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We consider the existence of power integral bases in composites
of polynomial orders of number fields. We prove that if the de-
gree of the composite field equals the product of the degrees of
its subfields and the minimal polynomials of the generating ele-
ments of the polynomial orders have a multiple linear factor in
their factorization modulo q, then the composite order admits
no power integral bases. As an application we provide sev-
eral examples including a parametric family of “simplest sextic
fields.”

1. INTRODUCTION

For any primitive element α ∈ ZK the index of α is de-

fined as the module index

I(α) := (Z+K : Z
+[α]).

Obviously, the discriminant and index of α satisfy

DK/Q(α) = I(α)
2DK ,

where DK is the discriminant of the fieldK. The element

α generates a power integral basis {1,α, . . . ,αn−1} in K
if and only if I(α) = 1.

The problem of existence and construction of power

integral bases in algebraic number fields has been inten-

sively studied in recent years; for a survey we refer to

[Gaál 99].

2. COMPOSITE FIELDS

Let f, g ∈ Z[x] be distinct monic irreducible polynomials
(over Q) of degreesm and n, respectively. Let ϕ be a root
of f and let ψ be a root of g. Set L = Q(ϕ), M = Q(ψ)
and assume that the composite field K = LM has degree

mn. We also assume that there is a prime number q, such

that both f and g have a multiple linear factor (at least

square) mod q, that is, there exist af and ag in Z such
that

f(af ) ≡ f 0(af ) ≡ 0 (mod q),

g(ag) ≡ g0(ag) ≡ 0 (mod q). (2—1)
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Remark 2.1. Our assumption implies that q divides both
the discriminant d(f) of the polynomial f and the dis-

criminant d(g) of g.

Remark 2.2. In [Gaál 98] we considered fields that are
composites of subfields with coprime discriminants. Ac-

cording to the remark above in our case the fields we

consider are composites of subfields whose discriminants

are not coprime. This is the case in many interesting

examples some of which we list at the end of the paper.

Consider the order Of = Z[ϕ] of the field L, the order
Og = Z[ψ] of the fieldM and the composite order Ofg =
OfOg = Z[ϕ,ψ] in the composite field K = ML. Note

that {1,ϕ, . . . ,ϕm−1}, {1,ψ, . . . ,ψn−1} and

{1,ϕ, . . . ,ϕm−1,ψ,ϕψ, . . . ,ϕm−1ψ,
. . . ,ψn−1,ϕψn−1, . . . ,ϕm−1ψn−1},

are Z-bases of Of , Og and Ofg, respectively.
Our main result is the following:

Proposition 2.3. Under the assumptions above the index
of any primitive element of the order Ofg is divisible by q.

As a consequence we have:

Proposition 2.4. Under the assumptions above the order
Ofg has no power integral bases.

At the end of the paper we give several applications

of the propositions.

Note that a similar phenomenon occurs for composite

fields in other cases as well, cf. [Gaál 95], [Gaál 98], [Gaál

00].

3. PROOF OF PROPOSITION 1

Denote the conjugates of ϕ ∈ L by ϕ(i) (1 ≤ i ≤ m)

and the conjugates of ψ ∈ M by ψ(j) (1 ≤ j ≤ n).

Denote by γ(i,j) the conjugate of any element γ ∈ K
under the automorphism mapping ϕ to ϕ(i) and ψ to

ψ(j) (1 ≤ i ≤ m, 1 ≤ j ≤ n).
The discriminants of the polynomials f and g are

d(f) =
Y

1≤i<j≤m
(ϕ(i) − ϕ(j))2

d(g) =
Y

1≤i<j≤n
(ψ(i) − ψ(j))2. (3—1)

These are also the discriminants of the bases

{1,ϕ, . . . ,ϕm−1} of the order Of and {1,ψ, . . . ,ψn−1}

of the order Og, respectively. The discriminant of the
order Ofg is

D(Ofg) = d(f)n · d(g)m. (3—2)

We can represent any element α ∈ Ofg in the form

α =

m−1X
i=0

n−1X
j=0

xijϕ
iψj (3—3)

with xij ∈ Z. The index of α (generating K over Q)
corresponding to the order Ofg is defined to be the Z-
module index of Z[α] in Ofg. It is

IOfg
(α) =

1p|D(Ofg)|
Y

(i1,j1)<(i2,j2)

¯̄̄
α(i1,j1) − α(i2,j2)

¯̄̄
where the pairs of indices are ordered lexicographically.

