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1. INTRODUCTION

Throughout this paper E is an elliptic curve over Q
defined by a Weierstrass equation y2 = /(x), where
/ is a monic cubic polynomial. The curve Dy2 =
f(x) will be denoted ED. When D is a nonzero
integer, let rE(D) denote the rank of ED(Q). Let

Nr (E,x) = #{squarefree D G Z : \D\ < x
and rE(D) > r},

N+(E,x) = #{squarefree D G Z : \D\ < x,
rE{D) > r, rE(D) = r mod 2}.

Gouvea and Mazur [1991] showed (using the fact
that the twist Ef(u) has rank one over Q(u)) that if
the Parity Conjecture holds then

N+(E,x)>x(1/2)~£

for all sufficiently large x.
Mestre [1992, Theoreme 1] showed that ifj(E) (£

{0,1728} then there is a polynomial g(u) E Q[u] of
degree 14 such that the twist Eg^u) has rank at least
2 over Q(u). Stewart and Top [1995, Theorem 3]
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for such E and for all sufficiently large x. For a 2. CONSTRUCTING USEFUL TWISTS
special family of elliptic curves E, using a twist of w u . .,, ,, - n . n , u

_i _ , N . ;, _ L , We begin with the following well-known result.
£7 over Q(ix) of rank at least 3, Stewart and Top
[1995, Theorem 6] found lower bounds for N3(E, x). Lemma 2.1. If F is a field of characteristic different
Mestre announced in [1998, Theoreme 2] that if the from 2, A is an elliptic curve over F, and K is an
torsion subgroup of E(Q) contains Z/2Z x Z/4Z, abelian extension of F with Gsl(K/F) ^ (Z/2Z)d,
then E has a (nonconstant) quadratic twist over then
Q(u) of rank at least 3. mnk A(K) = ^ r a n k ^ l x ( F )

For certain elliptic curves E, Howe, Leprevost, x
and Poonen constructed polynomials g(u) of degree where the sum is over characters \ : Gsl(K/F) ->
6 such that the twist Eg(u) has rank 2 over Q(u). {±1}, and Ax is A if \ = 1 and otherwise Ax is the
See [Howe et al. 2000, Proposition 4]. quadratic twist of A corresponding to x-

In this paper we describe a method (Section 2)
r • iX i ,. , . , r Corollary 2.2. buppose h is an elliptic curve overO*
for constructing (nonconstant) quadratic twists of /rwTw ,L * u **/f J—\ J- *• \
IP (Tit \ r i / x i ±\ o J O j u • 9i>--<>9r £ Q(*) ? *Ae /le/ds Q(*,-v/ft) «re distinct
E over Q(u) of ranks (at least) 2 and 3, and obtain * ' . ' . ^ w . rt^/^ \ Y ^ ^^^wy \ y . . quadratic extensions of Q(t), and rankEg.(Q(t)) >
further examples. In the rank 2 case (Section 3) ^ „ . m? y*\^-\ J/

, ,u , ,, . ,, , ,, , 0 for every i. Then
we show that this method recovers the above men-
tioned results of Howe, Leprevost, and Poonen and rankE5l(Q(t, yfg^gi,..., y/gigr)) ^ r-
of Mestre. The rank 3 cases (Section 4) include jf in addition Q(«, v ^ I ^ , . . . , y/g^) = Q(u) for
Mestre's curves and some other infinite families. In Someu, andg(u)=gi(t), thenmnkEgiu)(Q(u))>r.
Section 5 we use results of Stewart and Top to ob-
tain lower bounds for Nr(E,x) (and for N^+1(E,x), Proof' T a k e A = Egi, F = Q(t), and
subject to the Parity Conjecture) for these exam- K — Q(t, ^fg^gi,..., y/gigr)-
pies, with r — 2 or 3. ^ T o .
F ' By Lemma 2.1,

The idea behind the method is that given an el-
liptic curve E over Q(t), it is easy to find twists of rank^x(Q(t , y/g^,..., y/fhifrj)
E of rank r over extensions K/Q(t) with v ^

> rank£9l(Q(t)) + ^rank£S l ( 9 l 9 i )(Q(*))
<=2

Gal(JT/Q(t)) ^ (Z/2Z)r"1. = J]rank£;Pi(Q(i)) > r.
This proves the first part of the corollary, and the

When r < 3, we show how to do this with K = Q(u) second is immediate. •
for some u, for certain families of curves. G i v e n a n e l H p t i c c u r v e E o v e r Q j w e w a n t t o u s e

We used PARI and Mathematica to perform the Corollary 2.2 to construct twists of E over Q(u) of
computations in this paper. The results of the com- «large» r a n k T h e fono w i n g i e m m a prOvides us with
putations, including those which are too long to dis- e l e m e n t s g € Q(t) such that rank Eg(Q(t)) > 0.
play in the paper, are available electronically; see
the section on Electronic Availability at the end of L e m m a 2-3- Suppose E is the elliptic curve over Q
this article. After writing this paper we learned that defined by y2 = f(x). Then for every nonconstant

the method we use here to construct rank 2 and 3 h e Q(f) we have

quadratic twists is essentially the same as one of rankEfih<t))(Q(t)) > 0.
the methods used by Mestre to prove the results an- . , , . , .,
nounced in [Mestre 1998]. Since Mestre's proofs and J*** ^ h e Pomt (M0,1) belongs to Ef{h^(Q(t)).

