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The first quantitatively correct pictorial atlas of the cut locus
of a nontrivially deformed standard torus in R3 given a non-
symmetrically placed starting point is presented along with a
description of the software tool Loki used to generate it. Loki
can compute the cut locus from a point on a genus-1 two-
dimensional Riemannian manifold defined either by a parame-
trization or its metric, these to be given in closed form. The
algorithm computes a piecewise polynomial approximation to
the exponential map and inverts this numerically, thus correctly
taking into account the global nature of the problem. As an
example of its use in motivating and guiding traditional math-
ematical research, we provide a preliminary conjecture based
upon the output of this software and both a counterexample
and a proof motivated by the conjecture.

1. INTRODUCTION

This report has been written with several different au-

diences in mind. Mathematicians familiar with global

differential geometry can skip the Sections pertaining to

compilation or algorithmic details, and may in fact wish

to go directly to Section 4.1. On the other hand, those

interested in using the software may wish to look at Sec-

tion 3. first. We will refer to the new software package

by its name (Loki) throughout.

The necessary mathematical background is given in

[do Carmo, 76], Section 11.4 of [Berger and Gostiaux, 88],

Section 2.1 of [Klingenberg, 82] and Section 2, Chapter

13 of [do Carmo, 92]. See also the classic works [Myers,

35] and [Myers, 36].

The cut locus from a point p on a surface V is the

closure of the set of points that can be connected to p by

at least two distinct shortest paths in V .

Loki is a software tool designed to compute a numer-

ical approximation to the cut locus of a genus-1 two-

dimensional Riemannian manifold defined either by a

parametrization given in closed form, or by the func-

tions E, F and G of the standard notation for the first

fundamental form of the surface (see Equation (1—2) or
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Section 10.4.1.1 of [Berger and Gostiaux, 88]) given in

closed form.

It has been shown ([Gluck and Singer, 78] and [Gluck

and Singer, 79]) that one can find a metric and a starting

point such that the cut locus is non-triangulable for any

smooth manifold of dimension greater than or equal to

two (for example, the cut locus falls into infinitely many

components if one removes one particular point from it).

Fortunately, it is now known ([Itoh and Tanaka, 98]) that

the Hausdorff dimension of the cut locus is in a direct

relation to the smoothness of the metric, meaning that

“nice” surfaces can be expected to have “simple” cut loci.

Clearly this result is of vital importance in justifying the

development of Loki.

To be more specific, it is known [Buchner, 78] (see

also [Ozols, 74]) that generic cut loci in low dimensional

manifolds are triangulable and structurally stable. In

dimension 2, a generic cut locus is simple to describe:

each point q has a neighborhood in the cut locus which

is either (i) a straight line through q, (ii) a straight line

starting at q, or (iii) three straight lines meeting at q to

form a “Y”. See also [Bishop, 77], where it is shown that

ordinary cut points of a point m are dense in the cut

locus of m.

It is possible to find published papers giving specific

examples, such as [Tsuji, 97]. [Bleecker, 81] explores the

case of compact surfaces without conjugate points in de-

tail. Bleecker derived (in his Ph.D. thesis in 1973) precise

upper and lower bounds for the number of vertices in the

cut locus. [Degen, 97] consists of a diagram showing the

cut-locus of a solid ellipsoid (which is not the same as

the cut-locus from a point on a surface, but related) and

some comments (a theorem) as to how the diagram was

constructed.

It is, however, a fact that it is often prohibitively dif-

ficult to compute the cut locus of a given surface using

purely analytical methods – for example, if the surface

lacks rotational symmetry. Furthermore, as pointed out

in a recent review of the status of mathematical research

on the cut locus [Berger, 00], inverse results (recognizing

a surface on the basis of its cut locus from a point) are

almost completely unknown.

In 1995, J. Rebel, under the supervision of Prof. S.

Markvorsen and Dr. J. Gravesen of the Technical Uni-

versity of Denmark wrote software for the interactive ap-

proximation and visualization of cut loci on surfaces of

revolution. At that time, computation of the cut locus

by software without human intervention seemed unlikely.

The user would generally have to sit and work with the

program for hours to obtain a plot of a cut locus.

The conclusion of the thesis [Rebel, 95] begins

The computer program offers the necessary

tools to visualize the Cut Locus on a surface

of revolution, but it is not able to do that on its

own. This was in no way the intention through-

out the construction and seems also impossible

to implement.

The thesis contains an appendix with plots of the cut

loci for the standard torus

(u, v) 7→ ¡
(2 + cosu) cos v, (2 + cosu) sin v, sinu

¢
(1—1)

for a sequence of starting points beginning on the outside

equator (3, 0, 0), and moving up perpendicularly to the

equator to an angle of π/2 (corresponding to the point

(2, 1, 0)). The uncertainty of these plots is large enough

to be clearly visible.

Prof. Markvorsen and Dr. Gravesen encouraged the

first author to develop a more accurate, automatic soft-

ware tool which would facilitate numerical experimenta-

tion. Loki indeed improves upon this earlier package by

being automatic (the user can go and do something else

while it is computing) and of significantly higher accu-

racy, and by being able to treat any torus-like surface

(not only surfaces of revolution).

