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Let G be a simple algebraic group and P a parabolic subgroup
of G. The group P acts on the Lie algebra pu of its unipotent
radical Pu via the adjoint action. The modality of this action,
mod (P : pu), is the maximal number of parameters upon which
a family of P -orbits on pu depends. More generally, we also
consider the modality of the action of P on an invariant sub-
space n of pu, that is mod (P : n). In this note we describe an
algorithmic procedure, called MOP, which allows one to deter-
mine upper bounds for mod (P : n).

The classification of the parabolic subgroups P of excep-
tional groups with a finite number of orbits on pu was achieved
with the aid of MOP. We describe the results of this classifica-
tion in detail in this paper. In view of the results from [Hille
and Röhrle 99], this completes the classification of parabolic
subgroups of all reductive algebraic groups with this finiteness
property.

Besides this result we present other applications of MOP,
and illustrate an example.

1. INTRODUCTION

Throughout, G is a simple algebraic group over an alge-

braically closed field K and P is a parabolic subgroup

of G. The group P acts on its unipotent radical Pu via

conjugation and on pu, the Lie algebra of Pu, via the

adjoint action. The modality of the action of P on pu,

denoted by mod(P : pu), is the maximal number of para-

meters upon which a family of P -orbits on pu depends.

More generally, we also want to study the modality of

the action of P on an invariant linear subspace n of pu,

that is mod(P : n). The modality of P is defined as

modP := mod(P : pu); see Section 2 for a precise defi-

nition and [Popov and Röhrle] for some additional refer-

ences concerning this notion. Observe that mod(P : n) is

zero precisely when P operates on n with a finite number

of orbits.

In this paper we describe the modality algorithmMOP

(Modality Of Parabolics) which is designed to compute
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upper bounds for mod(P : n). In [Popov and Röhrle] the

general problem was posed to determine each parabolic

subgroup P of G with modP = 0. After the cases for

Borel and semisimple rank one parabolic subgroups were

classified in [Kashin 90] and [Popov and Röhrle], respec-

tively, all modality zero parabolic subgroups of classical

groups were classified in [Hille and Röhrle 99]. One of

the aims of this paper is to extend these results to all of

the exceptional groups with the aid of MOP.

Apart from these results we indicate other applications

of MOP. For instance, we determine modP for some par-

abolics in E6 by combining lower bounds for modP from

[Röhrle 97] with upper bounds obtained by MOP. The

algorithm is implemented as a share package in the com-

puter algebra system GAP [GAP 97]. MOP generalizes

the algorithm outlined in [Bürgstein and Hesselink 87]

which was designed to analyze the orbit structure of a

Borel subgroup B for the adjoint and coadjoint actions

on bu and on b
∗
u. MOP only applies in the case when

G is simply laced. For details on usage and technical as-

pects the reader should consult theMOPmanual [Jürgens

and Röhrle 01] (available from the MOP home page

http://www.mat.bham.ac.uk/G.E.Roehrle/MOP.html).

The basic machinery for investigating the modality

of parabolic subgroups of reductive groups was intro-

duced in [Popov and Röhrle]. There are several re-

cent articles related to this subject, such as [Brüstle and

Hille 00], [Hille and Röhrle 99], [Jürgens and Röhrle 98],

[Popov 97], and [Röhrle 99].

Our general reference for algebraic groups is Borel’s

book [Borel 91] and for information on root systems we

refer the reader to Bourbaki [Bourbaki 75]. The simple

roots in a base of a root system of G are indexed in

accordance with [Bourbaki 75, Planches I - IX].

2. NOTATION AND PRELIMINARIES

Suppose that the connected algebraic group R acts mor-

phically on the algebraic variety X. For x in X the R-

orbit in X through x is denoted by R · x. The modality
of the action of R on X is defined as

mod(R : X) := max
Z
min
z∈Z

codimZ R · z,
where Z runs through all irreducible R-invariant sub-

varieties of X. In case X is an irreducible variety let

K(X)R denote the field of R-invariant rational functions

on X . By a result of Rosenlicht minx∈X codimX R · x =
trdegK(X)R, for instance, see [Popov and Vinberg 94,

2.3]. Therefore, mod(R : X) measures the maximal num-

ber of parameters upon which a family of R-orbits on X

depends. The modality of the action of R on X is zero

precisely when R admits only a finite number of orbits

on X, see also [Popov and Vinberg 94, 5.2].

We denote the Lie algebra of G by LieG or by g; like-

wise for subgroups. The Lie algebra of Pu is denoted by

pu. Let T be a maximal torus in G and Ψ the set of

roots of G with respect to T . Fix a Borel subgroup B of

G containing T and let Π be the set of simple roots of

Ψ defined by B, then Ψ+ = Ψ(B) is the set of positive

roots of G.

We may assume that every parabolic subgroup of G

under consideration contains B, i.e. is standard. For a

subset J of Π we denote by PJ the standard parabolic

subgroup corresponding to J such that P∅ = B. Further,
`(Pu) denotes the length of the descending central series

of Pu, that is its class of nilpotency. We denote the Weyl

group of some Levi subgroup of P by WP . By saying

that P is of a particular type, we mean the Dynkin type

of a Levi subgroup of P .

A prime dividing one of the structure constants of the

Chevalley commutator relations for G is called a very bad

prime for G.