v ., , . .̂ r ,, ^ . , -, n ̂  . , bince this point is nonconstant, it cannot be a tor-exphcit descriptions of the twists he obtains have .
not been published, and we need explicit forms of
these twists for the applications in Section 5, we in- Remark 2.4. Conversely, if g G Q(t) and Eg(Q(t))
elude the details here. has positive rank, there is an h G Q(t) such that
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Eg = Ef(h(t))- To see this, let (/i, k) be a point of To apply Propositions 2.7 or 2.8, we want to find
infinite order in Eg(Q(i)), and then / o h = k2g. elements h e Q(t) such that / o h = kfj2 with

j G Q(t), fc G Q[t], and fc linear. The following two
To apply Corollary 2.2 we also need to know when .,. . L J, .U1 f J , , , .
^, i. N . . . . n i l propositions give two possible ways ot doing this.
y (*> \j9\92-> • • • 5 \j9\9d) 1S a rational function field.
For this we use the following well-known result. Proposition 2.9. Suppose

Lemma 2.5. Let k e Q[t] be a nonconstant squarefree ^u\ _ °^ + P ^ Q/̂ X
polynomial. Then the curve s2 — k(t) has genus t + S
[|(deg k — 1)]. is a linear fractional transformation which permutes

^ r i , , ^ e roots of f. Then
Corollary 2.6. (i) If k e Q[t] is squarefree and 1 <

degk < 2, then the function field Q(t, >/fc) Aas /W*)) = /(<*)(* + <*)/(*)(* + ̂ )"4-
#enns zero. Proo/- B o t l l s i d e g h a v e t l i e g a m e (jj^g^^ a n cj evaluate

(ii) / / fci, k2 G Q[t] are linear and linearly indepen- to f( ) t t — n
den£ overQ, then the function field Q(t, v^T? V ^ )
/ias /̂en^5 ^ero. Remark 2.10. Suppose ^ is an elliptic curve Y2 =

f(X) with / a monic cubic, and suppose (p : E -> E
Proof. The first statement is immediate from Lemma ig a n i s o g e n y^ T h e n ^ y ) = fatf), YVy{X))
2.5. The second statement follows without difficulty w i t h ^ ^ € Q ( t ) ? s i n c e t h e x . c o o r d i n a t e o f ^ i s

by applying (i) first to the extension Q(t v ^ ) / Q ( t ) , a n e v e n f u n c t i o n o n E and the ^-coordinate is an
and then to the extension Q(t, y/ku yJk2)/Q{t, V^i). o d d f u n c t i o n

D
Proposition 2.11. Suppose E is an elliptic curve Y2 —

If git) € Q(t) C Q(«), then 5(«) € Q(W) will denote / - ( x ) wUh J fl m o n - c cu&ic> ^ 5 u p p o s e ^ . ̂  _^ ^
the element 5(t(n)), where t(u) is the image of t in ^ fln isogeny Lef ^ md be as in Remark 2 1Q

Q(u). We regard / as an element of Q[t\. rr
The next two propositions summarize a method at + 3

for producing twists of E over Q(u) with ranks (at ^v) = fix ^ Q w
is a linear fractional transformation which sends the

Proposition 2.7. Suppose h G Q(t) is such that f oh = roots of f to the roots of g, and if' h(t) = (px(fJL{t)),
kfj2 with j G Q(t), k G Q[t], and k squarefree. then
Ifdegk = 1, t/ien the function field Q(t,^k({j) = _ . x w / f ^ ^ ( M ^ l V
Q(w) withu= y/k(t), and we have deg f(u) = 6 and M^WJ - / W ^ + d ; /W^ (t + 5)2 J *
rank^(tt)(Q(u)) > 2. Ifdegk = 2 ^the curve pmof R e m ^ = y 2 2 =

, = fc(t) /.a, a n i t o n a i ^ n * tten Q(t, V3b) = f{X)(py{Xy, A s i n t h e p r o o f o f Proposition 2.9,
Q(u) for some u, and rankE/(w)(Q(u)) > 2. y

Proof. This follows directly from Corollary 2.2 (with / ( M ( < ) ) = / ( " ) ( t + 5 ) / ( t ) ( * + S)~*
9\ — f and 92 = f °h), Lemma 2.3, and Corollary and the identity of the proposition follows. •
9 (\ I—I

Remark 2.12. Suppose g{u) G Q[u] is squarefree and
Proposition 2.8. Suppose huh2 G Q(t) are swc/i */iat nonconstant, and let C be the curve s2 = g(u). Then
foK = kjj2 for * = 1,2, mt t j , G Q(t), k, G r a n k E (Q(M)) = rankHomQ(Jac(C),E) < genusC;
Q[tj, ana ki linear and ^-linearly independent. If
the curve s2 = fc^t), r2 = k2(t) has a rational point, s e e [Stewart and Top 1995, § 4].
then the function field Q(t, \/^L V^2) — Q(^) /or
some u, and rank£7/(u)(Q(tt)) > 3. 3. RANK 2

Proof. This follows directly from Corollary 2.2, Lem- The following statement is a reformulation of a re-
ma 2.3, and Corollary 2.6. • suit of Howe, Leprevost, and Poonen in a special
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case. The proof below is different from theirs, and We illustrate Theorem 3.1 by using the method of
uses the method described in the preceding sections. Section 2 to construct some explicit families of ex-

. _ „ amples. In Section 5 we will make use of the explicit
Theorem 3.1 Howe et al. 2000, Proposition 4 . Sup- r r,, T • i u i

.L ^ J ^ forms oi the polynomials g below.
pose that either Tr ^ • i r , • /n, -, -ci/^\ i
^ It h is an elliptic curve over Q and -c/(4J)) has a
(a) E[2] has a nontrivial Galois-equivariant automor- P o i n t o f o r d e r 2> w e m aY assume by translating the

phism and Endc(£0 ^ Z[i], or x-coordinate that (0,0) is a point of order 2, and
(b) E has a rational subgroup of odd prime order p h e n ce E is of the form y2 = x3 + ax2 + bx.

