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We give explicit examples of infinite families of elliptic curves E
over @ with (nonconstant) quadratic twists over Q(t) of rank at
least 2 and 3. We recover some results announced by Mestre,
as well as some additional families. Suppose D is a squarefree
integer and let rg(D) denote the rank of the quadratic twist of E
by D. We apply results of Stewart and Top to our examples to
obtain results of the form

#{D :|D| < x, re(D) > 2} > x',
#{D :|D| < x, re(D) > 3} > x'

for all sufficiently large x.

1. INTRODUCTION

Throughout this paper E is an elliptic curve over Q
defined by a Weierstrass equation y?> = f(z), where
f is a monic cubic polynomial. The curve Dy? =
f(z) will be denoted Ep. When D is a nonzero
integer, let r(D) denote the rank of Ep(Q). Let

N, (E,z) = #{squarefree D € Z : |D| < x
and rg(D) >},

N1 (E,z) = #{squarefree D € Z : |D| < z,
re(D) >, rg(D) =r mod 2}.

Gouvéa and Mazur [1991] showed (using the fact
that the twist Ey(,) has rank one over Q(u)) that if
the Parity Conjecture holds then

NS (E,z) > z/?~e

for all sufficiently large x.

Mestre [1992, Théoreme 1] showed that if j(E) ¢
{0,1728} then there is a polynomial g(u) € Q[u] of
degree 14 such that the twist Ey,) has rank at least
2 over Q(u). Stewart and Top [1995, Theorem 3]
used Mestre’s result to show that

Ny(E, z) > 27 /(log x)?
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for such FE and for all sufficiently large z. For a
special family of elliptic curves E, using a twist of
E over Q(u) of rank at least 3, Stewart and Top
[1995, Theorem 6] found lower bounds for N3(E, x).
Mestre announced in [1998, Théoreéme 2| that if the
torsion subgroup of E(Q) contains Z/2Z x Z/4Z,
then E has a (nonconstant) quadratic twist over
Q(u) of rank at least 3.

For certain elliptic curves E, Howe, Leprévost,
and Poonen constructed polynomials g(u) of degree
6 such that the twist Ey,) has rank 2 over Q(u).
See [Howe et al. 2000, Proposition 4].

In this paper we describe a method (Section 2)
for constructing (nonconstant) quadratic twists of
E over Q(u) of ranks (at least) 2 and 3, and obtain
further examples. In the rank 2 case (Section 3)
we show that this method recovers the above men-
tioned results of Howe, Leprévost, and Poonen and
of Mestre. The rank 3 cases (Section 4) include
Mestre’s curves and some other infinite families. In
Section 5 we use results of Stewart and Top to ob-
tain lower bounds for N,(E,z) (and for N, ,(E,z),
subject to the Parity Conjecture) for these exam-
ples, with » = 2 or 3.

The idea behind the method is that given an el-
liptic curve E over Q(t), it is easy to find twists of
E of rank r over extensions K/Q(¢) with

Gal(K/Q(t)) = (Z/2Z) .

When r < 3, we show how to do this with K = Q(u)
for some wu, for certain families of curves.

We used PARI and Mathematica to perform the
computations in this paper. The results of the com-
putations, including those which are too long to dis-
play in the paper, are available electronically; see
the section on Electronic Availability at the end of
this article. After writing this paper we learned that
the method we use here to construct rank 2 and 3
quadratic twists is essentially the same as one of
the methods used by Mestre to prove the results an-
nounced in [Mestre 1998]. Since Mestre’s proofs and
explicit descriptions of the twists he obtains have
not been published, and we need explicit forms of
these twists for the applications in Section 5, we in-
clude the details here.

2. CONSTRUCTING USEFUL TWISTS
We begin with the following well-known result.

Lemma 2.1. If F is a field of characteristic different
from 2, A is an elliptic curve over F', and K is an
abelian extension of F with Gal(K/F) = (Z/2Z)%,
then
rank A(K) = ZrankAx(F)
X

where the sum is over characters x : Gal(K/F) —
{£1}, and AX is A if x = 1 and otherwise AX is the
quadratic twist of A corresponding to x.

Corollary 2.2. Suppose E is an elliptic curve over Q,

g1,---,9r € Q(t)%, the fields Q(t,\/g;) are distinct
quadratic extensions of Q(t), and rank E,,(Q(t)) >
0 for every i. Then

rank Eg, (Q(t, /9192 - - -,/ G19r)) > 7.

If in addition Q(t,\/9192,---,+/919-) = Q(u) for
some u, and g(u) = g1(t), then rank Eg,)(Q(u)) > r.

Proof. Take A = E,,, F' = Q(t), and
K = Q(ta \/9192, ey \/glgr)
By Lemma 2.1,

rank Egl (Q(t7 V9192, -+ -5/ glgr))
Z rank Egl (Q(t)) + Z rank Egl(glgi)(Q(t))

=2

= i rank E,, (Q(t)) > r.