Let β ∈ Ψ+. Write β = P
α∈Π cα(β)α, with cα(β) ∈

Z+0 for each α ∈ Π. For J a subset of Π, we callP
α∈Π\J cα(β) the J-height of β; cf. [Azad et al. 90].

For J = ∅ this is the usual height function.
If charK is not a very bad prime for G and P = PJ ,

then `(Pu) is just the J-height of the highest root in Ψ,

[Azad et al. 90, Lem. 4].

Let H be a closed connected subgroup of G normalized

by T (that is H is a regular subgroup of G, cf. [Dynkin

57]); likewise for subalgebras of g. In that case the root

spaces of h relative to T are also root spaces of g relative

to T , and the set of roots of H with respect to T , Ψ(H),

is a subset of Ψ.

If charK is not a very bad prime for G, then Ψ(H) is

closed under addition in Ψ. Furthermore, if H is reduc-

tive and regular, then Ψ(H) is a semisimple subsystem of

Ψ. For a root α of G we denote by Uα the corresponding

one-parameter unipotent subgroup of G. For every root

α we choose a generator xα of the corresponding root

space LieUα = gα of g.

The support of a subset S of bu, denoted by suppS,

is the set of all roots α such that the restriction to S of

the projection from bu onto gα is non-trivial.

By a Levi subgroup of a reductive group G we simply

mean a Levi subgroup of some parabolic subgroup of G.

We require some basic facts concerning the modality of

parabolic groups; the first one is elementary (cf. [Popov

and Röhrle, Lem. 4.3], or [Röhrle 96, Lem. 2.8]):
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Lemma 2.1. Let Q ⊆ P be parabolic subgroups of G.

Then modP ≤ modQ.
This follows readily from the definition, since pu ⊆ qu

and any irreducible P -invariant subvariety of pu is also

Q-invariant.

For an automorphism Θ of G we denote the set of fixed

points by GΘ, likewise for Θ-stable subgroups of G. We

recall [Röhrle 99, Thm. 1.1] (cf. [Popov and Röhrle, Cor.

2.8]):

Lemma 2.2. Suppose that Θ is a semisimple automor-

phism of G and that P is Θ-stable. Then modPΘ ≤
modP .

We require Theorem 1.2 from [Röhrle 99], see also

[Popov 97, Thm. 4], [Popov and Röhrle, Rem. 2.14]:

Lemma 2.3. Suppose that charK is zero or a good prime

for G. Let H be a closed reductive subgroup of G nor-

malized by T . Set Q := P ∩H. Then modQ ≤ modP .

Remark 2.4. In the special case of Lemma 2.3 when H
is a Levi subgroup of G normalized by T or the derived

subgroup thereof the statement of Lemma 2.3 is valid

without any characteristic restrictions [Röhrle 99, Cor.

3.10].

For l ∈ N0 let p(l)u denote the l-th term of the lower

central series of pu.

Remark 2.5. If charK is not a very bad prime for G,

then p
(l−1)
u /p

(l)
u
∼= ⊕gα, where the sum is taken over all

those roots α in Ψ of J-height l ∈ N, see [Azad et al. 90,
Lem. 4].

Observe that in the context of our algorithm this hy-

pothesis on charK is always fulfilled, since MOP only

applies when G is simply laced and then the structure

constants of the commutator relations are ±1.

We need a special case of a general theorem due to

R.W. Richardson [Richardson 85, Thm. E].

Lemma 2.6. Let P = LPu ⊂ G be a parabolic subgroup

of G. Then L operates on the quotient p
(l)
u /p

(l+1)
u with a

finite number of orbits for each l ≥ 0.

Remark 2.7. If charK is zero or a good prime for G, then

mod(P : Pu) = mod(P : pu) thanks to [Röhrle 99, Thm.

1.3]. Thus we obtain similar results for the action of P

on Pu.

The statements in Lemmas 2.1 and 2.3 (and the one

in Remark 2.7) also apply if we replace pu by some

P -invariant linear subspace n of pu, see [Röhrle 99,

Rem. 3.13].

3. SOME APPLICATIONS OF MOP

The original motivation for developing MOP was to de-

termine modality zero parabolics in exceptional groups,

i.e., ones with a finite number of orbits on the Lie al-

gebra of the unipotent radical. A complete description

of all these instances was achieved with the aid of MOP.

This is the chief result of this paper:

Theorem 3.1. Suppose G is of exceptional type and that

charK is either zero or a good prime for G. Let P ⊆ G
be parabolic. Then modP = 0 if and only if one of the

following holds:

(i) `(Pu) ≤ 4;

(ii) G is of type E6, `(Pu) = 5, and P is of type A21A2
or A3;

(iii) G is of type E7, `(Pu) = 5, and P is of type A1A4.

Combined with the analogous result for classical

groups [Hille and Röhrle 99], Theorem 3.1 completes

the classification of parabolic subgroups P of reductive

groups with a finite number of orbits on pu; this problem

was first posed in [Popov and Röhrle].

Whenever charK is zero or a good prime for G, we

have mod(P : Pu) = mod(P : pu), thanks to [Röhrle 99,

Thm. 1.3]; thus we obtain the finiteness statement of

Theorem 3.1 also for the action of P on Pu.