It is obvious that the ability to compute shortest paths

on a manifold is a prerequisite for being able to compute

the cut locus. It is however important to realize that

globally shortest (and not just locally shortest) paths are

required. For this reason, iterative methods based upon

improving one or two initial approximations (see, for ex-

ample [Maekawa, 96]) are not adequate as the basis for

a cut locus algorithm.

One may choose to base a cut locus computation on

an algorithm for finding a curve between two points on a

surface, such that each point on the curve is equally dis-

tant from the two points. Such a curve is an example of

what is called a medial curve. If we take surfaces with pe-

riodic parametrizations, then the starting point for which

the cut locus is to be computed has many preimages in

parameter space.

One would construct medial curves in parameter space

between pairs of such preimages of the starting point, and

thus arrive at a subset of the cut locus (what would be

missing are the parts proceeding from conjugate points).

Work on medial curves on surfaces done to date [Rausch

et al. 97] however does not address any of the global

properties which are vital to an understanding of the cut

locus, although it has led to an algorithm for computing
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FIGURE 1. The nontrivial torus-like surface which will be used throughout the rest of this paper. Note the starting point
below the equator and furthest from the viewer. It is pointed to by an arrow and marked by a white semicircle in the
illustration on the right.

geodesic Voronoi diagrams on certain classes of surfaces

[Kunze, et al. 97]. Voronoi diagrams (see [Aurenham-

mer, 1991] for an overview) are related to the cut locus

since they indicate which points on a surface are clos-

est to those of a set of source points, but encode less

geometric information than the cut locus since they are

insensitive to the position of conjugate points. To show

how closely related the cut locus and a Voronoi diagram

can be, consider the case of a compact two-dimensional

Riemann surface with a 2π-periodic parametrization in

both dimensions.

On such a surface, the Voronoi diagram for the vertices

of a regular quadratic grid of side-length 2π in parameter

space is, when projected onto the surface, a subset of

the cut locus from the point which is the projection of

any one of these vertices onto the surface. This Voronoi

diagram is in fact equal to the cut locus on the same

surface from the same starting point if conjugate points

do not play any role.

It is precisely the role of conjugate points which makes

computation of the cut locus based upon a triangula-

tion of the surface essentially impossible. The reason is

that each vertex acts as a weak obstacle, creating con-

jugate points all over the triangulated surface, and the

approximated cut locus “grows hair” as a result. To be

more precise, triangulation makes a surface less smooth,

and we know from [Itoh and Tanaka, 98] that this influ-

ences the Hausdorff dimension of the cut locus. Of course

one is able to compute approximations to distances and

Voronoi diagrams on such surfaces [Kimmel and Sethian,

98, Kimmel and Sethian, 99, Barth and Sethian, 98].

Level set methods ([Sethian, 99], in particular Chap-

ters 19 and 20), which are the basis of the aforementioned

work on triangulated surfaces, are in many ways comple-

mentary to Loki, which computes an approximation to

the exponential map. Level set methods are designed for

situations corresponding in one way or another to forest

fires, where any given tree can only be burnt once. Ex-

ponential map methods are designed for situations cor-

responding in one way or another to echoes, where any

given person can hear the same shout many times.

The point is that different physical phenomena require

different treatments of wavefronts, and that different al-

gorithms tend to complement each other, so that one

may be more suited to a given computation, but both

have their justification in the grand scheme of things.

Level set methods use a viscosity term to smear out the

sharp corners and self-intersections of a wavefront which

define the cut locus, and for this reason they are not ide-

ally suited to computing the cut locus. Exponential map

methods do not involve any such smoothing, and this

allows Loki to locate the cut locus with great precision.

1.1 Notation

Throughout this report, we will use the variable names u

and v to refer to coordinates in R2, which is the universal
covering of torus-like surfaces, as in Equation (1—1). It

is expected that the mapping to the surface will be 2π-

periodic in both of these variables. Coordinates in R3
will be named x, y and z.

Surfaces which cannot be embedded in R3 can alterna-
tively be defined by the three functions E(u, v), F (u, v)

and G(u, v), which define the metric given by

d`2 = E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2. (1—2)
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FIGURE 2. Geodesic curves and circles (on the left and right, respectively) emanating from the starting point on the
surface of Figure 1.

Points on the surface can be parametrized by an initial

angle from the starting point, s, and a distance from it,

t. The angle s is measured in R2 using the standard
Euclidean metric and u and v as coordinates.

The cut locus will sometimes be plotted in terms of

(u, v) coordinates, sometimes in terms of (s, t), and some-

times in terms of (X,Y ) ≡ (t · cos s, t · sin s), which we
choose to call a polar representation.