This proves the first part of the corollary, and the
second is immediate. O

Given an elliptic curve E over Q, we want to use
Corollary 2.2 to construct twists of E over Q(u) of
“large” rank. The following lemma provides us with
elements g € Q(t) such that rank E,(Q(t)) > 0.

Lemma 2.3. Suppose E is the elliptic curve over Q
defined by y* = f(z). Then for every nonconstant
h € Q(t) we have

rank By () (Q(t)) > 0.

Proof. The point (h(t),1) belongs to Ey) (Q(2))-
Since this point is nonconstant, it cannot be a tor-
sion point. O

Remark 2.4. Conversely, if g € Q(¢) and E,(Q(¢t))
has positive rank, there is an h € Q(t) such that
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Ey, = Eghuy)- To see this, let (h, k) be a point of
infinite order in F,(Q(t)), and then f o h = k?g.

To apply Corollary 2.2 we also need to know when
Q(t, /9192, - --,+/919a4) is a rational function field.

For this we use the following well-known result.

Lemma 2.5. Let k € Q[t] be a nonconstant squarefree
polynomial. Then the curve s> = k(t) has genus

[1(degk — 1)].

Corollary 2.6. () If k € Q[t] is squarefree and 1 <
degk < 2, then the function field Q(t,Vk) has
genus zero.

(i) If k1, ko € QIt] are linear and linearly indepen-
dent over Q, then the function field Q(t, vki, Vkz)

has genus zero.

Proof. The first statement is immediate from Lemma
2.5. The second statement follows without difficulty
by applying (i) first to the extension Q(¢, vk1)/Q(t),

and then to the extension Q(t, vk, vk2)/Q(t, vVk1).
O

If g(t) € Q(t) € Q(u), then g(u) € Q(u) will denote
the element g(¢(u)), where t(u) is the image of ¢ in
Q(u). We regard f as an element of Q][t].

The next two propositions summarize a method
for producing twists of E over Q(u) with ranks (at
least) 2 and 3.

Proposition 2.7. Suppose h € Q(t) is such that foh =
kfj? with 5 € Q(t), k € Q[t], and k squarefree.
If degk = 1, then the function field Q(t,/k(t)) =
Q(u) withu = \/k(t), and we have deg f(u) = 6 and
rank Ef,)(Q(w)) > 2. If degk = 2 and the curve
s> = k(t) has a rational point, then Q(t,vk) =
Q(u) for some u, and rank E,)(Q(u)) > 2.

Proof. This follows directly from Corollary 2.2 (with
91 = f and g, = foh), Lemma 2.3, and Corollary
2.6. O

Proposition 2.8. Suppose hy, h, € Q(t) are such that
fohy = kfi? fori = 1,2, with j, € Q(t), k; €
Q[t], and k; linear and Q-linearly independent. If
the curve s* = ky(t), 7> = ky(t) has a rational point,
then the function field Q(t,vki,Vks) = Q(u) for
some u, and rank E,)(Q(u)) > 3.

Proof. This follows directly from Corollary 2.2, Lem-
ma 2.3, and Corollary 2.6. a

To apply Propositions 2.7 or 2.8, we want to find
elements h € Q(¢) such that f o h = kfj* with
Jj € Q(t), k € Q[t], and k linear. The following two
propositions give two possible ways of doing this.

Proposition 2.9. Suppose

at + (3
7o < Q)

is a linear fractional transformation which permutes
the roots of f. Then

F(A(t) = F(a)(t +0)f(2)(t +0) 7"

Proof. Both sides have the same divisor, and evaluate
to f(a) at t = oo. O

h(t) =

Remark 2.10. Suppose E is an elliptic curve Y2 =
f(x ) with f a monic cubic, and suppose ¢ : E — E
is an isogeny. Then p(X,Y) = (p.(X),Y ¢, (X))
with ¢,, ¢, € Q(t), since the z-coordinate of ¢ is
an even function on E and the y-coordinate is an
odd function.

Proposition 2.11. Suppose E is an elliptic curve Y2 =
f(X) with f a monic cubic, and suppose @ : E—SE
is an isogeny. Let o, and ¢, be as in Remark 2.10.
If

at+ 0
utt) = 52 e @)

is a linear fractional transformation which sends the
roots of f to the roots of g, and if h(t) = @, (u(t)),
then

f(h(t) = f(a)(t +8)f(t) (%,(4{1,_%)2_))2

Proof. By Remark 2.10, f(p,(X)) = Y?¢p,(X)? =
F(X)py(X)?. As in the proof of Proposition 2.9,

F(u(®) = Fa)(t+8)f()(t +6)~*
and the identity of the proposition follows. O

Remark 2.12. Suppose g(u) € Q[u] is squarefree and
nonconstant, and let C be the curve s* = g(u). Then

rank E,(Q(u)) = rank Homg(Jac(C), E) < genus C;
see [Stewart and Top 1995, §4].

