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we show that the inhomogeneous Lagrange spectrum,

L©) := {liminfly 00 | [[n0—7] : v €R, v ¢ Z+0Z},
contains an inhomogeneous Hall’s ray [0, c(#)] with

) =1(1-0@"").

4
We describe gaps in the spectrum showing that this is essen-
tially best possible. Pictures of computed spectra are included.
Investigating such pictures led us to these results.

1. INTRODUCTION AND STATEMENT OF RESULTS

For a fixed irrational real number § and real -y one
defines the inhomogeneous approximation constant

M(6,7) := liminf [n [~

By varying 7 (not of the form n+m#@) one obtains
the inhomogeneous Lagrange spectrum of 6

L(®) :=={M(8,7):y€R, v ¢ Z+0Z} C [0,1].

(1-1)
Arguably, the inhomogeneous analogue of the clas-
sical Lagrange spectrum L = {M(0,0)"! : § € R}
should be the set of M(#,v) ! rather than the set
of M(6,v), but in order to work with more easily
illustrated bounded intervals we decided to avoid
the unnecessary complication of taking reciprocals
(it is of course trivial to translate our results should
the reader prefer the convention of inverting every-
thing). We are interested here in the largest interval

[0, ¢(6)] contained in this spectrum,
This work was performed while Pinner was at the University of
Northern British Columbia, Prince George, BC. 0(9) = sup{c : [O, C] - L(G)},
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usually referred to as the inhomogeneous Hall’s ray.
Using a Hall style Cantor dissection argument, Cu-
sick, Moran and Pollington [Cusick et al. 1996] have
shown that the larger spectrum of one-sided inhomo-
geneous constants, liminf,_,., n|[nf—~||, contains a
non-degenerate Hall’s ray when 6 is the golden ratio.
A similar argument can in fact be used to show that
c(8) > 0 for any quadratic 6 [Crisp et al. > 2001].
In the special case that the partial quotients of 6
tend to infinity the spectrum will consist solely of
the ray [0, ;] —a result implicit in [Fukasawa 1926]
and [Barnes 1956].

Here we examine the spectrum only in the sim-
plest case, when 6 has a period-one negative con-
tinued fraction expansion. We use a constructive
approach to obtain very precise results (seemingly
not obtainable using the Cantor dissection method).
Since changing a finite number of partial quotients
does not affect the spectrum we shall work with
the purely periodic representative, and suppose from
now on that

6=1(a—var—d) = —

(1-2)

Theorem 1. For 6 of the form (1-2) the spectrum
(1-1) contains the interval [0, c(6)] with

0-3(0()

More precisely, as a — oo,

(1-3)

i (1-(1%(1))%)

<) < %(1—(1—!—0(1 )2f> (1-4)

Pinner [2000b] has shown how to use an appropriate
f-expansion of v to evaluate M (6,), which in the
period-one case reduces to the classical $-expansion
of Rényi [1957] and Parry [1960] (with 8 = 1/6),

i=1
The t; will be a sequence of integers in [—(a—2), a]

with the same parity as a (and no blocks a, a—2, ...,
a—2,aora, a—2, a—2, ...). If the sequence does

not contain infinitely many endpoint configurations
t;, = a, we have
1 M*(6,7)
M(6

( 77) 4 1 62
with

M*(8,~) := liminf s*(4),
71— 00

2(2), 83(2), 54 ()},

§*(2) := min{sj(7), s

where
s1(7) == (1—-6+d;)(1-0+d;),
s3(1) :== (1+6+d;)(1+6—4d;),
s3(i) == (1—-0—-d;)(1—-0—d;),
83(1) := (14+0—d; ) (14+0+d;}),
with