For the proof of Theorem 3.1 we need to recall the

exceptional cases from [Röhrle 96, Thm. 3.1] and [Jürgens

and Röhrle 98, Lem. 3.13] and combine them in our next

result:

Proposition 3.2. Suppose G is of exceptional type and

charK is either zero or a good prime for G. Let P be

a parabolic subgroup of G. Then P acts on pu with an

infinite number of orbits provided one of the following

holds:

(i) G is of type E8, F4, or G2 and `(Pu) ≥ 5;

(ii) G is of type E6 or E7 and `(Pu) ≥ 6;

(iii) G is of type E6, `(Pu) = 5, and P is not of type

A21A2 or A3;
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(iv) G is of type E7, `(Pu) = 5, and P is not of type

A1A4.

Proof of Theorem 3.1: It follows from Proposition 3.2

that modP > 0 provided none of the conditions of The-

orem 3.1 is satisfied.

In each of the cases of Theorem 3.1 when the Dynkin

diagram of G is simply laced the desired finiteness state-

ments was obtained directly using the MOP algorithm.

The classification of modality zero parabolics in G2 al-

ready follows from [Bürgstein and Hesselink 87, Table 2]

and [Popov and Röhrle, Thm. 4.2].

Thus, only the instances of F4 remain. Let G be of

type E6 and let τ be the graph automorphism of G of

order 2. The fixed point subgroup Gτ is of type F4. Let

Q be a parabolic subgroup of Gτ . Then, modQ > 0 pro-

vided `(Qu) ≥ 5, by Proposition 3.2(i). In order to show
the converse it suffices to prove that modQ = 0 provided

Q is minimal with respect to satisfying `(Qu) ≤ 4, by

Lemma 2.1. This leads to the three instances when Q is

of type B2, A1 eA2, or eA1A2, where eAi represents a subsys-
tem of type Ai consisting of short roots. Each such Q can

be realized as the τ -fixed point subgroup of a parabolic

subgroup P of G; see Figure 1. Each occurring P satisfies

`(Pu) ≤ 4 and thus modP = 0 by the finiteness result

for E6. The desired result for F4 then follows by Lemma

2.2, as τ is semisimple (charK 6= 2). 2

Figure 1 presents the crucial F4 cases from the proof of

Theorem 3.1. The solid nodes indicate the Levi subgroup

of P and P τ , respectively.

Owing to the Chevalley commutator relations, `(Pu)

is readily determined to be the sum of the coefficients

of the simple roots α in the highest root of Ψ such that

gα ⊆ pu, as indicated in Figure 1.
We proceed with two a posteriori consequences of the

classification of modality zero parabolic groups.

P
◦ ◦• • •

◦

1 1

2
P τ

◦ ◦• •2 2..................................

P
◦• • • •
•

3

P τ
◦• • •3 ..................................

P
• • • •◦ ◦

•

2 2

P τ
◦• • •4..................................

FIGURE 1. The crucial F4 cases from Theorem 3.1.

Remark 3.3. Suppose P and Q are associated parabolic

subgroups of G. Then modP = 0 if and only if modQ =

0. This follows from [Hille and Röhrle 99, Thm. 1.1]

and Theorem 3.1 using the classification of the conjugacy

classes of parabolic subsystems of Ψ (cf. [Bala and Carter

76, Prop. 6.3], [Dynkin 57, Thm. 5.4]).

This supports the conjecture that more generally

modP = modQ whenever P and Q are associated par-

abolic subgroups of G.

Remark 3.4. Suppose that modP > 0. Then there exists
a connected simple regular subgroupH ofG such that the

parabolicQ := H∩P ofH is the standard Borel subgroup

of H and modP ≥ modQ > 0. More specifically, H can

always be chosen to be of type A5, B3, C3, D4, or G2.

This is a consequence of the inductive construction of all

the cases when P is of positive modality, see [Röhrle 96,

Thm. 3.1], [Jürgens and Röhrle 98, Lem. 3.13], and [Hille

and Röhrle 99, Lem. 2.3].

Some of the cases of Theorem 3.1 are also valid for

certain bad primes for G; see Section 4.9.

The algorithm can be applied more widely to de-

termine parabolic subgroups of higher modality. For

instance, for Borel subgroups B of simple groups of

small rank modB can be determined by combining lower

bounds for modB from [Röhrle 97] with upper bounds

calculated by MOP, extending results from [Jürgens and

Röhrle 98]; the latter are based on a precursor of MOP.

More specifically, as an application we calculate ex-

plicit upper bounds for the modality of all parabolics in

case G is of type E6:

Type of P Borel A1 A21 A31 A2 A1A2 A22
modP ≤ 5 4 3 2 2 1 1

TABLE 1. Upper bounds for modP in E6.

In all other instances we have modP = 0. For P = PJ
in Table 1 it follows from a construction in [Röhrle 97]

that the given values are in fact also lower bounds for

modP whenever one of the following holds: P is of type

A1A2 or A
2
2, or J does not contain the triality simple

root. That is, in these instances modP equals the value

shown.

Besides computing upper bounds for mod(P : pu), we

can specify an arbitrary invariant linear subspace n of

pu and calculate an upper bound for mod(P : n). Using

a particular feature of MOP we can specify such a sub-

space n and can analyze the P -orbits in n. Remark 3.6
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is such an instance. (In fact n does not have to be P -

invariant, we can simply specify any subspace n and then

we can analyze the modality of the action of P on the P -

saturation P ·n of n.) For details concerning this feature,
see [Jürgens and Röhrle 01].