3. RANK 2

The following statement is a reformulation of a re-
sult of Howe, Leprévost, and Poonen in a special
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case. The proof below is different from theirs, and
uses the method described in the preceding sections.

Theorem 3.1 [Howe et al. 2000, Proposition 4]. Sup-
pose that either

(a) E[2] has a nontrivial Galois-equivariant automor-
phism and Endc(E) # Z[i], or

(b) E has a rational subgroup of odd prime order p
and Endc(E) 5 Z[\/=p).

Then there is a squarefree polynomial g(u) of degree
6 such that the twist E, has rank two over Q(u).

Proof. Suppose first that we are in case (a). Let h(t)
be the linear fractional transformation which (after
identifying the roots of f(z) with the nonzero ele-
ments of E[2]) agrees with the given automorphism
of E[2] on the roots of f. It follows from the Galois-
equivariance of the automorphism that h € Q(¢). If
h(t) = at + (3, then (since h(t) # t) we must have
a = —1, and then the set of roots of f must be of
the form {£ — a, 2,2 4 a} for some nonzero a. But
this contradicts the fact that Endc(F) # Z[i], so h
cannot be a linear polynomial. Hence in this case
the theorem follows from Propositions 2.9 and 2.7
and Remark 2.12.

Now suppose we are in case (b). Let E be the
quotient of E by the given rational subgroup. Then
E is an elliptic curve defined over Q by a Weier-
strass model > = f(z), and there is an isogeny
Y : E - E of degree p, also defined over Q. Let
h(t) = p.(u(t)) where @, is the z-coordinate of the
isogeny ¢ (as in Remark 2.10) and p is the the lin-
ear fractional transformation which maps the roots
of f to the roots of f in the same way as the dual
isogeny ¢ maps E[2] to E[2]. Since ¢ is defined over
Q, p € Q(t). If u(t) = at + B, then after replacing
f(z) by f(z + 8) we may assume that 3 = 0. Then
multiplication by « sends the roots of f to the roots
off,soEisthetwistofEbya. Let . : E — E be
an isomorphism over C. Then ¢ ot € End¢(F) and
(pot)? = —p. This is impossible since we assumed
that \/=p ¢ Endc(F), so u cannot be a linear poly-
nomial. Now the theorem follows in this case from
Propositions 2.11 and 2.7 and Remark 2.12. a

Remark 3.2. If E has a rational point of order 2 and
j(E) # 1728, then hypothesis (a) of Theorem 3.1
holds.

We illustrate Theorem 3.1 by using the method of
Section 2 to construct some explicit families of ex-
amples. In Section 5 we will make use of the explicit
forms of the polynomials g below.

If E is an elliptic curve over Q and E(Q) has a
point of order 2, we may assume by translating the
z-coordinate that (0,0) is a point of order 2, and
hence E is of the form y? = 2® 4 ax? + bx.

Corollary 3.3. Suppose that E is y*> = x* + ax® + bz
with a,b € Q, ab # 0, b* # 4a. Let

g(u) = —ab(u?® + b*)(u* + 2b*u® — a®bu® + b*).

Then Eg4, is an elliptic curve over Q(u) of rank 2,
with independent points of infinite order

u?+b2 1

(_ ab  a2b?
Proof. That these points belong to E,(Q(u)) can be
checked directly. Since they are nonconstant, both
points have infinite order. The automorphism of
Q(u) which sends u to —u fixes the first point and
sends the second point to its inverse, so they are
independent in E,(Q(u)). Since deg g = 6, Remark
2.12 and Lemma 2.5 show that the rank cannot be
greater than two. O

), (_b(u2+b2) b )

au?  ’ a?ud

Remark 3.4. Corollary 3.3 was obtained through the
method of Propositions 2.7 and 2.9 as follows. Set
h(t) = —bt/(at+b), the linear fractional transforma-
tion that switches the two nonzero roots of f. (This
is where we use that f has a rational root; if not,
h would not have rational coefficients.) By Proposi-
tions 2.7 and 2.9 we see that Ey;) has rank at least
2 over Q(t, 1/—b(at + b)) = Q(u) where we can take
u = y/—b(at + b). We then have t = —(u?+b?)/(ab),

and writing the curve Eyq) and the points (¢, 1),

(h(t),\/f(h(t))/f(t)) in terms of u we obtain the

data in Corollary 3.3.

Suppose now that F has a Q-rational subgroup of
order 3. The z-coordinate of the two nonzero points
in this subgroup is rational, and after translating
we may assume that this z-coordinate is zero. With
this normalization one computes that E has a model
of the form

y* = 2° + (b*/4c)x® + bz + ¢
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with b,c € Q, ¢ # 0, b® # 54¢?, and conversely every
curve defined by such an equation has a Q-rational

subgroup {0, (0,/¢), (0, —/c)}.