1.2 A Nontrivial Torus-Like Surface

To provide a concrete example, we take some nontrivial

surface and define it exactly. We have chosen to use the

surface shown in Figure 1. It is a deformation of the

standard torus given by

x̂(u, v) = (2 + cosu) · cos v
ŷ(u, v) = (2 + cosu) · sin v
ẑ(u, v) = sinu. (1—3)

The deformation is produced by adding an offset centred

at (u0, v0) = (1.57, 0), with widths (∆u,∆v) = (0.2, 0.2)

and amplitude d = −1 in the direction of the normal
(nx, ny, nz), where the offset function is analytic and of

an appropriate periodicity:

x(u, v) = x̂(u, v) + f(u, v, 1.57, 0, 0.2, 0.2,−1)

× nx(u, v)q
n2x(u, v) + n

2
y(u, v) + n

2
z(u, v)

(1—4)

(and analogously for y and z) where

f(u, v, u0, v0,∆u,∆v, d)

=
d∆u2∆v2

4

µ£
1 + 1

2
(∆u)2 − cos(u−u0)

¤ · £1 + 1
2
(∆v)2 − cos(v−v0)

¤¶
(1—5)

and

nx(u, v) =
∂ŷ(u, v)

∂u
· ∂ẑ(u, v)

∂v
− ∂ẑ(u, v)

∂u
· ∂ŷ(u, v)

∂v
(1—6)

etc. The surface is given by the parametrization

(u, v) 7→ (x(u, v), y(u, v), z(u, v)). (1—7)

The starting point shown in Figure 1 has coordinates

(uP , vP ) = (−0.5, 1). One can readily imagine geodesic
curves of some small given length beginning at this start-

ing point (see Figure 2). Figure 3 shows the development

in “time” (distance) of these geodesics and geodesic cir-

cles. What is most interesting is the intersection of geo-

desics behind (further from the starting point) the bump

on the torus, and the “swallowtail” feature in the asso-

ciated geodesic circles. The points of first intersection of

these circles define one segment of the cut locus. The

first such point is a conjugate point with respect to the

starting point.

Figure 4 illustrates the cut locus of this surface for the

given starting point. Note the component on the side

of the bump farthest from the starting point, and also

the two components close to the outer equator. These

“sideburns” also begin at conjugate points, due to the

focusing action of the positive curvature along the outer

equator.

Figures 5, 6 and 7 provide further representations of

the same cut locus. They all include the same segments

of geodesic circles as shown in the upper illustration in

Figure 4. If one takes the outer boundary of Figure 7, one

has the Voronoi diagram for the set of source points which

are preimages in the universal covering of the starting

point (uP , vP ):
©
(uP + 2πi, vP + 2πj)

¯̄
i, j ∈ Zª.
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FIGURE 3. Geodesic curves and circles (on the left and right, respectively) emanating from a non-symmetrically placed
starting point on the far side of the surface (see Figures 1 and 2). The propagation of geodesic circles with time is hinted
at by the use of different grey tones.
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FIGURE 4. Several views of the cut locus of the surface from the starting point defined in the text (see Figure 1 and
Equations (1-3) to (1-7)). The upper illustration includes geodesic circles in white, up to their intersection with the cut
locus.
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FIGURE 5. The cut locus of Figure 4 as a maximum distance (t) one can go in a given direction (at the angle s) from a
given starting point before there are shorter paths to the same endpoint.
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FIGURE 6. The cut locus of Figure 4 in a polar representation.
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FIGURE 7. The cut locus of Figure 4 in terms of the 2π-periodic coordinates used to parametrize the surface.
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FIGURE 8. Pairs of representations of the cut locus of Figure 4, the upper of each pair in polar representation as in
Figure 6, the lower a projection onto the (x, y) plain as in the lower right illustration of Figure 4. Each pair highlights a
different segment of the cut locus, showing the complex relationship between the two representations.
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FIGURE 9. A close-up of a portion of the cut locus illustrated in Figure 4. The point of interest appears to be the
intersection of four curves in Figure 4, but this close-up shows that it is in fact a pair of points, each being the intersection
of three curves. This fact alone, and the angles at these points, may be useful in determining the geometry of the surface
from the cut locus. The circles and crosses are data generated by Loki for different input tolerances (see Table 1).
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FIGURE 10. Here is a further close-up of the cut locus illustrated in Figure 4, this time viewed in (u, v) coordinates (c.f.
Figure 7). Angles measured from such data may help identify the surface involved. The squares, circles and crosses are
data generated by Loki for different input tolerances, the squares corresponding to the greatest tolerance (see Table 1).
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2. THE ALGORITHM

The central idea behind the algorithm is to construct a

piecewise polynomial approximation of the exponential

map up to some given maximum distance from the start-

ing point, and then to find the maximum distance one

can follow geodesic curves from the starting point until

they are no longer the shortest path to their endpoints.

This is done by bisection, using numerical inversion of the

approximation of the exponential map to find all paths

of distance no greater than the given maximum distance

leading from the starting point to any endpoint. Figure

17 illustrates the data on which bisection acts. The cut

point is the first point of intersection between the diago-

nal (T = t) and the other curves.

The algorithm splits up into two well-defined parts:

the construction of an approximation of the exponential

map, and its inversion.

Loki has been written with differential geometers in

mind, and always with an eye to allowing extensions or

even restructuring. A tradeoff between efficiency and

flexibility has been important at all stages of the project.