oo
=D _tusst’
7j=1

When v does contain infinitely many ¢; = a one
needs to check the minimum of s3(7) and s}(i) for
both -y and its negative 1—0—-y (in this case we have
M*(6,v) < 6, and for large a the value will be small
and lie well within the inhomogeneous Hall’s ray).
When v does not contain any t; = a the expansion
for 1—6—+ simply replaces the t; by —t;, interchang-
ing s3(7), s;(¢) and s3(7), s3(i). Of course if the se-
quence t; is eventually periodic with period 7 then
we can replace the liminf by a min over cutting the
purely periodic sequence (more precisely a doubly
infinite sequence with that period) at the r places
in its period. Since the M (6, ) obtained from the ~y
with periodic expansions (the v € Q(6)) are dense in
L(#) one would expect computing values for small
periods to give a reasonable approximation to the
spectrum. The figures on pages 490-491 show the
spectra obtained by computing the approximation
constants corresponding to all possible §-expansion
periods of length at most 7. An interface to produce
similar pictures can be found at http://ctl.unbc.ca/
CMS/LSC/. In [2000b] the spectrum L(6) was de-
scribed down to the first limit point é.,, showing
an infinite sequence from the largest point §, =
L (1—-(140(1))2) to 6o = 1 (1—(1+0(1))%). The
figures clearly suggest holes beyond the first limit
point. Examining the configurations that seemed to
correspond to the edges of these holes enabled us
to identify O(y/a) of these gaps extending down to
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1 (1-(140(1))v/8//a), giving the upper bound in
Theorem 1.

With
. {0 if a is even,
“T1 ifaisodd,
define
- ((2t—u)8+ub?)
L) = (1_9 S0k
(ub+(2t—u)6?)
X<1_9— 1—e2 )
2 1 _9\03
— 2 _ 3
X(1+(1—u)0+(2t+u 21>f;(2 u)f )

B(@) = (1640
x <1—9+ (2_“)61—_(02215—@92);

moreover for t = a (mod 2) set

(t+2)02+(t—4)93>2

Ey(t) := (1—9—t0+ e

and for t # a (mod 2)
By(t) := (1—(t+1)0+(t42)6°+(t—3)6%)°
t+3)03+(t—5)94)>2
1-62 '
Theorem 2. Suppose that a > 10. With I, 15, E,, E,

as above, there are always the following gaps in the
spectrum L(8):

1. I(t) := 3(1-6°)7" (L2(2), 11(2))

. [0, v/2a—8-3] if a is even,
Jorte [1(V4a—3+1), vV2a—8—-2] ifa is odd.

2. E(t) := 1(1-6*)"" (Ba(t), Er(t)),

~
for (24u) <t <+v2a—6u+16—(4—u).

The endpoints of these intervals are achieved with
expansions t; consisting of the following blocks, where
(a,b,)* denotes k repetitions of the block a,b and
where k; — oo:
Li(t): —(2t—u), —u,
L(t) : (2+u), —(2t+2—u), (2—u, 2t+u—2,)"

(2—u), —(2t+2-u), (2+u, 2t—u—2,)%

—b? <1+0—292+((

E(t): —(2t—u), (2—u),
BEy(t) : (—t, —t,)(t+2, t—4,)k (t+2)
if t = a (mod 2),
—(t+1), =(t=1), ((¢t+3), (t=5),)"(t+3),
—(t=1), —=(t+1), (t+1), (t—1),
(—(t+3), —(t=5),) " —(t+3), (t—1), (t+1)
if t # a (mod 2).

Finally it seems reasonable to ask two questions:

Question 1. Can (1-3) be improved to a precise
asymptotic result? For example perhaps

(0) = 1 (1-(1+o()V/ETa).

Indeed can the top of the ray be determined exactly?

Question 2. Is there an absolute constant ¢ > 0 such
that the spectrum of an arbitrary quadratic 8 always
contains a ray [0, c(6)] with c() > ¢,? Is it true that
c(#) — 3 as the size of the smallest partial quotient
in the period of the continued fraction expansion
of @ tends to infinity? We can claim no numerical
evidence to suggest that these are true (or even give
an upper bound on the optimal ¢) but it is worth
remarking that both do hold for the largest point in
the spectrum; see [Pinner 2000a], for example.

2. THE EXISTENCE OF HALL'S RAY AND ITS
ASYMPTOTICS

We now prove Theorem 1 (assuming Theorem 2,
which is proved in Section 3). The upper bound in
(1-4) follows from Theorem 2. The lower bound will
follow from Lemma 2 below. The proof is construc-
tive. Since we are only interested in an asymptotic
result we shall assume that a is large (one can show
the existence of a ray for much smaller values).