We discuss a further consequence of the classification

results from [Hille and Röhrle 99] and Theorem 3.1.

Corollary 3.5. Suppose P is a non-maximal parabolic

subgroup of G and modP > 0. Then there exists a proper

P -invariant subspace n of pu such that mod(P : n) > 0.

Proof: This follows from an analysis of the inductive con-

struction of all the instances when modP > 0. More

precisely, the statement follows from the classification

results in [Hille and Röhrle 99] and Theorem 3.1, the

argument of the proof of [Röhrle 96, Thm. 6.3], together

with [Hille and Röhrle 99, Lem. 3.2] and [Jürgens and

Röhrle 98, Lem. 3.13].

The following E8 example illustrates that the state-

ment of Corollary 3.5 is false if the non-maximality con-

dition on P is relaxed.

Remark 3.6. Suppose G is of type E8 and P is conjugate
to PJ , where J = Π \ {σ5}. It was shown in [Röhrle 96]
that modP > 0. Since P is a maximal parabolic sub-

group of G, the various members of the descending cen-

tral series of pu are the only P -invariant linear subspaces

of pu. UsingMOP one can show that mod(P : p
0
u) = 0. In

particular, mod(P : n) = 0 for every proper P -invariant

subspace n of pu.

As a consequence, P admits a dense orbit on p
(i)
u for

each i ≥ 1. By Richardson’s Dense Orbit Theorem

[Richardson 74] P also has a dense orbit on pu itself.

Consequently, every P -invariant linear subspace of pu is

a prehomogeneous vector space for P , but nevertheless,

modP > 0.

4. THE MOP PROGRAM

In this chapter we give a description of the modality algo-

rithm MOP and discuss some of its features. For further

details on usage we refer to the MOP manual [Jürgens

and Röhrle 01]. Throughout this chapter, the notation

of the previous sections is in force. Let P = PJ be a

standard parabolic subgroup of G for some J ⊂ Π.
4.1 MOP

As mentioned above, our algorithm is implemented in

the computer algebra system GAP. The advantage of us-

ing GAP for our purposes is that firstly it comes with

a useful package called CHEVIE for calculations involv-

ing Weyl groups and root systems [Geck et al. 96], and

secondly it provides convenient data structures, so-called

records, to handle objects which depend on a variety of

different parameters specified in record fields. For further

information concerning commands in GAP we refer the

reader to the GAP and CHEVIE manuals [GAP 97], [Geck

et al. 96]. The source file containing the program and

data is built up in a similar fashion as the files in GAP.

Loading the MOP package is achieved by the following

command:

gap> RequirePackage("mop");

The fact that CHEVIE is not available as of yet for GAP4,

limits MOP to GAP Version 3.4.4.

4.2 Strings

Instead of working with individual orbits of P on pu,

we simultaneously consider all P -orbits passing through

particular kinds of affine subvarieties S of pu of the form

S =
P
Kxβ +

P
Mxγ , where M = K \ {0}, and the

two sums are taken over disjoint subsets of Ψ(pu), of

which one may possibly be empty (that is S ∼= MaKb,

where a, b ∈ N0). In particular, S is a locally closed affine
subvariety of pu. Such a subvariety of pu is called a string

or a string of pu. The support of S is the set of roots in

Ψ(pu) whose coefficient is either M or K.

With respect to a total ordering of Ψ+, such a subva-

riety S can be represented symbolically by a sequence of

symbols “0”, “M”, and “K”, where a “0” indicates that

the corresponding root, say β, is not in the support of

S, while xβ has a nonzero coefficient in case of the label

“M” and an arbitrary one if “K” occurs, cf. [Bürgstein

and Hesselink 87], [Popov and Röhrle, §6], and [Jürgens
and Röhrle 98]. This explains the origin of this terminol-

ogy. For example, for A3 the usual ordering of positive

roots is α4 = α1+α2,α5 = α2+α3, and α6 = α1+α2+α3.

Therefore, the subvariety Mxα1 +Mxα1+α2 +Kxα2+α3
of bu is represented by the string “M00MK0”.

In MOP a string S is a record with two record fields

m and k, which are Boolean lists for the positions of S

labeled with M or K, respectively. The print function

for the record (string) S returns the root numbers of the

support of S.

The concept behind the program is straightforward.

Suppose we aim to show that modP ≤ m, where m ∈ N.
The basic objective is to construct a finite set of strings

S of pu with the property that firstly, every P -orbit in

pu has a representative in some S in this list, and sec-

ondly, mod(P : P · S) ≤ m for each such S. The de-
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sired inequality modP ≤ m then follows, since modP =

maxSmod(P : P · S), where the maximum is taken over

all strings S in our finite collection. MOP proceeds to

construct such a finite set of strings by an intricate iter-

ation process of various splitting and elimination opera-

tions discussed below.

4.3 The Stack

A finite collection S of such subvarieties S of pu satisfying

the first property that every P -orbit on pu is represented

by some string S, is called a stack of P or a stack of strings

of P . In our analysis, we initially start out with the

stack S consisting only of the string pu itself. By setting

an optional parameter when calling the MOP function

Modality it is possible to initialize the stack with another

string S in order to compute mod(P : P ·S), see [Jürgens
and Röhrle 01].