It is for this reason that Loki has been written in C++

in an object-oriented style ([Stroustrup, 97]). It became

clear at an early stage of the development that memory

usage would be a problem, and this has had a significant

influence on the development of the package.

2.1 Approximation of the Exponential Map

The aim is to construct a piecewise polynomial approx-

imation of the exponential map up to some given max-

imum distance from the starting point. Since we can

expect construction of this approximation to be costly, it

makes sense to compute it only once, storing it as a data

structure which is suited to numerical inversion.

In the present context, an exponential map is a map

from angle-distance pairs to parametric coordinates in

R2. In the notation used here, it allows one to compute
(u, v) from (s, t). For obvious practical reasons, it will be

restricted to some maximum distance from the starting

point, tmax. Due to the fact that this mapping tends

to cover points on the surface more than once, we can-

not use the usual device of triangulating the surface using

(u, v) coordinates and assigning an (s, t) pair to each node

without significant modifications. One would have to as-

sign a list of pairs to each node, and the question of grid

adaptivity is difficult to cope with in a satisfactory man-

ner if more than one set of values are sharing each grid

point. A more natural data structure to use is one which

follows the geodesic curves and circles more like a scarf

which can be wrapped around one’s neck many times

(Figure 15 gives some idea of what is meant). This scarf

can be composed of many patches (see Figure 11), each

being a local polynomial approximation of the mapping

(s, t) 7→ (u, v). We have decided to base the algorithm on

fourth-degree polynomials, these being the highest degree

polynomials for which one has explicit formulæ for their

roots, and four also being the order to which standard

Runge-Kutta (RK45) is locally correct.

A patch is constructed by beginning with a fourth-

degree polynomial approximation of a segment of a geo-

desic circle centred around the angle s0 with distance t0
from the starting point

ût0(s) =
4X
i=0

ûi
i!
· (s−s0)i

(and the same for v) and then “virtually” evolving this

curve using standard Runge-Kutta out to a distance of t.

The Christoffel symbols appearing in the geodesic equa-

tions are computed automatically by Loki. The idea is to

use automatic differentiation ([Rall, 81]) by overloading

all arithmetic operations appearing in the Runge-Kutta

routine, but actually evaluating for t = t0. What one

obtains are Taylor coefficients for an expansion in t−t0
about every point of the segment at t0:

u(s, t) =

4X
i=0

4X
j=0

ui,j
i! j!

· (s−s0)i · (t−t0)j

(and the same for v). The point in using a numerical al-

gorithm in combination with automatic differentiation is

that automatic differentiation, although it generally re-

duces numerical error, is not immune to it. Applying au-

tomatic differentiation to a numerically stable algorithm

is very simply an attempt to keep numerical error to a

minimum.

We can then evaluate ût1(s) := u(s, t1) and v̂t1(s) :=

v(s, t1) (for a fixed value of t1 greater than t0) to ob-

tain the next fourth-degree polynomial approximation of

a segment of a geodesic circle centred around the an-

gle s0 with distance t1 from the starting point, and the

whole process can be repeated. In this way, each patch is

connected to its predecessor, and the data structure re-

sembles a set of streamers radiating out from the starting

point.

The algorithm uses some heuristics to decide when a

patch should be shortened (in t) or split (in s). These

decisions would otherwise be a global problem in them-

selves, since splitting a patch results in two independent
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FIGURE 11. The data structure used for approximating the exponential map of a nontrivial surface with nontrivial
starting point (see Figure 1). An input tolerance of 10−4 was used to generate this approximation. The product form of
the offset used to define the bump on the surface (see Equation (1-5)) is responsible for the regular square grid artifact
(“darkening”) of side-length 2π.

streamers from that point onwards (instead of just con-

tinuing with one). It is therefore a good idea to avoid

splitting where possible.

At the same time, shortening cannot be repeated in-

definitely. In regions of negative curvature (diverging

geodesic curves), it is clearly an advantage to split rather

than to shorten. The algorithm shortens until the patch’s

length (in t) would be a small fraction of its width (in

s). If the preceding patch was not split, then the current

patch is. Otherwise it continues to shorten. In any case,

the algorithm checks that the “speed” of the geodesic

curves does not deviate from 1 by more than the input

tolerance in the middle or at the corners of the patch, and

that actually (rather than virtually) using Runge-Kutta

up the middle and to the corners of the patch gives the

same values as the Taylor expansions computed by auto-

matic differentiation. Finally, it was found that rescaling

the speed (|d`/dt|, see Equation (1—2)) of the geodesic
curves to 1 (the correct value) at each such step helps to

reduce error.

2.2 Inversion of the Exponential Map

Inversion of the exponential map corresponds to finding

all the geodesic curves up to the given maximum length

which connect the starting point (uP , vP ) with some other

given point (U, V ) on the surface. See Figure 12. The

current implementation of Loki uses a fairly primitive,

but robust, divide-and-conquer algorithm to solve the

system

u(s, t) = U

v(s, t) = V

on each patch of the data structure (Figure 11). This

part of the algorithm is fairly standard, and will not be

discussed further.