IA y ̂  LV Ĵ Corollary 3.3. Suppose that E is y2 = x3 + ax2 + bx
Then there is a squarefree polynomial g(u) of degree w^h a, fr G Q, afc 7̂  0, 6 7̂  4a. Let
6 such that the twist Ea has rank two over Q(u).

g(u) = -ab(u2 + b2)(u4 + 2b2u2 - a2bu2 + b4).
Proof. Suppose first that we are in case (a). Let h{t)
be the linear fractional transformation which (after Then Eg(u) is an elliptic curve over Q(u) of rank 2,
identifying the roots of f(x) with the nonzero ele- with independent points of infinite order
ments of E[2]) agrees with the given automorphism
of E[2] on the roots of / . It follows from the Galois- / u2 + b2 1 \ / b(u2 + b2) b \
equivariance of the automorphism that h G Q(t). If \ ab a2b2)'> \ au2 a2u3)'
h(t) = at + 0, then (since h{t) ^ t) we must have Proof T h a t t h e s e p o i n t s b e l o n g t o Eg(Q(u)) can be
a = - 1 , and then the set of roots of / must be of checked directly. Since they are nonconstant, both
the form {§ - a, f, f + a} for some nonzero a. But p o i n t s h a v e infinite order. The automorphism of
this contradicts the fact that End c (#) / Z[i], so h Q(u) whi ch s e n d s u to -u fixes the first point and
cannot be a linear polynomial. Hence in this case s e n d s t h e s e c o n d p o i n t to its inverse, so they are
the theorem follows from Propositions 2.9 and 2.7 independent in Eg{Q(u)). Since degg - 6, Remark
and Remark 2.12. _ 2.12 and Lemma 2.5 show that the rank cannot be

Now suppose we are in case (b). Let E be the greater than two. •
quotient of E by the given rational subgroup. Then
E is an elliptic curve defined over Q by a Weier- Remark 3.4. Corollary 3.3 was obtained through the
strass model y2 = / (x) , and there is an isogeny method of Propositions 2.7 and 2.9 as follows. Set
if : E -> E of degree p, also defined over Q. Let h(t) = -bt/(at+b), the linear fractional transforma-
h(t) = ipx{fJ,(t)) where (px is the x-coordinate of the tion that switches the two nonzero roots of / . (This
isogeny <p (as in Remark 2.10) and fi is the the lin- is where we use that / has a rational root; if not,
ear fractional transformation which maps the roots h would not have rational coefficients.) By Proposi-
of / to the roots of / in the same way as the dual tions 2.7 and 2.9 we see that EfW has rank at least
isogeny (p maps E[2] to E[2]. Since <p is defined over 2 over Q(t, ^-b{at + b)) = Q(u) where we can take
Q, 11 G Q(*). If fjb(t) = at + (3, then after replacing u = y/-b(at + b). We then have t = -{u2+b2)/{ab),
f(x) by f(x + /?) we may assume that (5 = 0. Then and writing the curve Ef(t) and the points (t, 1),
multiplication by a sends the roots of / to the roots (h(t), y/f (h(t))/f (t)) in terms of u we obtain the
of / , so E is the twist of E by a. Let 1 : E -> E be data in Corollary 3.3.
an isomorphism over C. Then ip o t G Endc(-K) and
(^ o tf = -p. This is impossible since we assumed Suppose now that E has a Q-rational subgroup of
that y ^ $ Endc (E), so M cannot be a linear poly- o r d e r 3- T h e ^-coordinate of the two nonzero points
nomial. Now the theorem follows in this case from i n t h i s subgroup is rational, and after translating
Propositions 2.11 and 2.7 and Remark 2.12. • w e m a y v*™™ t h a t t h i s ^-coordinate is zero. With

this normalization one computes that E has a model
Remark 3.2. If E has a rational point of order 2 and of the form
j(E) / 1728, then hypothesis (a) of Theorem 3.1
holds. y2 = x3 + (b2/4:c)x2 + bx + c
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with 6 , c G Q , c / 0 , & 3 ^ 54c2, and conversely every and writing the curve £"/(*) and the points (£, 1),
curve defined by such an equation has a Q-rational (h(t), y/f (h(t))/f (t)) in terms of u we obtain the
subgroup {O, (0, y/c), (0, -y/c)}. data of Corollary 3.5.

Corollary 3.5. Suppose that E isy2 = x3 + (b2/4c)x2 + The following example is contained in [Mestre 1992,
bx + c with 6, c G Q, be ̂  0, b3 ̂  54c2. Le£ Theoreme 1]. We include it here to show how it fits

/ x _ into the framework of this paper. This result in-
cludes the families in Corollaries 3.3 and 3.5 above.

-6c(2^+(18c 2 -6 3 )u 4+(54c 4+26 3c 2 )^ 2
+54c 6 -6 3c 4 ) . T h e a d v a n t a g e s o f t h o s e c o r o n a r i e s i s that the poly-

Then Eg{u) is an elliptic curve over Q(u) of rank 2, normals g{u) have smaller degree, which will lead to
with independent points of infinite order stronger results m Section 5.