4.4 Operations on Strings

We perform two operations on strings in the stack S

which preserve the property that each P -orbit in pu
passes through some S in S. These operations are aimed

at reducing the support of the strings in the stack S, while

preserving this property of S at the same time. The term

“stack” reflects the fact that MOP keeps the strings in

the well-known data structure of the same name.

4.4.1 Splitting Operation. The first one is simply a

splitting or branching procedure. Let S be a given sub-

variety in S with K at position β. Then S is the union of

the two subvarieties S0 and S00, where in position β the
K is replaced by 0 in S0 and by M in S00. Thus S0 is of
smaller support than S, and in S00 we have a new position
labeled with M which allows for new applications of the

elimination technique described next. In this situation

we replace S by S0 and S00 on the stack.

4.4.2 Elimination Operation. This we refer to as an

elimination or reduction operation. In its most elemen-

tary form it works as follows. Let S be a string from the

stack S with coefficient M at β and K at α + β, with

α ∈ Ψ(P ). Suppose that S is invariant under the adjoint
action of the root subgroup Uα, that is Uα · S ⊆ S. Now
let x be an arbitrary element in the variety S. By defi-

nition, x has a non-zero coefficient at xβ . By acting on

x with a suitable element from the root subgroup Uα of

P we can remove α+ β from its support. Consequently,

every P -orbit passing through S also has a representa-

tive in the variety S0 say, which (as a string) is obtained
from S by replacing the coefficient K at α+ β by 0. By

our assumption that S is Uα-invariant, no other roots

are introduced into the support of S0 in this process, and
thus its support is smaller than that of S. Finally, we

replace S by S0 on the stack S. And we may repeat this
elimination process with this new collection of strings.

MOP’s elimination procedure is in fact considerably

more intricate. Suppose now that in the example S above

a suitable operation with the root subgroup Uα removes

the entry K at α + β, however, if there is a K, say at

position γ and a 0 at position α+γ, then the action of Uα
also produces a new entry in that coordinate. Neverthe-

less, suppose that this new entry can be removed again

using a different root operation which in turn may or may

not reintroduce new roots in the support of the resulting

string. We can continue this procedure until no further

new roots are being introduced. Then we have obtained

a closed system of equations only involving the various

positions and operators that are affected in this process.

If the corresponding coefficient matrix is invertible, then

the desired elimination can actually be performed. MOP

checks whether such a system is solvable. The prime di-

visors which occur in such a process (in the Gaussian

elimination) are written into a separate list in the record

field factorlist of the output. Consequently, the result

of the modality calculation is valid assuming that charK

is not in this factorlist. See the example of an output

in Section 4.11.

In such a more involved elimination process new po-

sitions labeled with an “M” or “K” are introduced and

a subsequent operator also acts on these new positions.

Therefore, the order in which a set of operators is applied

matters. In the course of analyzing a given string MOP

simultaneously builds up all possible systems of equa-

tions aimed at eliminating a given targeted position in

the support of the string respecting the different orders

of operators. Once a consistent system of operators is

obtained, MOP tries to eliminate the targeted position

using this system. This guarantees that always a mini-

mal set of operators is used.

Observe that the resulting system of equations is not

linear in general. If the linear part of that system can be

solved and if the resulting substitution from the solution

of this linear part leads to a linear system on the remain-

ing variables, then the complete system can be solved

and the elimination can indeed be performed.

There are certain size and time restrictions built into

MOP in order to limit the elimination process. If a crit-

ical time limit is reached MOP aborts its attempts to

eliminate a certain element from the support of a string

and proceeds to split at that targeted position.



Jürgens, Röhrle: MOP—Algorithmic Modality Analysis for Parabolic Group Actions 63

MOP eliminates a targeted position whenever possible.

A splitting only takes place if all attempts to eliminate

that position failed or if the attempt is timed out. As long

as there are positions labeled with a “K”, MOP proceeds

to eliminate the one with the smallest root number, i.e.,

one of minimal height. Once all roots in suppS with

coefficient “K” have been removed, MOP proceeds to

eliminate the positions labeled with “M”.

The algorithm proceeds by an iteration and combina-

tion of these splitting and elimination operations. We

have proven that modP is bounded above by m, once we

have arrived at a stack S satisfying mod(P : P · S) ≤ m
for each S in S.

Observe that these two operations do in fact always

yield a new stack, which is again labeled S for simplicity,

that is another finite collection of strings with the desired

property that every P -orbit through pu passes through

some string in S.

4.5 Induction

MOP works inductively in the following sense. Let H be

a proper semisimple regular subgroup of G and let Q =

P ∩ H . Inductively, modQ is known and in particular,

we may assume that modQ is at most m, as otherwise

modP > m by Lemma 2.3. It follows from the proof

of Lemma 2.3 in [Röhrle 99, Prop. 2.2] that mod(P :

P ·qu) = modQ. Therefore, we only need to consider the
P -orbits in pu\P ·qu. This applies to any such Q. Here it
obviously suffices to only take thoseH which are maximal

among such subgroups leading to maximal candidates for

Q. Hence, we only take maximal rank subgroups or Levi

subgroups H of corank 1 in G. We form the list of all

conjugates of subsystems Ψ(H)+, where H runs through

this fixed set of regular semisimple subgroups of G of

large rank, such that Ψ(H)+ ⊂ Ψ+. We refer to this list
of subsystems Ψ(H)+ as the InductionList of G.