In particular, it does not seem that any great atten-

tion need be paid to the kinds of singularities generally

encountered when plotting contour lines ([Taubin, 94]),

primarily because the solution set here is actually an in-

tersection of curves which tend to meet at an angle. Any

improvements to the algorithm could increase efficiency

but not accuracy. Since accuracy and reliability are the

main goals, it was decided not to spend too much time

investigating this point.

One important point to be made is that the periodic-

ity of the parametrizations of torus-like surfaces requires

that inversion be done for a set of preimages of the point

being inverted. See Figures 13 and 14. Since there are

actually infinitely many preimages, some finite set must
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FIGURE 12. Geodesic curves joining two points on a nontrivial surface.
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FIGURE 13. The algorithm actually works in (u, v) coordinates (a parametrization of the surface), but makes the
necessary identifications appropriate for a torus by identifying points with coordinates differing by multiples of 2π in
both dimensions. The geodesic circles plotted here are the same ones displayed at the bottom of Figure 3.

be chosen. This is done by the user by setting the vari-

able copies. The set of preimages used in inverting is

given by

©
(U + 2πi, V + 2πj)

¯̄
i, j ∈ Z; i, j ∈ [−copies, copies]ª.

During implementation of Loki, it was discovered that

gaps between the various patches of the approximation

of the exponential map (see Figure 15), and also over-

lap between patches, were causing serious problems even

for small input tolerances. The reason is that the bisec-

tion algorithm being used to locate a cut point assumes

that inverting the exponential map gives one all geodesic

curves which pass through a given point. If one of these

is missing, the bisection algorithm may take a step in the

wrong direction.

The solution chosen here is to linearly interpolate be-

tween patches where gaps or overlaps can occur (at the

edges of the streamers spoken of before). The linear in-

terpolation has the form

ũ(x, t) = x · u(sgap−, t) + (1− x) · v(sgap+, t),
where

ũ(x, t) = ũ0(x, t0) +
4X
i=1

ũi(x, t0)

i!
(t−t0)i

(and also for ṽ). Given an interval [t0, t1] to work in,

Loki determines whether there might be a solution to

the system

ũ(x, t) = U

ṽ(x, t) = V.

If an x ∈ [0, 1] and a t ∈ [t0, t1] can be found, then the
algorithm returns (sgap, t) as the preimage of (u, v).

The algorithm follows these steps to determine

whether there could be a solution in the given interval

(and uses the same strategy for v):
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FIGURE 14. Computation of geodesics between the starting point and some other given point on a torus is accomplished
by generating copies of the other point with (u, v) coordinates differing by multiples of 2π, and computing shortest paths
of no more than the given maximum distance to all of these copies. In this way, only one exponential map stored in
memory suffices. The paths shown here are those mapped onto the embedding of the surface in R3 in Figure 12.

FIGURE 15. Part of the adaptive data structure approximating the exponential map for a standard torus. In this case
the error tolerance has deliberately been set high, so that the gaps between patches are visible to the naked eye. These
gaps remain a problem even for much smaller tolerances. The illustration on the right shows the same data structure in
terms of (u, v) coordinates. It is clear that overlaps also occur. These are dealt with in the same manner as the gaps.

1. If [ũ(0, t0) − U ] · [ũ(1, t0) − U ] ≤ 0 or [ũ(0, t1) −
U ] · [ũ(1, t1) − U ] ≤ 0 then there is a solution to

U = ũ(x, t).

2. If |ũ0(0, t0)−U | >
P4

i=1
|ũi(0,t0)|

i! (t1−t0)i or |ũ0(1, t0)−
U | >P4

i=1
|ũi(1,t0)|

i! (t1−t0)i then there is no solution.
3. If (using explicit formulæ for the roots) there is a

t ∈ [t0, t1] for which U = ũ(0, t) or U = ũ(1, t), then
there is a solution.

4. Otherwise there is no solution.

This algorithm is applied to all the possible gaps/overlaps

of the data structure used to approximate the exponential

map. Figure 11 shows such a data structure, and Figure

16 the corresponding lines where gaps or overlaps must

be checked.

In order to keep memory usage down, it was decided

to recompute the linear interpolations ũ and ṽ every time

the exponential map is inverted. This is not as inefficient

as it sounds. The choice of whether or not to recompute

them is based upon the ratio of the time needed to com-

pute them (which is short, because this is just a matter of
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FIGURE 16. The pattern of gaps and overlaps in the data structure used to approximate the exponential map for a
nontrivial surface.
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FIGURE 17. If one travels a distance t from the chosen starting point (uP , vP ) along a geodesic curve with a given initial
direction (s = 2), one will reach some unique point (Q) on the surface. On a compact surface there will always be other
geodesics which also begin at (uP , vP ) and pass through Q. If one compiles a list of the lengths (T ) one must travel along
these various geodesics from (uP , vP ) to reach Q, then this list of distances can be plotted vertically as a function of t.
The two figures presented here correspond to two different choices of input tolerance. On the left is 10−4, on the right is
10−5. Note that the larger input tolerance on the left results in the algorithm incorrectly deleting parts of some of the
curves. This is because different geodesic curves appear to be identical at too low a resolution.

polynomial evaluation) and the time to look for solutions

(which can be long, because one is searching for zeros in

a nonlinear system).