Corollary 3.5. Suppose that E is y* = z®+(b?/4c)z*+
bx + c with b,c € Q, be # 0, b # 54c%. Let

g9(u) =
—be(2ul+(18c*—b*)ut +(54c*+2b%c*)u +54c° —b3c?).

Then Ey is an elliptic curve over Q(u) of rank 2,
with independent points of infinite order
(_ u? +3c2 1 )
2bc  4b2c2)’
(cg(u) — bt (u?—c*)? cg(u) + 3b4u2(u2—02)2)
4b2cu?(u? 4+ 3¢2)2 ' 8b3cud(u? 4 3c?)3
Proof. As with Corollary 3.3, the simplest proof is a
direct calculation. O

Remark 3.6. Corollary 3.5 was obtained through the
method of Propositions 2.7 and 2.11 as follows. The

quotient of E' by the subgroup of order 3 generated

by (0, /c) is the curve F given by Y? = f(X) where

5 3b? b(b® — 54c?) (b® — 54c?)?
X)=X3-""_X*— -

H(X) 4c X 6¢? X 108¢?

Let ¢ : E — E be the isogeny given by
(p2(X), Yoy (X)),

where
—27c3234-27b%c? 22— (9b* c—486bc3 ) r+b°
~ —108b%c*+2916c*
Pe= 243¢37? ’
27223 —(9b* c—486bc® ) z+2b°—216b°c*+-5832¢*
Py 729c3 23 '

The linear fractional transformation u(t) that sends
the roots of f to the roots of f in the same way that
¢ sends E[2] to E[2] is

(b —54cP)t
u(t) = 6c(2bt + 3c)

As in Proposition 2.11 we take h(t) = ¢, (u(t)) and
see that Fy;) has rank two over

Q(ta ——C(2bt + 30)) = Q(U),
where we let u = y/—c(2bt 4 3¢). Then

t = —(u® + 3c*)/(2bc),

and writing the curve Ey() and the points (¢, 1),

(h(t),/f(h(t))/f(t)) in terms of u we obtain the
data of Corollary 3.5.

The following example is contained in [Mestre 1992,
Théoreme 1]. We include it here to show how it fits
into the framework of this paper. This result in-
cludes the families in Corollaries 3.3 and 3.5 above.
The advantages of those corollaries is that the poly-
nomials g(u) have smaller degree, which will lead to
stronger results in Section 5.

Theorem 3.7 [Mestre 1992]. Suppose that E : y* =
z2 + ax + b is an elliptic curve over Q with ab # 0.
Let

g(u) = —ab(B?(u* + v + 1) + a®u* (u® + 1)) (u* + 1).
Then Eg4,y has rank at least 2 over Q(u).
Proof. Let f(z) = z3 4 az + b,

b(t3 — 1)
Ca(2—1)

3 _
and ho(t) = -2 =Y

hat) = at(t> — 1)’

and apply Corollary 2.2 with g; = foh; and u = V/%.
O

4. RANK 3

Suppose for this section that E(Q) contains 3 points
of order 2, i.e., f(x) has three rational roots. After
translating and scaling (scaling corresponds to tak-
ing a quadratic twist, which is harmless for our pur-
poses) we may assume that f(z) = z(z — 1)(z — )
with A € Q — {0,1}.

Suppose o is a permutation of the roots {0, 1, A} of
f. There is a unique linear fractional transformation
h,(t) € Q(t) which acts on {0,1,\} as o does. By
Proposition 2.9, as long as h,(t) is not linear there
are j, € Q(¢t) and k, € Q[t] such that foh, =k, fj2.

In order to use these h, in Proposition 2.8, we
will need to find o4, 0, such that the curve defined
by r? = k,, (t), s*> = k,,(t) has a rational point.

Theorem 4.1. Suppose that E is an elliptic curve of
the form y* = z(z — 1)(z — \) where A\ = —2a? with
a € Q. Let g(u) be the polynomial of degree 12 in
u given by

g(u) = 2N (N — 2D?)(N — 2AD?),

where D = A\(2A — 1)u? +2 — X and
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N=XA+12x - 1% -4\ - 1)(2x — 1)
+ 20\ + 1) (222 — 3X 4 2)u?
—AANA=1DA=2)u+ (A -2*(A+1).