If G is of type Ar or Dr, then we use Levi subsys-

tems of type Ar−1 and Dr−1 with their usual embed-
dings. For E6, E7, and E8 we also use maximal rank

subsystems, e.g., for E7 we use standard subsystems of

type E6, A7, A1D6 and A2A5. The symmetric subsys-

tems corresponding to such semisimple subgroups H of

G are determined by means of the algorithm of Borel-

de Siebenthal, cf. [Bourbaki 75, Exc. Ch. VI §4.4]. In
[Dynkin 57] all conjugacy classes of such subsystems of

Ψ under the action of the Weyl group of G are classi-

fied; see also [Bala and Carter 76]. MOP computes the

InductionList at each run anew.

For our purpose we need to examine the various

parabolic subgroups Q = P ∩ H that actually occur

in any given instance, where Ψ(H+) runs through the

InductionList of G as defined above. MOP has a de-

vice to calculate each of these and writes the information

into the output record with the record fields SubDiagrams

and SubDiagramsDetail. In the first one MOP writes all

occurring types of Q and in the second lists explicitly all

embeddings of H into G affording such Q’s, see [Jürgens

and Röhrle 01].

It is mandatory that we examine the list of sub-

configurations in SubDiagrams, in order to ensure that

no case is added to the induction list by mistake which

does not satisfy modQ ≤ m, otherwise the outcome of
the algorithm is meaningless.

Furthermore, this feature may help to find new cases

of higher modality. For instance, the fact that modP >

0 in case P = PJ in E7 for J = {α2,α3,α4,α5} was
discovered by examining the information in this list of

sub-configurations; here it turns out that one of the cases

occurring is the Borel subgroup of a simple subgroup of

type A5, cf. [Jürgens and Röhrle 98, Lem. 3.13].

Because of the inductive nature of our method, and

because of the fact that we simultaneously study a col-

lection of orbits passing through strings, we do not get

any information on the number of orbits in case we have

shown that modP = 0.

4.6 Managing the Stack

If a sequence of splitting and elimination operations

yields a string S satisfying mod(P : P · S) ≤ m, then,

instead of keeping it, we may simply delete S from the

stack S. Thus, we will ultimately have reached our goal

of showing that modP is at most m, precisely when all

the strings which were generated in the course of this

process have again been eliminated, that is when the re-

sulting stack is empty. In our next section we discuss the

various possibilities when a string S can be removed from

the stack, that is when S satisfies mod(P : P · S) ≤ m.
The strings which we considered in the last section

on elimination and splitting operations form a tree; we

define pu to be the root of the tree, and for the elimina-

tion operation, S is the parent node of S0, and for the
splitting operation, S is the parent node of S0 and S00.
The leaves of this tree form a stack of the operation of P

on pu. MOP starts with pu and builds up the tree until

every leaf has at least one of the following two proper-

ties, either no splitting or elimination operation can be

applied to it, or one of the criteria discussed below can

be used to prove that its modality is at most m. In or-

der to save memory and time, MOP does not keep the

whole tree in the memory. Instead it enumerates the
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nodes of the tree in a depth-first-search order. Whenever

it finds a string for which none of the criteria applies and

none of the operations can be performed, MOP writes

it into the CannotAnalyzeList. If this list is empty af-

ter a run of the program, then modP ≤ m, otherwise

MOP computes an upper bound for the modality of P

from the strings in this list. The nodes of the tree are

stored in a stack, which is the usual first-in-last-out data

structure. The explicit use of a stack has the advantage

that we can save it to a disc file and recover the data in

case of a system crash. First MOP initializes the stack

with a string which is just the string pu in the default

setting. As long as there are strings left on the stack,

MOP removes the one from the top. If one of the dele-

tion criteria defined below applies to it, we have reached

a leaf node and just continue. Otherwise we try to ap-

ply a splitting or elimination operation, put the resulting

string(s) back onto the stack and continue. If these at-

tempts fail, we have reached a leaf node again and apply

the ExtendedOperation (see Section 4.8). If this opera-

tion does not prove that the string fulfills the modality

condition, we add the string to the CannotAnalyzeList.

In any case we continue with the next string on the stack.

4.7 Deletion Criteria

We now describe the four different deletion criteria which

enable us to remove a string S from the stack S, that is

criteria ensuring mod(P : P · S) ≤ m.

4.7.1 Redundancy Criterion. Instead of removing the

string from the top of the stack immediately, we leave

it there and mark it as “done”. Whenever we find a

string S on the stack marked “done”, we know that this

string has been treated already. In this case MOP puts

it into what is called the RedundancyList. Apart from

merely writing S into the RedundancyList, we also write

every conjugate of S under the simple reflections of the

Weyl group WP of P (i.e. those corresponding to J) into

this list, as each such conjugate also can be considered

as analyzed. In principle one could add the entire WP -

orbit of S in pu to the RedundancyList. However, cal-

culating the orbit is too time consuming. Initially, the

RedundancyList is empty and in the course of the pro-

gram runMOP adds strings to it which have already been

analyzed. Thus, compared to the induction list, this is

a dynamic list which is updated continually. Whenever

we find a string S which is a subvariety of a string in the

RedundancyList, we may consider S also as analyzed

and in this case we simply drop S.