/ u2 + 3c2 1 \ Theorem 3.7 [Mestre 1992]. Suppose that E : y2 =
V 2bc ' 46 2 c 2 / ' x3 + ax + b is an elliptic curve over Q with ab ̂  0.

/cg(u)-b4u2(u2-c2)2 cg(u) + 3b4u2(u2-c2)2\ Let
V 4b2CU2(u2 + 3c2)2 ' 8b3CU3(u2+3c2)3 ) ' g ^ = _ab{b2{u4 + u2 + 1)3 + a3u4^2 + l)2^u2 + 1y

Proof. As with Corollary 3.3, the simplest proof is a ,™ ^ , 7 , 7 , 0 /rw \
. _ I/ien ii/0(n) /ms ranA; at least 2 over Ofix).

direct calculation. D
^. 11 or i - i i i i Proof. Let f(x) = x3 + ax + 6,

Remark 3.6. Corollary 3.5 was obtained through the
method of Propositions 2.7 and 2.11 as follows. The , ,,x _ b(t3 - 1) _ fr(£3 - 1)
quotient of £ by the subgroup of order 3 generated 1 a(t2 — 1 ) ' 2 at(t2 — 1) '
by (0, V5) is the curve E given by F^ = f(X) where ^ a p p l y C o r o U a r y ^ ^ ^ ^ = / Q ^ ^ % = ^
- , 362 6(63 - 54c2) (63 - 54c2)2 D

Let cp : E -^ E be the isogeny given by 4. RANK 3

((z^fX), yo9 (X)), Suppose for this section that E(Q) contains 3 points
of order 2, i.e., f{x) has three rational roots. After

e r e translating and scaling (scaling corresponds to tak-
-27c3x3+2762c2x2-(964c-486fec3)x+&6 ing a quadratic twist, which is harmless for our pur-

_ -10863c2+2916c4 poses) we may assume that f(x) = x(x - l)(x - A)
*x ~ 243c3x2 ' with A G Q - {0,1}.

27c3x3-(964c-4866c3)x+2fe6-21663c2+5832c4 S u p p o s e a i s a P e r m u t a t i o n o f t h e r o o t s & ^ A> o f

<Py =
 3 . / . There is a unique linear fractional transformation

ha{t) € Q(t) which acts on {0,1, A} as a does. By
The linear fractional transformation //(*) that sends Proposition 2.9, as long as ho(t) is not linear there
the roots of / to the roots of / in the same way that a r e ^ € Q^ a n d k<j G Q ^ ] s u c h t h a t foh^ = k j ^
<p sends E[2] to E[2] is I n OT(^er t o u s e t h e s e /iCT in Proposition 2.8, we

(b3 — 54c2)t W1^ nee<^ t o find ^ I , ^ such that the curve defined
~ Qc(2bt + 3c)' k y r 2 = kffi(*)> s 2 = ^<r2(*) n a s a rational point.

As in Proposition 2.11 we take h(t) - <px(fi(t)) and Theorem 4.1. Suppose that E is an elliptic curve of
see that Em has rank two over the form V2 = x(x ~1)(x~ A) where A = ~ 2 « 2 with

a € Q x . Lei g(u) &e i/ie polynomial of degree 12 m

Q(f, y/-c(2bt + 3c)) = Q(«), « #wen 6y

where we let u = y/-c(2bt + 3c). Then 5 («) = 2iV(^ - 2L>2)(A^ - 2AD2),

t = -{u2 + 3c2)/(26c), where D = A(2A - l)u2 + 2 - A and
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N = A2 (A + 1)(2A - l)2uA - 4A2(A - 1)(2A - I)?/3 are computed by taking points with ^-coordinates £,

+ 2A(A + 1)(2A2 - 3A + 2)u2 ^i(*)» a n d M*)> and expressing t in terms of u. D

- 4A(A - 1)(A - 2)u + (A - 2)2(A + 1). Theorem 4.2. Let E be given by y2 = z(> - l)(x - A),

Then Eg{u) has rank at least 3 over Q(V), witfi m- ^ e r e e r f f e e r

dependent points (a) A = ( l - a 2 ) / ( a 2 + 2) with a G Q - { 0 , ± l } , or
/ N i \ (b) A = a ( a - 2 ) / ( a 2 + l) with a G Q - {0,2}.

\2i>) 4Z? / Then there is a squarefree polynomial g{u) G Q[u] of

( \2(D2 — d\v(ii — 1VAC2A — 1)?/ 4- 2 — A)) degree 12 m u, which factors into a product of three

—/ wOA 77"^—O\ /o\ T\—r~\ o\2—' quartic polynomials, such that Eg(u\ has rank at least
[A{2A — ±)u — 2A[2A — L)U + A — 2) , , , . .

3 overQ(^). (bee the electronic tiles associated with
1 this paper for the polynomials q(u) and independent

(A(2A - I V - 2A(2A - l)u + A - 2 )3 ) ' p o i n t g o f i n f i n i t e o r d e r }

p 3 = (D2 + 4 A ^ ( ^ ~ 1)(A(2A -l)u + 2-X) Proof T a k e Gl t o be the permutation of {0,1, A}
V A(A(2A - l)u2 - (2A - 4)ix + A - 2)2 ' which switches 0 and 1, a2 to be the permutation

a \ which switches 1 and A, and a3 to be the cyclic per-
" A2(A(2A - l)u2 - (2A -4)u + \ - 2)3 ) ' mutation 0 \-> A i-> 1 K> 0. Let ̂  G Q(t) be the cor-

, _ , ^ i ^ i , ,. r m i A T responding linear fractional transformation. Then
Proof. Take GX to be the permutation of {0,1, A} . zl ° . o _ , . , , . ,2 .