Then Eg) has rank at least 3 over Q(u), with in-
dependent points

N 1
P1 = <ﬁ7 m),
P - <A2(D2 — ddu(u— 1)(A2A = Du+2 — X))
i AN —Du2 =222\ —Du+ A1 —2)2 ’

a\
(A2A = 1Du? = 222X — Du+ A — 2)3)7

P — D? + u(u—1)(A2A = Du+2 - )
T ( AARN —1)u?2 — 2A —4u+ A —2)2’

RO N-Dur - A —du+r— 2)3>'

Proof. Take o, to be the permutation of {0,1,\}
which switches 0 and 1, and o, to be the permuta-
tion which switches 0 and A. Then the linear frac-
tional transformations

A%t — \? —t4+ A

(2X — 1)t — A\’ A=2)t+1
act on {0,1,A} as o; and o, do, respectively. One
computes in Propositions 2.9 that f o h; = ki fj?
and f o hy = ko fj2 where

ki(t) = (1= ((A=2)t+1),

ka(t) = A1 = N)((2X — 1)t — 1?).
If a # 0, then k; and k, are Q-linearly independent.
Setting to = (A + 1)/2, and using that A = —2d?,
one obtains

ha(t) = ha(t) =

kl(tO) - kg(to) = 02()\ - 1)2
These formulas give us a rational point on the curve
of genus zero defined by % = k;(t), s> = kq(t). Using
this point one computes that Q(t,1/k1(t), /k2(t)) =
Q(u), where
ka(t) —a(A—1)

U= )
VEi(t) —a(A=1)
and then ¢ = N/2D? (where N,D are defined in
terms of A, u in the statement of the theorem). Thus,
if g(u) is as in the statement of the theorem, we ob-
tain f(t) = g(u)/(4D?)? and the theorem follows
from Proposition 2.8. The 3 points of infinite order

are computed by taking points with z-coordinates t,
hi(t), and hy(t), and expressing ¢ in terms of u. O

Theorem 4.2. Let E be given by y* = z(z — 1)(z — A),
where either

(@) A= (1—a?)/(a®+2) with a € Q — {0, %1}, or
(b) A = a(a—2)/(a*+1) with a € Q — {0, 2}.

Then there is a squarefree polynomial g(u) € Q[u] of
degree 12 in u, which factors into a product of three
quartic polynomials, such that Eg,) has rank at least
3 over Q(u). (See the electronic files associated with
this paper for the polynomials g(u) and independent
points of infinite order.)

Proof. Take o, to be the permutation of {0,1,\}
which switches 0 and 1, o, to be the permutation
which switches 1 and A, and o3 to be the cyclic per-
mutation 0 — A — 1+ 0. Let h; € Q(t) be the cor-
responding linear fractional transformation. Then
in Propositions 2.9 we have f o h; = k; fj? where

ka(t) = (1= A)((A=2)t + 1),
ka(t) = (1 — AN = X+ 1)t = N),
ks (£) = A((A+ 1)t — N).
Now suppose A = (1 —a?)/(a* 4+ 2) witha € Q —

{0, £1}. Then k; and k, are Q-linearly independent,
and setting to = 2\/(A + 1) we find

ki(to) = a(A — 1)%,  ka(to) = a?A2(A — 1)2.

These formulas give us a rational point on the curve
r? = ki (t), s* = ka(t).

If A\ =a(a—2)/(a*+1) with a € Q — {0, 2}, then
ko, and k3 are Q-linearly independent, and setting
to = 1/ we find

Falto) = (A—1)%,  ka(to) = (“2;—;:1)2

These formulas give us a rational point on the curve
7"2 = kg(t),32 = kg(t)
The theorem now follows from Proposition 2.8.

The next example applies to essentially the same
curves as [Mestre 1998, Théoreme 2.

Theorem 4.3. Suppose E[2] C E(Q) and E has a
rational cyclic subgroup of order 4. Then E has a
model

y? = z(z — b)(z — a®b)
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where a,b € Q™ and a # 1. Let g(u) be the polyno-
mial of degree 11 given by
g(u) = —4bu((a — 1)*u — a)
x (a*(a® — 3a+4)u — (a®> + 1)(a — 1))
x (a(a® — 3a+4)u> —2a(a — u+a+1)
x (a(a+1)(a — 1)*(a® — 3a + 4)u?
—2a(a — 1)*(a® + Du + (a® +1)?)
x (a*(a —1)*(a® — 3a + 4)*u*
—4a*(a —1)*(a® — 3a + 4)u®
+ 2(a — 1)*(3a* — 6a® + 5a” + 2)u?
—4da(a — 1)*(a® + 1)u + (a® + 1)?).
Then Eqy has rank at least 3 over Q(u). (See the

associated electronic files for 3 independent points
of infinite order.)

Proof. We may write E as y*> = f(z), where f has
3 rational roots. If C4 denotes the rational cyclic
subgroup of order 4, then 2C, contains a rational
point, and we may choose our model so that this
point is (0,0). Denote the other roots of f by b
and bA. If Q is a generator of C; and z(Q) is its
z-coordinate, then z(Q) € Q and a computation
gives £(Q)?> = A\b?>. Hence A is a square, and we
write A = a? with a € Q*. Thus F is given by
y? = f(z) := z(x — b)(z — a?b).