Similarly many memory accesses are involved in both

options, although choosing not to store the interpolations

turns out to halve the memory requirements of the entire

program.

2.3 Error Estimation
It should be pointed out that the computation of global

geometric quantities is fraught with difficulties, and one

of these is that no good method of estimating the error

is available. Consider a general purpose numerical root-

finder. While it is usually possible to give reliable local

error estimates for roots found, it is essentially impossi-
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Input tolerance Symbol Memory CPU time Est. error

10−3 2 4M 2 hrs. 1.2951

10−4 3 8M 8 hrs. 0.3823

10−5 ° 19M 2 days 10 hrs. 0.0180

10−6 + 45M 9 days 19 hrs. 0.0037

TABLE 1. Performance and accuracy of the algorithm as
a function of input tolerance. The symbols given in the
second column are those used in the various plots depicting
output data for different values of the input tolerance.

ble (if the function is not analytic, for example) to make

global statements such as “all roots have been found”,

unless one goes to extraordinary lengths (like using inter-

val arithmetic). It is precisely this point which we must

not forget when computing the cut locus. While one can

give local error estimates for the accuracy of computed

geodesic curves, one cannot easily estimate the error in

the number of geodesic curves found to pass through a

given point. However, the cut locus is defined by pre-

cisely this number (i.e. the cut locus is the closure of all

points having at least two shortest length curves back to

the starting point). In practice, this means that one has

no proof that the output will converge for all possible

surfaces, but this does not prevent one from using Loki

as a tool for experimentation.

The gaps/overlaps mentioned above are a good mea-

sure of the actual inaccuracy of the exponential map ap-

proximation. Their width (and the difference between

their position and that which is obtained by using Runge-

Kutta in a straightforward manner) is in fact used to

produce the error estimate given in the output file. In

this way, the input tolerance given by the user results in

the error estimate given by the program. See Table 1 for

examples of pairs of input tolerances and error estimates.

This error estimate is however nothing more than an

estimate. There are in fact many nontrivial processes

which result in error. Figure 17 illustrates one such

process. When inverting the approximation to the expo-

nential map, one must have some way of telling whether

two geodesic curves, given the (s, t) coordinates of points

on them, should be considered to be identical or dis-

tinct. This is not always clear, particularly if the lengths

are very close. The decision is based upon computing

the (u, v) coordinates of corresponding points along the

length of the curves, and seeing if they deviate by more

than the estimated error.

The variable checks controls the number of points

checked. It is an integer. The algorithm only checks

those pairs of geodesic curves for uniqueness which al-
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–6 –4 –2 2u

FIGURE 18. Output data in (u, v) coordinates (see also
the cut locus plot in Figure 7). Squares, diamonds, circles
and crosses correspond to ever decreasing input tolerance
(see Table 1).
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FIGURE 19. A close-up of Figure 18. Note that the
squares, which are output data corresponding to the
largest input tolerance (and therefore the least “trustwor-
thy”) define an artifact (a curve) which disappears com-
pletely when the input tolerance is lowered.

ready have the same endpoints. The points which are

checked are placed at multiples of 1/checks of the total

length from one end. In other words, if checks is set to

2, then only one point, halfway between the endpoints,

will be checked. The default is 4, meaning that three

equispaced points are checked.

If the input tolerance has been set too large, one of

the consequences is that geodesic curves which are dis-

tinct may be confused. As a result, the inversion algo-

rithm will effectively ignore some solutions, and this will

have consequences for the bisection routine responsible

for determining the position of the cut point. The reader
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FIGURE 20. A close-up of Figure 19.
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FIGURE 21. A close-up of Figure 20.

should now understand that the problem of error esti-

mation is at least as difficult as that of computing the

cut locus. The output error estimate is therefore only

intended as a guideline.

Another variable (copies, see Section 2.2) also influ-

ences the error in a nontrivial way.

An indication of how the output converges on the cut

locus can be seen in Figures 18 to 21, where the symbols

of Table 1 have been used throughout.

2.4 Code Generation

This Section will only deal with technical issues relating

to the automatic generation of large fragments of Loki’s

source code, and in particular with a software tool devel-

oped with more than just Loki in mind.

Experience with Loki has shown that it is advis-

able to demand IEEE-754 arithmetic [IEEE, 85], oth-

erwise machine-dependent floating point exceptions tend

to cause the program to abort, and results may vary from

architecture to architecture. When using g++, the option

-ffloat-store can be recommended. In the case of the

Compaq C++ compiler for Tru64 UNIX, the -ieee op-

tion should be used.

It is a well-known fact that compilers have difficulties

allocating registers for very large procedures (see, for ex-

ample, Section 5.2 of [Lawall, 98]). For this reason, a

special automatic differentiation tool was written during

the development of Loki. Its purpose is to generate C

code for computing the many higher derivatives required

(up to fourth order in two variables) for functions such as

cosine or square root. The tool first generates an inter-

mediate representation of the required code containing

only unary and binary operations (this is the function

code list spoken of in [Rall, 81]). It then optimizes by

identifying multiple occurrences of the same operation.