Lemma 1. Suppose that a > 4® and that
¢ = (1-6—(mi+uo)0)”,

with ug € [3(v/10—3), 2(v/10+3)] and 4y/a < m; <
a—10a/4. Then for i > 1 we can successively write

§= (1-0—i(mj+lj)0j—ui0i>
X (1—“0—i(m] —lj)ej —uﬁ’)
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FIGURE 1. Spectra for 6 of period a (values corresponding to v with f-expansions of period at most seven).
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FIGURE 2. Spectra for a = 36,37 (and 7 of period at most seven) with zooms.

with integers my, l;, satisfying m;+1; = a (mod 2),
V2ugy/a=my (1429(a—my) /)™

<l <V2upVa—my,
and for i > 2

2\/%(

a—1my

0<u; < 1+2a7/%) a#,

2\/ 2u0 —1/8
Ja (14+2a7"%) a,

a—m; ( 29 )
Yo 2
2ug a—m,

(1+a"1/8) )

0<m; = |u;—1/8] <

-1<; <

1 a
< —_—
V2ug va—my
Proof. The first step, ¢ = 1, amounts to solving
130 = (2—20—2m 0 — (u; +u0)0) (uo—uy).

Take [; to be the integer [; = m;+a (mod 2) such
that

\/(2—29—2m10—u09)u0 _ l1+)\1

0
with 0 < A; < 2. We have [; < 1/2(a—m;)uo and
I, > \/(2a—20—2—2m1—u0)u0—2

> /2(a—m1)ue(1429(a—my)/2)

Hence
OX2 —2X1/(2—20—2m 10 —uef)ueb
= —u;(2—20—2m;,0—u,0)

gives
2)\ \/UO
\/2 20 —2m10 —uyb
< 4,/ug 4,/ug
V2a—2m;—4 \/2a 2m,

We proceed now by induction on ¢ and, choosing

0<u

(1+a71/%) af.

mip1 = |u; /0], write
¢ = (1—9—Z(mj+lj)9 —(mi+1+5i+1)0i+1>
<1 60— Z mz+1+5z+1)0i+1>

with 0 < §;,; < 1, and the claim amounts to

i+1
51‘_'_1 <2—20—2 Z m]6” —5i+10i+1>
=1
=l (2 > zj9j+zi+19i+1)

j=1
i+1
+ Uit (2—29—2 Z m]ﬂj —Ui+19i+l> .
Jj=1

Writing B := /a—m;(14+29(a—m;)~Y/?)/+/2uy and

choosing l;,1 = m;;;1+a (mod 2) so that
(2 20— 2ZZ+1 mJG (5 19 i+l )5i+1
2%, 1,69+ Boi+!

= lit1+ it
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with 0 < X411 < 2, we have

2—20—2m,0
20,0—262/(1—0)

1<l <

and wu;; is left to satisfy

i+1
Uj+1 <2—20—2 Z mﬂj —Ui+19i+1>

=1

= )\H-l (2 Z l]-9j+36’i+1) +li+1(B—'li+1)9i+1,

j=1

and, writing D = 21/2uo(14+2a7®)a/\/a—m;, for

a > 4% we have

Nipr (2L0-+2B6%/(1—6)) + 1 B0+
5—20—2m,0—2D62/(1—6)

< 4,/ug/2a—2m,

0<uq1 <

2a—2m,—3
><<1+1+10a—1/8 0 N 11 )
2up  1-6 32y2u%%/a
< De6. O

Lemma 2. For a > 4® the spectrum L(6) contains the
interval

[0, i(l—co(1+3a_1/8)a_1/2)],

with

co = 2\/5(\/x/ﬁ—3+\/x/ﬁ+3> =9.994- .

Proof. Observe first that any £ in [U;,U,|, where
U, = 10%a/%6? and U, := 1—co(1+3a"/®)a"1/2,
can be written in the form & = (1—6—(m;+u0)8)?
with 1eo(1+3a7%)y/a < m; < a—10a'/* and u, €
[1(v/10-3), 3(v/10+3)]. Hence we can write £ =
vv’ with

v = 1—0—2 e, e; =m;+l;,
i=1

v = 1—0—2 e, el =m;—1;,
i=1

where the integers m;, [; satisfy the conditions of
Lemma 1. Clearly then by taking a 7, whose se-
quence t; consists of increasingly long blocks of the
form ---—ej, —e5, —€), —e1, —eq, —e€3, ..., we have
s*(1) = s3(i) — & for the (t;,ti41) = (—e€}, —e1). We

show that s*(i) > ¢ for the remaining (t;,t;41) #

(—e}, —ey). It will be enough to show that for ¢ # 1
(l;+1)%
L+l —(Li+1)— )