The quotient of E by the group generated by (0, 0)
is
E:Y?=f(X):=X(X+(a—1)*)(X + (a+1)%).
The isogeny from E to E is

where
(X4 (a—1)%0)(X + (a+1)%b)
pux) = 2T

8X?
The linear fractional transformation
() = a(a+1)(a —1)%b(t — b)
M= T2 —3a+ Dt +ala+ 1)b
sends the roots of f to the roots of f. Set hy(t) =

Pa(1u(t)) € Q(1).
Let o be the permutation of {0,b,a%b} that in-
terchanges b and a?b, and let hy, € Q(t) be the

corresponding linear fractional transformation. One
computes in Propositions 2.11 and 2.9 that foh; =
kifj? and f o hy = kyfj2 where
ki(t) = (a — 1)ab((a® — 3a + 4)t — a(a + 1)b),
ko(t) = b((a® + 1)t — a?b).
Setting ty = a*b we find
kl(to) = ((1 - 1)4a2b2, kg(to) = a4b2.

These formulas give us a rational point on the curve
defined by r? = k;(t),s* = ky(t). Using this point
one computes that

Q(tv V k(t)> V ka(t)) = Q(u),
V(D - (o~ 1)%ab

k2 (t) —a?b

where

We can solve for ¢ in terms of u (see the associ-
ated electronic files). The theorem then follows from
Proposition 2.8. |

Remark 4.4. The theorems above give certain infi-
nite families of curves which have twists of rank (at
least) 3 over Q(u). The restriction to these fami-
lies makes it possible to find rational points on the
genus zero curves r° = k;(t), s> = ky(t) which arise
in the construction. It is possible to carry out the
construction for many curves not in these families.
We give one example in the next theorem.

Theorem 4.5. The elliptic curve
6(u'?—33u®-33u'+1)y* =2 -z

has rank at least 3 over Q(u), with independent points

P ut — 6u? +1 2
L 3(u2+1)2 * 9(u2+1)3 )
ut 4 6u® + 1 2
P2 = - ) b
3(ur —1)2 ' 9(u? —1)3

w41 1
P3_< 6u? ’36u3>'

Proof. The simplest proof is a direct computation.
To construct this example one takes F to be y? =
x® — z and proceeds exactly as in the proofs of The-
orems 4.1 and 4.2, with hy(¢) = (¢t+1)/(3t—1) and
hao(t) = (—t+1)/(3t+1), which gives

ky(t) = —6t+2, ky(t) = 6t + 2.
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The curve defined by 7? = k;(t),s* = ky(t) has a
rational point (r,s,t) = ( ,0,—%), and using this
one computes that

Q(t, \/k‘h \/k;) = Q('U,),

where
‘e _u4 —6u? +1
3(ur+1)2 -
Proposition 2.8 with this input leads to the data
above. O

Remark 4.6. Let g(u) = 6(u® — 33u? —33u+1). Over
Q(u), the rank of E, is 1, that of Ey,z2 is 2, and
that of Ey(,4) is 3. Unfortunately this pattern does
not continue; the rank of Ey.s) is 3. Replacing u
by +/u in P, and P, above gives two independent
points on Eg(,z2).

5. DENSITIES
Recall the definitions of rg(D) and
N.(E,z) = N (E, z)

from the introduction. In this section we use results
of Stewart and Top [1995] to obtain lower bounds
for N.(E,z) (and, subject to the Parity Conjecture,
for N;F(E, z), as in [Gouvéa and Mazur 1991]), with
E and r provided by the examples of the previ-
ous sections. The first two assertions of the follow-
ing theorem are immediate from [Stewart and Top
1995, Theorems 2 and 1], and were used in that pa-
per in several families of examples. What is new
here is that by using the examples of the previous
sections we have more curves to which we can ap-
ply these results. In addition, we show in Theorem
5.1(iii) how to use [Stewart and Top 1995, Theorem
1] along with the Parity Conjecture to obtain results
for higher rank. See also [Gouvéa and Mazur 1991,
Stewart and Top 1995, §12].

If A is an elliptic curve over Q, let w(A) € {£1}
denote the root number in the functional equation
of the L-function L(A,s). The Parity Conjecture
asserts that w(A) = (—1)rrkA@,

Theorem 5.1. Suppose that F is an elliptic curve over
Q, and g € Q[u] is nonconstant and squarefree. Let
r = rank B, (Q(u)) and k = [1(degg + 1)].

(iy Forz>1,

N,.(E,z) > z/*/log?(x).

Suppose further that the irreducible factors of g all
have degree at most 6.

(ii) For x > 1,
N,(E,z) > z'/*.

(i) Suppose that the Parity Conjecture holds for all
twists of E, and that there is a rational number c
such that g(c) # 0 and w(Ey()) = (—=1)"*!. Then
for x> 1,

Nt (B, z) > gk

Proof. Without loss of generality we may assume that
degg > 3, since if not, 7 = 0 by Remark 2.12 and
there is nothing to prove.

Let F(X,Y) =Y?g(X/Y), a homogeneous poly-
nomial of degree 2k. Assertions (i) and (ii) are im-
mediate from Theorems 2 and 1 of [Stewart and Top
1995], respectively, applied to F.