Now we rearrange the factors in the product above. Using

(3—1) and (3—2) we have

IOfg(α) =

mY
i=1

Y
1≤j1<j2≤n

¯̄̄̄
α(i,j1) − α(i,j2)
ψ(j1) − ψ(j2)

¯̄̄̄

×
nY
j=1

Y
1≤i1<i2≤m

¯̄̄̄
α(i1,j) − α(i2,j)
ϕ(i1) − ϕ(i2)

¯̄̄̄
×

Y
(i1, j1) < (i2, j2)

i1 6= i2
j1 6= j2

¯̄̄
α(i1,j1) − α(i2,j2)

¯̄̄
.

(3—4)

Obviously, the factors that appear in (3—4) are algebraic

integers.

For any 1 ≤ i1 < i2 ≤ m and 1 ≤ j1 < j2 ≤ n we have³
α(i1,j1) − α(i2,j1)

´
+
³
α(i2,j1) − α(i2,j2)

´
+
³
α(i2,j2) − α(i1,j1)

´
= 0

which implies the equation³
ϕ(i1) − ϕ(i2)

´
ε+

³
ψ(j1) − ψ(j2)

´
η + ρ = 0 (3—5)

with

ε =
α(i1,j1) − α(i2,j1)
ϕ(i1) − ϕ(i2) ,

η =
α(i2,j1) − α(i2,j2)
ψ(j1) − ψ(j2) ,

ρ = α(i2,j2) − α(i1,j1).
Since these elements are factors in (3—4) they are alge-

braic integers lying in the Z-order O = Oi1,i2,j1,j2 =
Z[ϕ(i1),ϕ(i2),ψ(j1),ψ(j2)].
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Let us fix those indices 1 ≤ i1 < i2 ≤ m and 1 ≤
j1 < j2 ≤ n for which ϕ(i1) ≡ ϕ(i2) (mod q) and

also ψ(j1) ≡ ψ(j2) (mod q). Consider equation (3—5)

modulo q.

By our assumptions ϕ(i1) − ϕ(i2) ≡ 0 (mod q) and

ψ(j1) − ψ(j2) ≡ 0 (mod q), hence by equation (3—5) we

get ρ = α(i2,j2) − α(i1,j1) ≡ 0 (mod q). This is one of

the algebraic integer factors of I(α), hence q|I(α).

4. APPLICATIONS

4.1 A Cyclic Sextic Field

Consider the sextic field K generated by a root of h(x) =

x6 − x5 − 6x4 + 6x3 + 8x2 − 8x + 1. This is a totally
real cyclic sextic field with discriminant DK = 453789 =

3375. Its cubic subfield is L = Q(ϕ) (with discriminant
49) where ϕ is a root of f(x) = x3+4x2+3x− 1. In the
field L the elements {1,ϕ,ϕ2} form an integral basis. We
have f(x) ≡ (x + 6)3 (mod 7). The quadratic subfield

is M = Q(
√
21). The polynomial g(x) = x2 − x − 5 has

ψ = (1 +
√
21)/2 as a root, and obviously {1,ψ} is an

integral basis in M . We have g(x) ≡ (x − 1/2)2 (mod

7). Proposition 1 implies that the indices of the primitive

elements of the orderOfg = Z[1,ϕ,ϕ2,ψ,ϕψ,ϕ2ψ] are all
divisible by 7, hence it has no power integral basis.