Before a string S is added to the RedundancyList

we first compare S with any string S0 already in the
RedundancyList. If S is a subvariety of some S0 on this
list, then we do not add S. On the other hand, any

such S0 which is itself a subvariety of S is removed from
the RedundancyList and S is added instead. This com-

parison feature guarantees that we maintain an optimal

RedundancyList at any time.

4.7.2 Induction Criterion. Suppose that in the course

of our analysis we encounter a string S which satisfies

suppS ⊆ Ψ(H)+, where Ψ(H)+ is a member of the

InductionList of G, that is S ⊆ pu ∩ h = qu, where

Q = P ∩H. Then, by induction (cf. Section 4.5), we in-
fer that mod(P : P · S) = mod(Q : Q · S) ≤ modQ ≤ m,
and thus we can remove S from S. The equality part of

this statement follows from the proof of Lemma 2.3 in

[Röhrle 99]. We refer to this as the induction criterion.

4.7.3 Rank Criterion. Another situation when we can

delete a string S from the stack, arises in the following

way. Suppose that the support of S consists of at most

dimT +m roots. Let d be the number of linearly inde-

pendent roots in suppS. Note that d is at most dimT .

Then for an arbitrary element x in S we can apply suit-

able elements from T to scale as many as d coefficients

of x to equal 1 with at most | suppS|−d coefficients of x
remaining free. Now, if | suppS|−d ≤ m, then the result-
ing set of P -orbits passing through all the elements which

are obtained by varying the entries in the remaining free

coefficients depends on at most m parameters, and thus,

mod(P : P ·S) is bounded above by m, as desired. Thus,
we can remove S from the stack S. If | suppS| ≤ m+ d,
then we say that S satisfies the rank criterion.

4.7.4 J-height Criterion. Finally, we have one further

possibility to eliminate strings from the stack. Suppose

that for S in S each root in the support of S has a fixed

J-height l ∈ N. SinceMOP only applies when G is simply
laced, the hypothesis of Remark 2.5 on charK is fulfilled.

Thus we have S ⊆ ⊕gβ(∼= p
(l−1)
u /p

(l)
u ), where β runs

through all roots in Ψ of J-height l. Now by Lemma

2.6 there are only finitely many orbits of the standard

Levi subgroup of P on this space; whence there are only

finitely many P orbits passing through S and thus we

can remove S from the stack; then we say that S satisfies

the J-height criterion.

4.7.5 Effectiveness of the Criteria. In the course of a

run ofMOP, each of these criteria may occur many times.

However, the induction and the redundancy criteria are
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generally the more effective ones of the four. Their ad-

vantage is twofold over the others. Firstly, they only in-

volve a subset check of the support of the string at hand

and the members of the induction list of P , or of the

redundancy list. In terms of computing time this is not

too costly provided both of these lists are short. Secondly

and more importantly, these criteria allow us to remove

strings from the stack which may have large support.

Else these might take a long time to be analyzed after

being broken down into smaller strings using the elimi-

nation and branching operations. The fact that we add

all conjugates of any analyzed string under the generators

of the relative Weyl group WP to the RedundancyList

(cf. 4.7.1) makes this a very effective criterion. On the

other hand, the rank criterion can only be applied when

suppS ≤ dimT +m which is usually small compared to

dim pu. A further disadvantage of it is that it requires

calculating the rank of matrices which is less favorable in

terms of computing time than a simple subset check as

involved in the other three criteria.

4.8 ExtendedOperation

In the course of applying splitting and elimination oper-

ations to strings from the stack S it rarely happens that

in the end all the strings that are produced in this fash-

ion satisfy one of the four deletion criteria from above.

Ultimately, it may happen that strings S occur in S

which have the property that the coefficient of any root in

suppS is M (that is no further branching operations are

possible), no further elimination is possible (or aborted

due to time limitations), and S does not satisfy any of

the four deletion criteria above, so it cannot be removed

from the stack. Then MOP enters a process to which

we refer to as ExtendedOperation. We choose a total or-

dering of all possible operators, that is of Ψ(P ), starting

with the negative roots, ordering by height. We apply

these operators consecutively to S and produce entirely

new strings with new entries in that fashion. The re-

sulting strings are then analyzed further with the afore-

mentioned splitting and elimination techniques. That is

we return to the usual procedure with these new strings

created in the ExtendedOperation. This is a systematic

way to obtain a large number of new admissible strings

that can be analyzed further.

4.9 Prime Restrictions

In terms of restrictions on charK, MOP’s results have

to be interpreted as follows. If MOP is run using the

InductionList of G and G is of exceptional type, then

the results obtained are only valid provided charK is

not a bad prime for G, cf. Lemma 2.3. If G is of clas-

sical type, then using this list does not imply any char-

acteristic restrictions, as here only Levi subsystems are

involved in the construction, cf. Remark 2.4. MOP al-

lows a user to disable this inductive feature, e.g., see the

example in Section 4.11. Results obtained without using

the InductionList are valid subject only to character-

istic restrictions stemming from the factorlist of the

output record, see 4.4.2. Often a certain bad prime p

does not occur in that list, and thus, the modality state-

ment computed is also valid in case charK = p. Such an

example is illustrated in Section 4.11. This shows that

certain instances of Theorem 3.1 may also be valid in

specified bad characteristics as well.