Suppose now that the Parity Conjecture holds,
the irreducible factors of g all have degree at most
6, and ¢ € Q is such that g(c) # 0 and w(Ey()) =
(—=1)"*1. Choose a closed interval I C R with ratio-
nal endpoints that contains ¢ but no roots of g, and
let p(u) = (au+p6)/(yu+9d) € Q(u) be a linear frac-
tional transformation which maps [0, co] onto I and
(for simplicity) such that (1) = c. Replace g by the
polynomial (yu + §)%*(g o u) of degree at most 2k.
Then we still have that r = rank F;(Q(u)), and our
construction guarantees that this new polynomial g
also satisfies:

(a) the constant term of g and the coefficient of u2?*
are both nonzero,

(b) the irreducible factors of g have degree at most 6,

(©) g(1) # 0 and w(Eyy) = (1),

(d) g(u)/g(1) is positive if u > 0.

Further, multiply g by the square of an integer to
clear denominators of the coefficients. If A is an
elliptic curve over Q, write cond(A) for its con-
ductor. If further D € Q* and cond(A) is rela-
tively prime to the conductor of the character xp
associated to the quadratic extension Q(v/D)/Q,
then w(Ap) = xp(—cond(A))w(A). Applying this
with A = Ey4) and D = g(a/b)/g(1) for a and
b positive integers congruent to 1 modulo an inte-
ger M sufficiently divisible by the prime divisors of
2cond(Ey(y)), and using (c) and (d) above, gives that

W(Eyamy) = w(Eymy) = (1) (5-1)
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Let S be the set of squarefree integers D such that
D = F(a,b)/v* for some a,b,v € Z" with a,b < z,
a =b=1mod M; then define

S(z)={D e S:|D| < z}.
By [Stewart and Top 1995, Theorem 1], for z > 1,
#(S(z)) > z/*. (5-2)

(Note that as stated, the theorem cited does not
include the restriction a,b > 0 present in our defi-
nition of S(z). However, the proof given there does
restrict to positive a, b.)

It follows from [Silverman 1983, Theorem C] that
rg(D) > r for all but finitely many D € S. However,
by (5-1), if D € S then w(Ep) = (—1)"** so the
Parity Conjecture tells us that rg(D) # r. Hence
re(D) > r + 1 for all but finitely many D € S,
and so assertion (iii) of the theorem follows from
the Stewart—Top bound (5-2). O

Corollary 5.2. Suppose that E is an elliptic curve over
Q, and g € Q[u] is a nonconstant squarefree poly-
nomial whose irreducible factors have degree at most
6. Let r = rank E,(Q(u)) and k = [L(degg+1)]. If
the Parity Conjecture holds for all twists of E, and
g has at least one real root, then for x > 1,

N (B, z) > z'/k.

Proof. If g has a real root then g(Q) contains both
positive and negative values (g has no multiple roots
because it was assumed to be squarefree). Thus by
a result of Rohrlich [1993, Theorem 2] we have

{w(Eg(a)) ‘ac Q7 g(a) 7& 0} = {17 _1}'
Now the corollary follows immediately from Theo-
rem 5.1(iii). O

We now give some applications of Theorem 5.1 and
Corollary 5.2.

Theorem 5.3. Suppose that either

(a) E[2] has a nontrivial Galois-equivariant automor-
phism and Endc(E) # Z[i, or
(b) E has a rational subgroup of odd prime order p
and Endc(E) 2 Z[\/—p)].
Then for x > 1,
Ny(E,z) > /3.

Proof. This is immediate from Theorems 3.1 and
5.1(ii). O

Theorem 5.4. Suppose that E[2] C E(R) and either

(a) the largest or smallest root of f is rational, or
(b) E has a rational subgroup of order 3.

If the Parity Conjecture holds for all twists of E
then for x > 1,

N} (E,z) > z'/3.

Proof. Suppose first that we are in case (a). Translat-
ing the given rational root of f we may assume that
f(z) = 2® + ax? + bz with b > 0. Since f has 3 real
roots we also have a? — 2b > a® — 4b > 0. In partic-
ular, b(a*—2b) > 0. Let g(u) be as in Corollary 3.3.
Then g is divisible by g;(u) = u* — b(a®—2b)u? + b*.
We compute that

91(v/b(a?—2b)) = —1a®b?*(a®—4b) < 0,

but g¢;(u) is positive for large u, so g;, and hence
g, has real roots. Hence the Corollary in this case
follows from Corollaries 5.2 and 3.3.