Finally, and this is the important point here, it performs

“register allocation” at source code level by ensuring that

a small number of variable names are reused as much as

possible. For example, consider the code fragment

t1452=t3321+t42;

t1460=sqrt(t1452);

t1463=t1460+t42;

t1464=sqrt(t1463);

The result of the “register allocation” mentioned above

could be to transform that code to

r10=t3321+r3;

r1=sqrt(r10);

r10=r1+r3;

t1464=sqrt(r10);

(the uncertainty is due to the fact that the optimizations

are global in nature, so looking at a single code fragment

in isolation does not allow one to conclude exactly how

it will be transformed). Note that such transformations

automatically lead to an improvement in data locality,

which also tends to optimize cache usage.

On a SUN E6500 processor, using g++ version 2.8.1

and with the options -O3 -ffloat-store, this “regis-

ter allocation” results in an increase in speed of 42%

(for computing derivatives of the square root opera-

tion). With the compiler options -O1 -ffloat-store

-fschedule-insns (see [Lawall, 98]), an increase of 34%

is achieved. Using the Compaq C++ compiler cxx ver-

sion 6.2 on a DEC Alpha machine with options -ieee

-O4, an increase of 20% is seen.
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While this optimization tool has clearly been of some

use in the development of Loki, one can expect that over

time compilers will improve to the point where they are

able to perform such optimizations themselves, so this

tool will not be described any further here. Nonetheless,

it did generate approximately two thirds of Loki’s 12000

lines.

It should also be pointed out that some numerical

difficulties were encountered in connection with auto-

matic differentiation applied to division. In computing

the higher order derivatives, powers of the constant term

of the denominator are required, and this can lead to

overflow. A good solution seems to be to rescale such

that this constant term becomes one. That is, compute

using

a

b
= a ·

µ
1

b0

¶
·
µ
1

b0
· b
¶−1

instead of simply dividing a by b.

3. USE OF THE SOFTWARE

The file metric.cc as defined in Figure 22 defines the

standard torus given by Equation (1—1). This is a good

sample file to start with when first using Loki. A suitable

input file is shown in Figure 23. Once these two files have

been set up appropriately in a directory containing the

source code for Loki, it should be compiled and started.

x=(2.0+cos(u))*cos(v);

y=(2.0+cos(u))*sin(v);

z=sin(u);

FIGURE 22. Contents of the file metric.cc for the stan-
dard torus in R3.

For example, if the input file of Figure 23 is called

input, then the following commands will start Loki on

the DEC alpha machines of the Department of Mathe-

matics of the Technical University of Denmark:

cxx -ieee -O4 -o loki main.cc -lm

loki < input > output

On one of our DEC alpha machines, computation takes

approximately twenty minutes.

The file metric.cc as defined in Figure 24 defines the

same surface as Equations (1—3) to (1—7). Note in partic-

ular the appearance of the same numerical constants as

in Equation (1—4). A corresponding input file is shown

tolerance = 1e-3

maximum distance = 7.5

u coordinate of starting point = -0.5

v coordinate of starting point = 1.0

FIGURE 23. A sample runtime input file.

x=(2.0+cos(u))*cos(v);

y=(2.0+cos(u))*sin(v);

z=sin(u);

BUMP(1.57, 0.0, 0.2, 0.2, -1.0);

FIGURE 24. Contents of the file metric.cc for a surface
embedded in R3.

in Figure 23. These two files may be used as a first non-

trivial example (but one which will most probably take

several hours) of the use of Loki.

One can also choose to define the surface in terms of

its metric. See Equation (1—2) and Figure 25.

E=1.0+cos(u)*cos(u)

*(parameter*parameter-1.0);

F=0.0;

G=(2.0+cos(u))*(2.0+cos(u));

FIGURE 25. Contents of the file metric.cc for a surface
defined purely in terms of its metric.

Selection of a starting point, a maximum distance for

the exponential map, an error tolerance and a parameter

value are made in an input file (standard input). As has

already been pointed out, Figure 23 is an example of such

a file.

It is a good idea to choose a large input tolerance

(such as 10−4) and a large maximum distance (this will

of course depend upon which surface has been defined!)

for the first computation. One can then use the output to

adjust the maximum distance to be closer to the actual

maximum distance to the cut locus (see Figure 5), and

choose a smaller input tolerance. This should be done

until the user is satisfied that some sort of convergence

has been achieved.

Loki can also be used to compute distance matrices for

sets of points on open or closed surfaces. The runtime

input file should have the form shown in Figure 26, con-

taining a line stating that a distance matrix is required,
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tolerance = 1e-4

maximum distance = 0.7

copies = 0

compute distance matrix

0.2 0.1

0.1 0.2

0.0 0.2

0.0 0.0

FIGURE 26. A sample runtime input file which asks for a
distance matrix for the points given.

and a list of points defined by their (u, v) coordinates. If

the surface is open (such as a two-sheeted hyperboloid,

as in the case in Figure 27), then the variable copies

should be set to zero.

x=u;

y=v;

z=sqrt(1.0+u*u+v*v);

FIGURE 27. Contents of the file metric.cc for a two-
sheeted hyperboloid.