(2-1)
Since m;+1; < mqi++v2up/a—m; < a—130 we cer-
tainly have |d; |, |d],| < (Jt:/+1)6. Hence, under
the assumption (¢;,t;11) # (—e}, —e1),
s°(t) 2 (1=0—(m;+1;4+1)0)(1—-0—(m;1c+1j4c+1)0)
for some j # 1 and € = %1, and (2-1) gives

s*(1) > (1—-0—(m;+1;+1)8)(1—0—(m,+1,+1)0)
> (1-60—m,0)® > £.

Now
(LL+1)6 < V2ugr/a—mq+1
1—0—(mi+4L+1)8  a—m;—2—0—2ug/a—my
< 3
a—1ms
and 1;(1+3(a—m;)Y/?) < \/2upa/\/a—m4, giving
(I;+1)2%0
LD+ (L +1
(mi+1;4+1)+(l + )+(1—9—(m1+11+1)9)
1 a
1+2a/%)( 3v/2 —
< (142a )( uo+ 2uo> T
1 a
~1/8\ 2 _.
< (142a )2c0 T : E.

Plainly E < my for m; = 1c(1+3a7%/%)\/a and
my = a—10a'/* (and all the m, in between by con-
cavity). So (2-1) holds and M*(8,7o) = &.
Likewise for any k > 1 a 7, made from increas-
ingly long blocks of
cee, —€h, —€y, —(e14+2),a,a-2,...,a—2,€, €, ...
N ——
k—1 times
will have s3(7) — 6%¢ when (t;, tiy1) = (—(e}+2), a).
The negative of this sequence is simply
ooy eh e, a—2,...,a—2,a,—(e;+2), —ez, —e€3, . ..
k—1 times
Trivially, since ej,e; < m;—1;—2 for j # 1, we
have
$1(6) > (1—0—(my+1L+3)9)
(1—0—(m1—l1—1)9) > 0’1), > 05,
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while for t;1; # a

53(1) > (1+0—(m1+1,+2)0+ab?)
(1+6—(a—2)8—ab?) > v0 > 6¢.

Finally when (¢;,ti11) = (a—2 or €}, a) we have

s3(1) > (1+6)(1+0—ab+(e;+1)0) > 0(1+6) > 6€.

Thus M*(6, ) = 6*¢.

Hence for any £ > 0 we can construct a v with
M*(0,~) taking any value in [#*U,, 6*U,|. Since
60U, > U, we thereby obtain everything in [0, U,]. O

3. EXISTENCE OF THE GAPS

We now prove the existence of the gaps given by
Theorem 2.

Note that
_20%(1-0)
L(t)—L(t) = =
02
Eq(t)—Ex(t) = (1_02)2’Mv

with
K = (1—u)(3+(2t—2)0—26°+6%)+
0(140)(4t* —2t+1—a)+26°(1+16),
ii—e = (2a+14—6u)— (t+4—u)?
+0t*(5+80+46%)+6(8—u)
+26%(1+460) —20t(u+2+660(1+6))
when t = a (mod 2), and
k= (2a+13—6u)—(t+4—u)?
+%0(6+360—26°(1—6%)(3+26))
+26t(2—2u+ (u—2)0—26°(1+6%)+116°(1-6%))
+6(10—2u+(u—"T7)0—80%+146° —326* + 306°)
when t # a (mod 2). So I(t) < I;(t) for all t > 0
when a is even and for (4t—1) > v/4a—3 when a is
odd, and E,(t) < Ei(t) for all t < \/2a—6u+16—
4—u).
( We)suppose that v has M*(6,v) in [Lx(t), [;(t)]
(Case I) or [Ey(t), E1(t)] (Case II), with ¢ as in the

statement of Theorem 2. Then from the rough lower

bounds
Ey(t) > (1-(t+1)6)?,

L(t) > 1—(2t+3—u)d

we can assume that all the |t;| are at most 2t+2v+u
with v = 1 in Case I and v = 0 in Case II (it was

shown in [Pinner 2000b] that if t; = a infinitely often
then M*(0,v) < 6 and if |¢;| > k infinitely often then
M*(6,7) < 1—k6+6% where a finite number of
can be changed without altering M*(8,v)). Now if
we have (t;,ti11) = (=b,—c) (or (—(b+2),(c+2)))
with b+c = 2I+2t, | > 1 then (since the remaining
t;] < 2t4+u+2v) we have s;(i) (or s3(i)) bounded
by

