The
Theorem 3.6. (i) [Jaquet-Chiffelle 1995; Opgenorth same modification as above allows one to construct

1996] There exist only finitely many G-perfect for G-perfect A,Be 9r>0(G) a matrix X G NZ(G)
matrices up to the action of N%(G). with XAXtr = B, if such a matrix exists.
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Example 3.7. Let G < GLn(Z) be the group generated by

/ 1 0-1-1 0 0 0 0\ / 0 1 0 0 0 0 0 0\ /-I 0 0 0 0 0 0 0\
- 1 0 0 1 0 0 0 0] [-1-1 0 0 0 0 0 0 ] 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 - 1 0 1 0 0 0 0 0

_ 1-1-1-10 0 0 0 ._ 1 0 - 1 - 1 0 0 0 0 ._ 0 - 1 - 1 - 1 0 0 0 0
9l '~ 0 0 0 0 10-1-1 ' 92''~ 0 0 0 0 0 1 0 0 ' #3 :~ 0 0 0 0 0 0 - 1 0

0 0 0 0 - 1 0 0 1 0 0 0 0 - 1 - 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 - 1 0 0 0

V 0 0 0 0 1-1-1-1/ \ 0 0 0 0 1 0-1-1/ \ 0 0 0 0 1 0-1-1/

G is a finite unimodular group of order 48 isomorphic to GL2(3). The space of invariant forms is of dimension
4. The algorithm leads to the following G-perfect forms

/ 4 - 2 2 2 0 - 1 0 2 \ / 2 -1 1 1 0-1 0 2 \
- 2 4 - 2 - 2 1 0 - 1 0 ] [ - 1 2 - 1 - 1 1 0 - 1 0

2-2 4 0 0 1 0 1 1 - 1 2 0 0 1 0 1
p . _ 2 - 2 0 4 - 2 0 - 1 0 p . _ 1 - 1 0 2 - 2 0 - 1 0

1 : ~ 0 1 0 - 2 4 - 2 2 2 ' 2 : ~ 0 1 0 - 2 4 - 2 2 2
- 1 0 1 0 - 2 4 - 2 - 2 - 1 0 1 0 - 2 4 - 2 - 2

0 - 1 0 - 1 2 - 2 4 0 0 - 1 0 - 1 2 - 2 4 0
V 2 0 1 0 2-2 0 4 / V 2 0 1 0 2-2 0 4 /

The form Pi has minimum 4 and its determinant is 54. It has four Voronoi neighbours, one of them is P25

the three others are in the orbit PiN%(G) and are permuted by the stabilizer Spx of Pi in N%(G). The
stabilizer is generated by #i, g2, #3, Si and s2 where

/ 0 -1 0 0 0 0 0 0 \ / 0 0 0 0 - 1 - 1 0 0 \
0 1 0 1 0 0 0 0 ] [ 0 0 0 0 1 0 0 - 1

- 1 - 1 0 0 0 0 0 0 0 0 0 0 - 1 0 1 1
#_ 1 - 1 - 1 - 1 0 0 0 0 #_ 0 0 0 0 0 - 1 - 1 0

Sl''~ - 1 1 1 1 - 1 0 1 1 ' S<2''~ - 1 - 1 0 0 0 0 0 0 *
0 - 1 - 1 - 1 0 0 - 1 0 1 0 0 - 1 0 0 0 0
0 1 1 0 - 1 0 1 0 - 1 0 1 1 0 0 0 0

V-l 0 1 1 0 - 1 0 0 / V 0 - 1 - 1 0 0 0 0 0 /

The form P2 is isomorphic to the root lattice of E$ and has minimum 2 and determinant 1. P2 has eight
Voronoi neighbours (one of them Px) which are all in one orbit of the stabilizer Sp2 of P2 in N%(G). The
stabilizer is generated by #i, g2, g3, ti, t2 and £3, where

/ 0 1 0 2 1 1 1 0\ / - I 0-1 1 0 1 1 1\ / 0 - 1 - 1 0 0 0 0 0 \
0 - 2 0 - 1 1 - 1 - 2 - 1 ] [ 2 0 - 1 - 2 - 1 0 0 0 ] [ - 1 1 1 1 0 0 0 0
1 0 - 2 0 0 2 1 1 0 - 1 - 1 1 1 1 0 0 0 - 1 - 1 - 1 0 0 0 0

= -2 1 1 2 0 0 1 1 . # = - 1 2 1 2 0 0 1 0 . _ 1 0 - 1 0 0 0 0 0
1 : ~ 3 - 1 - 1 - 2 1 0 - 1 - 2 ' 2 : ~ 1 - 3 - 2 - 3 0 0 - 1 0 ' 3''~ - 1 - 1 0 1 1 1 0 0 *

- 1 - 1 - 2 - 1 - 1 1 0 2 1 1 1 2 1 0 0 - 1 - 1 1 1 0 0 - 1 0 0
2 2 1 - 1 - 1 0 1-1 - 2 - 2 1 - 1 0 - 1 - 1 0 1 0 - 2 - 1 - 1 0 1 0 1

V 2 0-1 1 2 1 0 - 1 / V 0 - 2 - 3 - 1 0 1 0 1 / \ 0 0 - 1 1 0 1 1 0 /

So we have the following residue graph TD/fN%(G):

O—•*
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Let [Dicks 1980] W. Dicks, Groups, trees and projective
/ 0 0 0 0 0 1 0 0 \ modules, Lecture Notes in Math. 790, Springer,

0 0 0 0 0 0 1 0 Berlin, 1980.
0 0 0 0 0 1 0 1

, _ 0 0 0 0 - 1 0 0 0 [Jaquet-Chiffelle 1995] D.-O. Jaquet-Chiffelle, "Trois
0 0 0 1 1 0 0 0 ' theoremes de finitude pour les G-reseaux", J. Theor.

- 1 0 0 0 - 1 0 0 1 Nombres Bordeaux 7:1 (1995), 165-176.

0 - 1 0 0 1 -1 -1 -1 I [Koecher 1957] M. Koecher, "Positivitatsbereiche im
\ 1 0 - 1 0 1 1 0 0 / R n ^ Aroer. J. Afatfi 79 (1957), 575-596.

This matrix is in the normalizer NZ(G) and maps r , .. .
_. x r . . . . _ . r Koecher 1960 M. Koecher, "Beitrage zu einer Reduk-
Px to one of its neighbours. Therefore tionstheorie in Positivitatsbereichen, I", Math. Ann.

Nz(G) = (gug2,g3,sus2,tut2,t3,h). 141 (I960), 384-432.
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