, . , . ^ i n J I J ^ u x i , m Propositions 2.9 we have / o hi = hfjf where
which switches 0 and 1, and a2 to be the permuta-
tion which switches 0 and A. Then the linear frac- ki(t) = (1 — A)((A — 2)t + 1),
tional transformations ^ = ( 1 _ A ) A ( ( A2 _X + X)t_ A)?

^W = (2AA-1)/-A2' *»(*) = ( A ^ T I Ut) = A((A + ^ - A)-
act on {0,1, A} as a, and a2 do, respectively. One N o w s u P P o s e A = ^ ~ a ^ l ^ + 2) w i t h a € Q "
computes in Propositions 2.9 that / o h, = hffi t°> ̂  T h e n k* a n d , *» a r e Q" l i n e a r l y independent,
and / o / ! ^ A;2/i2

2 where a n d s e t t i n S *«> = 2 A / ( A + ^ w e find

ife1(t) = ( l - A ) ( ( A - 2 ) t + l ) , A;1(i0) = a 2 ( A - l ) 2 , k2(t0) = a2A2(A - I)2 .

fc2(<) = A(l — A)((2A — \)t — A2). These formulas give us a rational point on the curve

If a ^ 0, then kx and k2 are Q-linearly independent. r 2 = fcl^)'s = k ^ -
Setting t0 = (A + l ) /2 , and using that A = -2a 2 , I f A = <a - 2 ) / ( ° + l) w i t h « ^ Q - {0,2}, then
one obtains ^2 a n d ^3 a r e Q- l m e a r ly independent, and setting

to = I/A we find
fci(to) = fc2(to) = a 2 ( A - l ) 2 . 2 2

These formulas give us a rational point on the curve k2(t0) = (A — I)2 , ^3(^0) — ( 2 1— ) *
of genus zero defined by r2 = ki(t),s2 = k2(t). Using ^
this point one computes that Q(t, y/k^t), y/k2(t)) = These formulas give us a rational point on the curve
QO) , where r2 = fc2(t), s

2 = k3(t).
,—— , , The theorem now follows from Proposition 2.8. •

= y/3^0t)-o(A-l)
U /k (t) — a(X — 1)' ^ e n e x t e x a m P l e applies to essentially the same

curves as [Mestre 1998, Theoreme 2].
and then t — N/2D2 (where N,D are defined in
terms of A,u in the statement of the theorem). Thus, Theorem 4.3. Suppose E[2] C E(Q) and E has a
if g(u) is as in the statement of the theorem, we ob- rational cyclic subgroup of order 4. Then E has a
tain f(t) = g(u)/(4D3)2 and the theorem follows model
from Proposition 2.8. The 3 points of infinite order y2 = x{x — b)(x — a2b)
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where a, b G Q x and a ^ 1. Let g(u) be the polyno- corresponding linear fractional transformation. One
mial of degree 11 given by computes in Propositions 2.11 and 2.9 that f oh1 =

/ \ AI (t i\2 \ kifj? and f o h2 = k2fj
2 whereg(u) = -4bu[(a- lyu- a) u J1 J JJ2

x (a2(a2 - 3a + 4)u - (a2 + l)(a - 1)) **(*) = (a " I)o6((a2 ~ 3a + 4)t - a(a + 1)6),

x (a(a2 - 3a + 4)u2 - 2a(a - l)u + a + l) M*) = &((a2 + l)t - a26).

x (a(a + l)(a - I)2(a2 - 3a + 4)u2 Setting t0 = a2b we find

- 2a(a - l)2(a2 + l)u + (a2 + I)2) k^U) = (a - l)4a2&2, k2(t0) = a4fo2.

x (a (a — 1) (a —3a + 4) u These formulas give us a rational point on the curve
- 4a2(a - I)3(a2 - 3a + 4)u3 defined by r2 = fci(t), s2 = fc2(t). Using this point

+ 2(a - I)2(3a4 - 6a3 + 5a2 + 2)u2 o n e computes that

- 4a(a - l)2(a2 + l)u + (a2 + I)2). Q(t, \A(*), VM*)) = QM,

T/ien ^ ( w ) /̂ a5 ranfc at least 3 over Q(ifc). (See the where
associated electronic files for 3 independent points _ yk\{t) — (a — l)2a6
of infinite order.) y/k2(t) - a2b

Proof. We may write E as y2 = /(a;), where / has We can solve for t in terms of u (see the associ-
3 rational roots. If C4 denotes the rational cyclic ated electronic files). The theorem then follows from
subgroup of order 4, then 2C4 contains a rational Proposition 2.8. •
point, and we may choose our model so that this

• x • (a n\ -r* ^ n n x r i» i. L Remark 4.4. The theorems above give certain mii-
point is (0,0). Denote the other roots of / by b °

j L \ T r ^ - J. £ n J (rw • -J. nite families of curves which have twists of rank (at
and 6A. If Q is a generator of C4 and x(Q) is its _ N _ , N m l p

 v

-,. , ,, />nx _ ^ , . . . least) 3 over Q m . The restriction to these fami-
x-coordmate, then x(Q) G Q and a computation , , . ., ,

/ ^ o A TO TJ \ • j hes makes it possible to find rational points on the
gives x(Q) — Xb . Hence A is a square, and we ^ 9 9 ^

., x o vu ^ x rr̂ i IT. • i genus zero curves r = kAt),s = ko(t) which arise
write A = a2 with a e Q . Thus E is given by &

 T i i
2 _ / ? / x x ,x x 2^\ m the construction. It is possible to carry out the
m, ,. , £ r-. i_ n x J i_ /r* r̂ \ construction for many curves not in these families.
The quotient of E by the group generated by (0,0) .