2 2
(1—0—b9+—(2t+fj92”)9 )(1—9—c9+—(2t+f:’02”)9 )

(2t+u+2v)6?

2
_ 202
1o ) (t+1—c)“6°.

= <1—0—(t+l)0+

For [ > 1 this is plainly less than E,(t) and for [ > 2
is less than

t+3)92+(t—1)03)2

B(t) == (1—(t+2)9+( I

02
TR

where T', defined to be

=L (t)+

(1+20)((t+3—u)*—(2a—8))
—0(4t(5—u)+50—18u) — 6% (3t +2(5—u)t—u—9)
— 6 (4t — 20t —6(1—u)) +6*(4t*+2u),

is certainly negative for (t+3—u) < v/2a—8. So we
can assume that each [t;+%;,1] is at most 2¢t+2v,
and each |t;—t;;1| is at most 2¢+4+2v. Thus if we
have (t;,t;41) = (=b,—c) (or (—(b+2), (c+2))) with
b+c = 2t+2v, then (since t;_; < 2t+2v+2—b+2)
with A =1o0r 0, and t;_; = 2t+2v+2—b+2) implies
that t;_» < b—2—2X and so on) sj(i) (or s3(7)) is
bounded by the quantity S defined as

(2t42420+21—b)6%+(b—2—2X)63
)
(2t+2+20+2X—c)0%+(c—2—2X)0°
)
(t+2+v+2/\)02+(t+v—2—2)\)93>2
1—62

—(b—t—v)%6? <1+—29>2

(1-6-16+

X (1—0—00+

- (1—(t+1+v)0+

1+6

Since S is bounded by B(t) < Iy(t) when A = 0
and v = 1, in Case I we can successively rule out
any It‘i_ti-}-l' = 2t+6 and lti+ti+1| = 2t+2 SO
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|ti—tiv1| < 2t+4 and |t;+¢;1] < 2t. Since S is less
than

) oz [0 if t=a (mod 2),
B (8)+46"~(6=1)"6 +{e2(1+9)2 if t#a (mod 2),
(and hence less that Ey(t) for b # t or t£1) in Case II
we can assume that |t;+t;,1| < 2t—2 and |t;—t;41] <
2t+2 except for the blocks +{¢t;,t;11} = {—t, —t},
{=(t+2),(t+2)}, {—(t+1),=(t—1)} or {—(t+3),
(t+1) } Now if t = a (mod 2) and (t;,tiy1) =
(~t, —t) then (since t;_; < t+2 and t;_; = t+2
implies ¢t;_o < t—4 and t;_, = t—4 implies t;_3 <
t+2, etc., and the same for ¢, 2, t;13,t;14,...) We ob-
tain sj(i) < Ey(t) (with equality if the (—t, —t) is
preceded and succeeded by perpetual blocks (t+2),
(t—4)). Likewise for (t;,t;11) = (—(t4+2), (t+2)) we
obtain s3(i) < E,(t) with equality only if the preced-
ing and succeeding blocks take the form (t+2), (t—
4) and —(t+2),—(t—4), but then sj(i+1) will be
smaller so these can be dismissed. Likewise if t # a
(mod 2) and (¢;,t;+1) = (—(t+1), (t+3)) then since

t+3)92+(t—5)93>

(1460+d;) < <1+0—(t+1)0+(

1-62
we must have t;;o = —(t+1) (else trivially s3(i) <
E,(t)). Hence
s3(i) = (1+0—(t+1)0+6d;_,)

X (1+6—(t+3)0+(t+1)6>—6df,,),
(14+6—(t+1)6+6d7,,)
X (14+60—(t+3)0+(t+1)6—

s;(i+1) =
0°d; ;).