4.10 Counters

MOP keeps track of a number of parameters. It counts

the number of strings that are analyzed during a run

of the algorithm. Each time a string is taken off the

stack we raise a counter by one. Another counter keeps

track of the number of splitting operations that are per-

formed. Of particular interest is the success of the var-

ious deletion criteria; there is a counter for each of the

four deletion criteria. Apart from these MOP also has a

counter for the number of calls of the internal function

ExtendedOperation, cf. 4.8; see [Jürgens and Röhrle 01].

If there is no call of ExtendedOperation, then the final

values of the counters for the various deletion criteria and

the splitting operation add up to the value of the counter

for the strings. Viewing the strings created by MOP in

form of a tree as indicated in 4.6, this amounts to count-

ing all leaf nodes (deletion criteria) together with all in-

ternal branching nodes (splittings). If there are calls of

ExtendedOperation, then the sum of the final values of

these counters can exceed the counter for the strings, as

here new branchings may happen before MOP returns to

the stack. This, for instance, happens in Example 4.11.

4.11 An Example

We illustrate a call of MOP in the E8 instance when J =

Π \ {α7} with the use of the induction list disabled.
gap> RequirePackage("mop");

gap> r:=Modality("E", 8, [1,2,3,4,5,6,8],

rec(UseInductionList:=false));

The first line reads the GAP package MOP initializing

a record MOP and defining a function Modality. This

function returns a record with the results of the compu-

tation written in its record fields. All the other func-

tions are internal and are therefore located in the record
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MOP. The first three parameters of Modality are manda-

tory; they define the type of G, rankG, and the subset

J of simple roots defining P . The fourth parameter is

optional; it allows to overwrite the default setting for

a number of global parameters. In our example we set

UseInductionList:=false in order to suppress the use

of the induction list. For a detailed list of all optional

parameters, we refer to the MOP manual [Jürgens and

Röhrle 01].
After a run of MOP the results can be displayed by

the print command in GAP for records:

gap> Print(r);

Modality analysis for type E8,

J = [ 1, 2, 3, 4, 5, 6, 8 ]

E8 2

|

1 - 3 - 4 - 5 - 6 - 7 - 8

--------------------------------------------

1799 strings analyzed

898 splittings

--------------------------------------------

0 induction list matches

588 already done

201 occurrences of rank condition

112 J-Height criterion invoked

--------------------------------------------

1 extended operations

--------------------------------------------

0 unresolved strings

characteristic restrictions: [ 2, 3 ]

The modality of P is 0.

--------------------------------------------

The display is more or less self-evident. Apart from
the case studied, MOP prints the result of the counters,
the characteristic restrictions stemming from solving var-
ious systems of equations, as well as the modality cal-
culation. Observe that the prime 5 does not occur in
the factorlist and consequently, this finiteness result
is also valid in characteristic 5, cf. Section 4.9.

4.12 Safety Feature

In order to recover intermediate results already ob-
tained in case of a system crash, we periodically save
all this information and the status of the analysis to
a file with the suffix .save depending on J ; e.g.,
E8_1_2_3_4_5_6_8.save. If such a file exists and the
function Modality is called again with the same parame-
ters, then MOP reads the information and status from
this external file and proceeds the analysis. The de-
fault setting for the time period after which this data
is recorded anew is 20 minutes.

4.13 The Verbose Feature

By setting an optional parameter when calling MOP in
the function Modality the algorithm prints out various
pieces of information of the entire analysis. In principle,
this allows a user to check every detail of MOP’s calcu-
lation by inspection. For details of this feature and an
example in the verbose mode, see the manual [Jürgens
and Röhrle 01].

ACKNOWLEDGMENTS

We are grateful to G. Hiss and F. Lübeck for helpful sugges-
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[Brüstle and Hille 00] T. Brüstle and L. Hille. “Finite, Tame
and Wild Actions of Parabolic Subgroups in GL(V ) on
Certain Unipotent Subgroups.” J. Algebra, 226 (2000),
347—360.

[Bürgstein and Hesselink 87] H. Bürgstein and W.H. Hes-
selink. “Algorithmic orbit classification for some Borel
group actions.” Comp. Math., 61 (1987), 3—41.

[Dynkin 57] E.B. Dynkin. “Semisimple subalgebras of semi-
simple Lie algebras.” Amer. Math. Soc. Transl. Ser. 2, 6
(1957), 111—244.

[GAP 97] The GAP Group, Lehrstuhl D für Mathematik,
RWTH Aachen, Germany and School of Mathematical
and Computational Sciences, U. St. Andrews, Scotland.
GAP–Groups, Algorithms, and Programming, Version
3.4.4, 1997.

[Geck et al. 96] M. Geck, G. Hiss, F. Lübeck, G. Malle and G.
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[Röhrle 99] G. Röhrle. “On the modality of parabolic sub-
groups of linear algebraic groups.” Manuscripta Math.
98 (1999), 9—20.

Ulf Jürgens, Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
(ulf@mathematik.uni-bielefeld.de)
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