We give one example in the next theorem.
E : r 2 = f(X) := X(X + (a - 1)26)(X + (a + 1)26). TheOrem **' The elliptic CUrve

The isogeny from E to E is 6 ( « " " 3 3 ^ ~ 3 3 ^ + ^ = X* ' X

(X Y) — ( (X) Y (X)) ^as rank °^ least 3 overQ(u), with independent points
, / u4-6u2 + l 2 \where P, =

m (X + (a- l)2
&)(X + (a + l)26) V 3(«> + l )» '9(«» + l ) . ; '

V*(X> = 4X ' p = ( n4 + 6u2 + l 2 \
_ X 2 _ ( a2 _ 1)2&2 2 " V 3(«2 - 1)2 ' 9 ( U 2 _ 1 ) 3 ) '

The linear fractional transformation \ 6u2 ' 36u3 /
/,x _ a ( a + l ) ( a ~ l)2fc(^ ~ fy Proof. The simplest proof is a direct computation.

— (a2 — 3a + 4)t + a(a + 1)6 To construct this example one takes E to be y2 =
, ^ r „ ̂  ^ r -x n L 7 ,. N x3 — x and proceeds exactly as in the proofs of The-

sends the roots of f to the roots of f. bet n,im = , , . , ^ . , , , x , *\ / / r t ,x
w f / / / f u f W r t ^ ; iW orems 4.1 and 4.2, with ^i(t) = (t + l ) / (3 t - l ) and
VxlMWJ e W j . ^ ( i ) = ( _ i + 1 ) / ( 3 f + 1 ) w h i c h i v e s

Let a be the permutation of {0, b, a2b} that in- w v y / v n to

terchanges 6 and a2b, and let /i2 G Q(i) be the fci(t) = - 6 * + 2, fc2(i) = 6i + 2.
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The curve defined by r2 = fci(t),s2 = k2(t) has a Suppose further that the irreducible factors of g all
rational point (r, s,£) = (2,0,—|), and using this have degree at most 6.
one computes that .... „ _ .

^ (N) For x » 1,

Q(t, v ^ , v ^ ) - Qfa), WrCE, * ) » *1A.
where (iii) Suppose that the Parity Conjecture holds for all

^ _ u — 6u + 1 twists of E, and that there is a rational number c
3 (^ 2 + ! ) 2 ' such that g(c) ^ 0 and w(Eg{c)) = ( - l ) r + 1 . Then

Proposition 2.8 with this input leads to the data for x ^> 1,
a b o v e - D Nr

+
+1(E,x)^x1/k.

Remark 4.6. Let g(u) = 6(w3 - 33n2 - 33u + 1). Over Pmof W i t h o u t l o s g o f g e n e r a l i t y w e m a y a s s u m e t h a t

Q(n), the rank of Eg is 1, that of Eg(u2) is 2, and d e g 5 > ^ s i n c e i f n o t ) r = 0 b y R e m a r k 2A2 a n d

that of Eg(ui) is 3. Unfortunately this pattern does t h e r e i s n o t h i n g t o p r o v e -

not continue; the rank of EgW is 3. Replacing u L e t p ^ y ) = Y™g(X/Y), a homogeneous poly-
by yfi in P1 and P2 above gives two independent n o m i a l o f d e g r e e 2k A s s e r t i o n s ( i ) a n d ( i i ) a r e im_

points on Eg(v,2). mediate from Theorems 2 and 1 of [Stewart and Top
1995], respectively, applied to F.

5. DENSITIES Suppose now that the Parity Conjecture holds,

Recall the definitions of rE(D) and t h e irreducible factors of g all have degree at most
6, and c G Q is such that g(c) ^ 0 and w(Eg(c)) =

Nr(E, x) > N+(E, x) ( - l ) r + 1 . Choose a closed interval J c R with ratio-
from the introduction. In this section we use results nal endpoints that contains c but no roots of g, and
of Stewart and Top [1995] to obtain lower bounds let fj,(u) = (au+/3)/(^u + 8) G Q(u) be a linear frac-
for Nr(E, x) (and, subject to the Parity Conjecture, tional transformation which maps [0, oo] onto / and
for N+(E, x), as in [Gouvea and Mazur 1991]), with (for simplicity) such that /i(l) = c. Replace g by the
E and r provided by the examples of the previ- polynomial (7^ + S)2k(g o JJL) of degree at most 2k.
ous sections. The first two assertions of the follow- Then we still have that r = rankEg(Q(u)), and our
ing theorem are immediate from [Stewart and Top construction guarantees that this new polynomial g
1995, Theorems 2 and 1], and were used in that pa- also satisfies:
per in several families of examples. What is new (a) t h e c o n s t a n t t e r m o f g a n d t h e coefficient of v?k

here is that by using the examples of the previous a r e b o t h n o n z e r o

sections we have more curves to which we can ap- (b) t h e i r r e d u c i b l e f a ; t o r s o f g h a v e d e g r e e a t m o s t 6?

ply these results. In addition, we show in Theorem (c) QN _̂  Q a n d <E x _. (_i)r+i?