Thus, writing

(t+3)0+(t—5)6°

d = min{d;_,,d},,} < T g2 ,

we have
min{s} (i), s;(i+1)} < (1+0—(¢t+1)6+6d) x

(1+0—(t-+3)0+(t+1)8°—6%d)
< Ey(t).

_(t_l))

(t+3)6*+(t—5)6°
o)
X (1—0—(t+1)0+6d], ).

Similarly if ¢;,¢;., = —(t+1) then

si(d) < (1——0—(t—1)0+

Hence t; 0,t;43 = t+1,t—1 (else trivially sj(i) <
E,(t)) and

si(i) = (1—0—(t—1)0+6d;_,)

X (1—0—(t4+1)0+(t+1)6°
+(t-1)6°~6°(=d}.5)),

s5(i+2) = (1-0—(t—1)0+6(—df,5))

X (1—0—(t4+1)0+(t+1)6°
+(t-1)8°—-6%d;_,),

with
d = min{d- ,, —d%,,)} < (t+3)0+(t—5)6?

1-62

and min{s;(7),s3(i+2)} < E,(t) (with equality if

the preceding and succeeding t;_1,t;_2,...and —t;4,

—tit5, ... consist of repeated blocks (t+3), (t—5)).
Hence in Case II we can assume that all the |¢;+

tiv1| < 2t—2 and |t;—t;11| < 2t+2 or that v is of the

form claimed to achieve Ey(t). Now if each |t;—¢;,1]

BAY:?
si(i) > (1+9 (b6+(2t—b)6 ))
ey 2
<1+9_((2+u)9+(2t u—2)0 )>,
Now if t; = —b with v < b < 2t—wu and all the

1-6?
K6+ (2t—K)6?
(10— (K021
> (1+0-
1—-62
the minimum occurring when b = (2+u) or 2t+2v—
|ti+ti+1| < 2t—2+2v then
—b0— (2t —2+2v—b)6?
5i(0) > (1e+ ( “’))

is at most 2¢t+2+2v and each |t;+¢;41]| is at most
2t then, writing K = min{2¢t+2+2v—b, 2t+2v—u},
observe that if t; = —b, 0 < b < 2t+2v—u then
1-62
((2t—u+2v)0+(u—2v)6?)
1-62
u, with this greater than I;(¢) or Ey(t) as v =1 or
0. Similarly for s;(¢). Hence for the -y of interest we
need only consider si(i) and s5(37).
1-62
—(2t—2+2v—b)6—bh?
X (1 0+ 1 g .

Clearly the minimum occurs when
b=2t—u

equalling I;(t) for v = 1 and E,(t) for v = 0 (with
equality for period (2t—u),(u—2+2v)). Likewise

or u—2+2v,
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for the v claimed to achieve E,(t) we easily have
si(1) > Ey(t) for {ti,tix1} # {t+u,t—u}. Hence
Es(t), Ei(t) and I;(t) are attained as claimed with
M*(8,7) > E;(t) for the y remaining in Case II. In
Case I it remains only to check the t; = —(2t+2—u).
If a is even then (since t;+; < 2 and t;4; = 2 im-
plies t;4p < 2t—2 and t;4, = 2t—2 implies t;43 < 2
etc.) we must have sj(i) < I,(t) (with equality if
the —(2¢+2) is contained inside blocks (2t—2,2)%,
—(2t+2), (2,2t—2)* with k — oo0). Similarly if a
is odd and t;;; = 1 we have (since ¢t;_; < 3 and
t;—1 = 3implies t;_4, < 2t—3 and t;,_4 = 2t—3 implies
t;—q < 3, while t;,, < 2t—1 and t;;2 = 2t—1 implies
ti+s < 1 and so on) s7(i) < I,(t) (with asymptotic
equality for blocks (2t—1,1)F, —(2t+1), (3,2t—3)*).
Likewise if t,_; = 1 using s(i—1). Hence I»(t) is

achieved as claimed. Finally if the t;, = —(2¢t+1) all
have tii1 = ti+1 = 3 then
3602 —(2t+1)63
st(d) > 1—(2t+2)0+———¥
1-62
—(2t+1)62+363
X <1+29 o
203((1 4t)(a—1)
=1
O iy
and M*(6,v) > I;(t). O
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