Similarly, suppose we are in case (b). Then as dis-
cussed before Corollary 3.5, E has a model % = x°+
(b*/4c)z? + bz + ¢ with b,c € Q, ¢ # 0. The discrim-
inant of this model is A(F) = 8(b%—54¢c?). Since
all the 2-torsion on F is defined over R, we have
A(E) > 0. Let g(u) be as in Corollary 3.5. Then
g(u)/(—bc) is positive for large u, but g(0)/(—bc) =
—c*(b®—54c?) = —4c*A(E) < 0. Hence g has real
roots, so the Corollary in this case follows from
Corollaries 5.2 and 3.5. (]

Theorem 5.5. Suppose E is defined by
v =z(z - 1)(z - \)

where either A = —2a?, or A = (1 —a?)/(a®>+2), or
A=a(a—2)/(a®>+1), witha € Q and X\ # 0. Then
for x> 1,

Ns(z) > z'/8.
Proof. This is immediate from Theorems 5.1(ii), 4.1,

4.2, and 4.5 (the last to handle the excluded value
a = 0 in Theorem 4.2(a)). O

Theorem 5.6. Suppose E[2] C E(Q) and E has a
rational cyclic subgroup of order 4. Then:

(i) forz>1,
Ns(z) > z'/5,
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(i) if the Parity Conjecture holds for all twists of E,
then for x > 1,

N (z) > /6.

Proof. Assertion (i) follows directly from Theorems
5.1(ii) and 4.3. The polynomial g of Theorem 4.3
has degree 11, and hence it has a real root, so (ii)
follows from Corollary 5.2 and Theorem 4.3. |

Remark 5.7. The conclusions of Theorems 5.3, 5.4,
5.5, and 5.6 hold when E is y* = z° — z, by Remark
4.6, Theorem 5.1, and Corollary 5.2.

6. REMARKS AND QUESTIONS

Problem 6.1. Find a hyperelliptic curve C of the form
s* = g(u) with g(u) € Q[u] such that the jacobian
of C is isogenous over Q to E” x B for some elliptic
curve E and abelian variety B, either with r > 4,
or with both »r = 3 and dim B < 1.

Remark 6.2. A solution (C, E,r, B) to Problem 6.1
would imply, by Theorem 5.1(i) and the equality in
Remark 2.12, that
wl/(l+genusC) wl/(l+'r+dim B)
N, (E,z) > =
B2 > ) log"(2)

Remark 6.3. The reason for the restriction on r in
Problem 6.1 is that we already have examples when
r < 3. Theorem 3.1 gives numerous examples with
r = 2 and dim B = 0, and Theorems 4.1, 4.2, 4.3,
and 4.5 provide numerous examples with 7 = 3 and
dim B = 2.

Remark 6.4. The results of Stewart and Top [1995]
would not be needed in the arguments of Section 5
if the following conjecture of Caporaso, Harris, and
Mazur were known to hold. More precisely, Propo-
sition 6.6 shows that (5-2) above follows easily from
this conjecture.

Conjecture 6.5 [Caporaso et al. 1995]. Fiz an inte-
ger h > 2. Then there is a constant B(h) such
that for every curve C of genus h defined over Q,

#(C(Q)) < B(h).

Proposition 6.6. Suppose g(u) € Z[u] is a square-
free polynomial, and let k = [i(degg + 1)] and
F(X,Y) = Y?¢g(X/Y). Fiz a positive integer M
and define S(x) as in the proof of Theorem 5.1(iii),

with this M. If Conjecture 6.5 is true and k > 3,
then for x> 1,
#(S(z)) > z/*.

Proof. If a,b € Z and F(a,b) # 0, let s(F(a,b))
denote the squarefree part of F'(a, b), i.e., the unique
squarefree integer D such that F(a,b) = Dn? for
some integer n. For every squarefree integer D let
Ap denote the hyperelliptic curve Dv? = g(u) of
genus k — 1 > 2. The map

(a,b) + (a/b, £b*\/F(a,b)/D)
defines an injection
{(a,b) € Z* : (a,b) = 1, s(F(a,b)) = D}
— Ap(Q)/{+1}

(where —1 denotes the hyperelliptic involution on

Ap). Thus by Conjecture 6.5 the order of the set on

the left is bounded by B(k — 1). Let

R(z) = {(a,b) € Z* : 1 < a,b< z, (a,b) =1,
F(a,b) #0, a=b=1mod M}.

There is a constant K = K(g) such that |F(a,b)| <

Kz if (a,b) € R(x). It follows that

#(R((z/K)'/*"))
>
#(S() > T
for z > 1. But showing that #(R(z)) > z%/M? for
x > 1 is standard; the proposition follows. O
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ELECTRONIC AVAILABILITY

Two useful electronic files are companions to this ar-
ticle and can be found at http://www.expmath.org/
extra/10.4 and at http: //www.math.ohio-state.edu/
~silver /bibliography/. One contains several of the
formulas in the paper (including those omitted from
the statements of Theorems 4.2 and 4.3) in a form
suitable for input into PARI. Another contains the



Rubin and Silverberg: Rank Frequencies for Quadratic Twists of Elliptic Curves 569

same information in the form of a Mathematica note-
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