5.1(iii) how to use [Stewart and Top 1995, Theorem ((J) g^uyg^ i s p o s i t i ^ i f u > 0 .
1] along with the Parity Conjecture to obtain results
for higher rank. See also [Gouvea and Mazur 1991; Further, multiply g by the square of an integer to
Stewart and Top 1995 §121. clear denominators of the coefficients. If A is an

If A is an elliptic curve over Q, let w(A) € {±1} elliptic curve over Q, write cond(^) for its con-
denote the root number in the functional equation ductor. If further 5 G Q x and cond(A) is rela-
of the L-function L(A,s). The Parity Conjecture t i v e l y P r i m e t o t h e conductor of the character XD
asserts that w(A) = (—i)rank-A(Q). associated to the quadratic extension Q{VD)/Q,

then w(AD) = XD(-cond(A))w(A). Applying this
Theorem 5.1. Suppose that E is an elliptic curve over ^ A = E a n d D = g(a/b)/g{i) for a and
Q, and g € ®[u] is nonconstant and squarefree. Let b p o g i t i v e i n t e g e r g c o n g r u e n t t o 1 m o d u l o a n i n t e .
r = rank£9(Q(u)) and k = [-2(degg + l ) j . g e r M s u f f i c i e n t l y d i v i s i b ie by the prime divisors of

(i) For x 3> 1, 2cond(.Es(i)), and using (c) and (d) above, gives that

Nr(E,x) » xl'k/\og\x). w{Eg{a/h)) = w(Eg(1)) - ( - l ) r + 1 . (5-1)
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Let S be the set of squarefree integers D such that Theorem 5.4. Suppose that E[2] C E(R) and either
D = F(a,b)/v2 for some a, b,v G Z + with a,b < x, .

, \ ' ,T ^ T n (a the largest or smallest root of t is rational, or
a = b = 1 mod M; then define )J y J J

(b) E has a rational subgroup of order 3.
S(x) = {D eS :\D\< x}.

If the Parity Conjecture holds for all twists of E
By [Stewart and Top 1995, Theorem 1], for x » 1, then j o r x ^ i^

#(S(x))»x"*. (5-2, ' i V J + ( B , , , » , . / » .

(Note that as stated, the theorem cited does not
include the restriction a, b > 0 present in our defi- Proof- Suppose first that we are in case (a). Translat-
nition of S(x). However, the proof given there does i n § t h e S i v e n rational root of / we may assume that
restrict to positive a, b.) /(*) = ̂  + a * 2 + bx w i t h b > °- S i n c e / h a s 3 r e a l

It follows from [Silverman 1983, Theorem C] that r o o t s w e a l s o h a v e a2 - 26 > a2 - 46 > 0. In partic-
rE(D) > r for all but finitely many D G S. However, u l a r ' &(«2-26) > 0. Let g(u) be as in Corollary 3.3.
by (5-1), if D G S then w(ED) = ( - l ) r + 1 so the T h e n 9 is divisible by 9l(u) = u4 -b(a2-2b)u2+ b4.
Parity Conjecture tells us that rE(D) / r. Hence W e c o m P u * e t h a t

rE(D) > r + 1 for all but finitely many D G 5, 9l(Jb(a*-2b)) = - I a
2 6 2 (a 2 -46) < 0,

and so assertion (iii) of the theorem follows from
the Stewart-Top bound (5-2). • but gi(u) is positive for large u, so gx, and hence

Corollary 5.2. Suppose that E is an elliptic curve over 9, has real roots. Hence the Corollary in this case
Q, and g G Q[u] is a nonconstant squarefree poly- f o l l o w s f r o m Corollaries 5.2 and 3.3.
nomial whose irreducible factors have degree at most Similarly, suppose we are in case (b). Then as dis-
6. Let r = rankEg(Q(u)) and k = §(deg<7 + l)]. / / cussed before Corollary 3.5, E has a model y2 = x3+
the Parity Conjecture holds for all twists of E, and (b2/^)x2 + bx + c with 6, c G Q, c ̂  0. The discrim-
g has at least one real root, then for x » 1, i n a n t o f t h i s m o d e l i s AW = HbS-54c2). Since

all the 2-torsion on E is defined over R, we have
N?+1(E,x) > x11 . A ^ ^ > 0 L e t g(u^ b e a s i n Corollary 3.5. Then

Proof. If g has a real root then g(Q) contains both g(u)/(-bc) is positive for large u, but g(0)/(-bc) =
positive and negative values (g has no multiple roots -c4(63-54c2) = - | c 4 A(E) < 0. Hence g has real
because it was assumed to be squarefree). Thus by roots, so the Corollary in this case follows from
a result of Rohrlich [1993, Theorem 2] we have Corollaries 5.2 and 3.5. •

{w(Eg(a)) : o G Q , g(a) / 0} = {1, —1}. Theorem 5.5. Suppose E is defined by

Now the corollary follows immediately from Theo- 2 _ / _\\(x _ \\
rem 5.1 (iii). •

We now give some applications of Theorem 5.1 and ^ere either A = -2a2 , or A = (1 - a")/(a" + 2), or
Corollar 5 2 A = a(a - 2)/(a2 + 1), with a G Q and A ̂  0. Then

for x » 1,
Theorem 5.3. Suppose that either AT ( \ 1/6

l\%yXj s2> X

(a) E[2] has a nontrivial Galois-equivariant automor-
phism and Endc(E) ^ Z[i], or Pmo1 T h i s i s i m m e d i a t e f r o m Theorems 5.1(ii), 4.1,

(b) E has a rational subgroup of odd prime order p 42> a n d 4"5 ( t h e l a s t t o h a n d l e t h e e x c l u d e d v a l u e

and Endc(E) J> Z[J=p\. a = ° i n T h e o r e m 4-2(a))- D

Then for x >̂ 1 Theorem 5.6. Suppose E[2] C E(Q) and E has a
, ,o rational cyclic subgroup of order 4. Then:

N2(E,x)^x1/s. y P J

Proof. This is immediate from Theorems 3.1 and '
5.1(ii). D N3(x) » x x ' \
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(ii) if the Parity Conjecture holds for all twists of E, with this M. If Conjecture 6.5 is true and k > 3,
then for a ; > l , then for x >̂ 1,

N+(x) » xxl\ #(S(x)) » xx'k.