4.2 A Non-Cyclic Sextic Field

Consider the sextic field K generated by a root of

h(x) = x6 − 12190x4 + 256565x2 − 12167. This is a to-
tally real sextic field with Galois group D6, discriminant

DK = 2
61722336472. Its cubic subfield is L = Q(ϕ) (with

discriminant 252977 = 17 · 23 · 647 and Galois group S3)
where ϕ is a root of f(x) = x3 − 22x2 − 23x − 1. In the
field L the elements {1,ϕ,ϕ2} form an integral basis. We
have f(x) ≡ (x+15)(x+16)2 ( mod 23). The quadratic

subfield is M = Q(
√
23). The polynomial g(x) = x2− 23

has ψ =
√
23 as a root, and obviously {1,ψ} is an integral

basis in M . We have g(x) ≡ x2 (mod 23). Proposition

1 implies that the indices of the primitive elements of

the order Ofg = Z[1,ϕ,ϕ2,ψ,ϕψ,ϕ2ψ] are all divisible
by 23, hence it has no power integral basis.

4.3 The Parametric Family of Simplest Sextic Fields

Assume 3 - t, t 6= −8,±5. Let us consider the family of
sextic fields Kt generated by a root β of the polynomial

ht(x) = x
6 − 2tx5 − (5t+ 15)x4 − 20x3
+ 5tx2 + (2t+ 6)x+ 1.

This family of fields is called the “simplest sextic fields”.

It has some attractive properties which are listed in [Lettl

et al. 98]. These fields are totally real cyclic fields. Let p

be a prime dividing q = t2+3t+9. We have d(ht) = 6
6q5.

Note that ht(x) ≡ (x − t/3)6 (mod p) (the “simplest

quintic fields” have a similar property, cf. [Gaál and

Pohst 97]).

The cubic subfield Lt of Kt is generated by a root ϕ

of ft = x
3− tx2− (t+3)x− 1 with d(ft) = q2. These are

the “simplest cubic fields”, totally real, cyclic. It is well

known that {1,ϕ,ϕ2} is an integral basis of Z[ϕ]. Note
that ft(x) ≡ (x− t/3)3 (mod p).

The quadratic subfield of Kt is Mt = Q(
√
q) .

If q ≡ 2, 3 (mod 4) then set gt(x) = x2 − q with
d(gt) = 4q and with a root ψ =

√
q. In this case

gt(x) ≡ x2 (mod p).

If q ≡ 1 (mod 4) then set gt(x) = x2 − x − (q − 1)/4
with d(gt) = q and with a root ψ = (1 +

√
q)/2. In this

case gt(x) ≡ (x− 1/2)2 (mod p).

In both cases {1,ψ} is an integral basis of Mt.

Consider now the order Ofg = Z[1,ϕ,ϕ2,ψ,ϕψ,ϕ2ψ].
By Proposition 1 the indices of the primitive elements

of Ofg are all divisible by p, hence Ofg has no power
integral bases.

4.4 A Field of Higher Degree

This is an example to illustrate that our results are easily

applicable also to suitable fields of higher degrees.

Let ϕ be a root of f(x) = x5 − 2x4 + 7x2 + 6x + 5.
The quintic field L = Q(ϕ) has no non-trivial subfields.
Let ψ be a root of g(x) = x8 + 13x7 + 55x6 + 75x5 +

2x3− x2− 143x− 525. The octic field M = Q(ψ) has no
non-trivial subfields, either. We have

f(x) ≡ (x+ 16)2(x3 + 16x+ 5) (mod 17)

g(x) ≡ (x+ 5)2(x3 + 12x2 + 2x+ 14)
× (x3 + 8x2 + 4x+ 7) (mod 17)

hence our Proposition 1 applies. Consider the order

Ofg = Z[ϕ,ψ] of the field K = Q(ϕ,ψ) of degree 40.
Any α ∈ Ofg can be represented in the form

α =

4X
i=0

7X
j=0

xijϕ
iψj

with xij ∈ Z. By Proposition 1 the indices of all primitive
elements of Ofg are divisible by 17, hence Ofg admits no
power integral bases.



90 Experimental Mathematics, Vol. 11 (2002), No. 1

ACKNOWLEDGEMENTS

The research of István Gaál was supported in part by Grants
T 29330 and T 037367 from the Hungarian National Foun-
dation for Scientific Research and by FKFP 0343/2000. The
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