Proof. Assertion (i) follows directly from Theorems Pmot fffl'leZ a n d F ( a ' 6 ) + °> l e t S ( ^ M ) )
5.1(ii) and 4.3. The polynomial g of Theorem 4.3 d e n o t e t h e carefree part of F(a, b), i.e., the unique
has degree 11, and hence it has a real root, so (ii) s<lu a r e f r e e i n t e g e r D s u c h t h a t ^ M ) = Dn2 for
follows from Corollary 5.2 and Theorem 4.3. • s o m e i n t e § e r n' F o r e v e r y squarefree integer D let

AD denote the hyperelliptic curve Dv2 = g('u) of
Remark 5.7. The conclusions of Theorems 5.3, 5.4, genus k — 1 > 2. The map
5.5, and 5.6 hold when E is y2 — x3 — x, by Remark , _ N , /t _ . /—-——-—x

A a rj,, K , i n „ K o (a, 6) H-> (a/6, ±b~kJF{a,b) D)
4.6, Theorem 5.1, and Corollary 5.2. v ' J v 7 ' v v ' y/ J

defines an injection

6. REMARKS AND QUESTIONS {(a, b) G Z2 : (a, 6) = 1, s(F(a, 6)) - D}

Problem 6.1. Find a hyperelliptic curve C of the form ^ ^ ( Q ) / ! 1 1 1 1 }
52 = 5(w) with g(ifc) G Q[i6] such that the jacobian (where - 1 denotes the hyperelliptic involution on
of C is isogenous over Q to Er x B for some elliptic AD). Thus by Conjecture 6.5 the order of the set on
curve E and abelian variety B, either with r > 4, the left is bounded by B(k - 1). Let
or with both r = 3 and d imB < 1. ^ 2 7X

i?(x) = {(a, 6) G Z2 : 1 < a, b < x, (a, 6) = 1,
Remark 6.2. A solution (C,E,r,B) to Problem 6.1 p(a b) ̂  0 a = b=l m o d M } .
would imply, by Theorem 5.1(i) and the equality in
Remark 2 12 that There is a constant K = K(g) such that \F(a, b)\ <

Kx2k if (a, b) G R(x). It follows that
_l/(l+genusC) _l/(l+r+dimS)

log (x) log (x) #^W; > B(k-l)
Remark 6.3. The reason for the restriction on r in for x > L B u t s h o w i n g t h a t #(i2(x)) > X

2/M2 for
Problem 6.1 is that we already have examples when x > i i s standard; the proposition follows. •
r < 3. Theorem 3.1 gives numerous examples with
r = 2 and dim B = 0, and Theorems 4 1 , 4.2 4.3 A C K N O W L E D G E M E N T S

and 4.5 provide numerous examples with r = 3 and
dimB = 2. We would like to thank Jean-Frangois Mestre for

pointing out that the curves with (Z/2Z x Z/8Z)-
Remark6.4. The results of Stewart and Top 1995 f • • * ± • ̂  ^ u . T i

^ L J torsion are isogenous to twists of the curves in 1 he-
would not be needed in the arguments of Section 5 . n n , -, r̂  i n n r i J i-> • n

r
 & orem 6 of Stewart and Top 1995 , and Brian Con-

if the following coniecture of Caporaso, Harris, and r , 1V , , ,. , , T
& J F ' ' rey for telling us about connections between rank

Mazur were known to hold. More precisely, Propo- i - x - - r T - > J u , . mi j
F J? F heuristics coming from Random Matrix Theory and

sition 6.6 shows that (5-2) above follows easily from r™ t- o A ̂  A
this conjecture.
Conjecture 6.5 [Caporaso et al. 1995]. Fix an inte- ELECTRONIC AVAILABILITY
ger h > 2. Then there is a constant B(h) such
, i , £ ri £ , j n 7 /TN Two userul electronic files are companions to this ar-
that for every curve C of genus a defined over (y), ..
z^rr^O^ <r R/'/)'! ^ e a c a n tound at http://www.expmath.org/

extra/10.4 and at http://www.math.ohio-state.edu/
Proposition 6.6. Suppose g(u) G Z[u] is a square- -silver/bibliography/. One contains several of the
free polynomial, and let k = [|(degg + 1)] and formulas in the paper (including those omitted from
F(X,Y) — Y2kg(X/Y). Fix a positive integer M the statements of Theorems 4.2 and 4.3) in a form
and define S(x) as in the proof of Theorem 5.1(iii), suitable for input into PARI. Another contains the



Rubin and Silverberg: Rank Frequencies for Quadratic Twists of Elliptic Curves 569

same information in the form of a Mathematica note- [Mestre 1992] J.-F. Mestre, "Rang de courbes elliptiques
book. d'invariant donne", C. R. Acad. Sci. Paris Ser. I

Math. 314:12 (1992), 919-922.
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