3.1 Syntax for metric.cc

The file metric.cc is expected to contain either a set of

definitions for the metric (1—2) as in Figure 25, or a set

of definitions for a parametrization of an embedding of

the surface in R3 followed by an optional list of “bumps”
to distort this surface (see Figure 24 for an example).

Loki must be compiled anew for each change to

metric.cc. The point is that a compiler will hopefully

be able to make use of an explicit expression to be able

to optimize generation of an exponential map. The ef-

fectiveness of this strategy will of course depend upon

the compiler used, and, in particular, the optimization

options selected. It is therefore difficult to say whether

parsing of an input file would be a better solution, but

this is an option that has been considered. Parsing of an

input file will only be efficient if the time taken repeatedly

interpreting the internal representation of the contents of

that file is insignificant compared with the actual com-

putations involved. It is however felt that the trend is

that compilers do improve over time, and that the choice

made is justified. In any case, the file metric.cc serves

to define the surface to be worked on (up to a possible

free parameter, which must be named parameter).

Since metric.cc is actually compiled as C++ source

code, its syntax must conform to the C++ language de-

finition (see [Stroustrup, 97] for an introduction). This

is the reason why the lines assigning values to x, y and

z must be terminated with a semicolon. Only the four

elementary arithmetic operations (addition, subtraction,

multiplication and division, using the notation +, -, *

and /; and also the unary version of -) and the functions

cos, sin, cosh, sinh and sqrt (i.e.
√·) have been im-

plemented for automatic differentiation thus far. That

is, only these operations have been overloaded to han-

dle arguments with the types u and v are assigned in

the different parts of the program where metric.cc is

included. This means that no other function may be ap-

plied to expressions containing u or v. For example, the

input line

x=log(u^2);

will simply produce compiler error messages, due to the

appearance of a C++ mathematical function which has

not been overloaded for Loki (log) and also an operator

which has not been overloaded (^ is the logical bitwise

symmetric difference operator in C++).

One is however free to use any C++ standard math-

ematical function on constants appearing in metric.cc.

For example,

x=u*log(1.2);

This also applies to the use of the special variable named

parameter. This variable acts like a constant. Its value

is set at runtime in the runtime input file. This allows

one to compile only once for a family of related surfaces.

For example:

x=(parameter+cos(u))*cos(v);

y=(parameter+cos(u))*sin(v);

z=sin(u);

BUMP(1.57, log(parameter+1.0), 0.2, 0.2, -1.0);

C++ syntax has one disadvantage in the context of

Loki which cannot be avoided: There is a difference be-

tween integer and “real” (double) constants which influ-

ences the arithmetic used. For example, 1/2 is under-

stood to be an integer division because both operands

are integers. The result of an integer division is itself an

integer, and 1/2 is rounded by the C++ compiler to zero

before Loki is executed. For example, the file

x=(1.5+1/2+cos(u))*cos(v);

y=(1.5+1/2+cos(u))*sin(v);

z=sin(u);
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does not define the standard torus given by Equation

(1—1).

If however “one half” is entered using “real numbers”,

as in

x=(1.5+1.0/2.0+cos(u))*cos(v);

y=(1.5+1.0/2.0+cos(u))*sin(v);

z=sin(u);

then the standard torus given by Equation (1—1) is indeed

defined, because 1.0 and 2.0 are “real numbers” accord-

ing to C++ syntax, so a “real” division is performed.

Since Loki does not necessarily have access to its own

source code, there is no sensible way of detecting such

problems, but the arguments of the BUMP macro are

checked carefully. A fatal compilation error results if any

of them is an integer rather than a “real number” (e.g.

0 instead of 0.0).

One may add several “bumps” to a surface, but these

will all make use of a surface normal to the original sur-

face (i.e. the one defined by the x=... statements).

Loki does output what it has understood its input to

be, so it is always possible to double-check, simply by

comparing Loki’s output with one’s own input. Loki also

outputs a Maple [Heck, 96] version of the surface, and

this also provides one with a possibility to check.

3.2 Syntax for the Runtime Input File

A sample runtime input file is to be found in Figure 23.

The runtime input file is read by Loki, and therefore

does not follow C++ syntax. Loki parses it in a rather

primitive way. As was the case with metric.cc, one is

able to check that one’s input has been understood by

looking at output files.

The rules used by Loki to read from standard input

are:

1. If a line contains the substring atrix, assume that

the user wants to compute a distance matrix.

2. If a line begins (ignoring spaces or tabs) with a “-”,

“+”, “.” or a digit, assume that the line contains

(u, v) coordinates of a point defining the distance

matrix.

3. If a line contains the substring tol and an equals

sign (=), assume that a single real number follows

the equals sign, and that this number defines the

input tolerance.

4. If a line contains the substring max and an equals

sign, assume that a single real number follows the

equals sign, and that this number defines the max-

imum distance to be used in approximating the ex-

ponential map.

5. If a line contains the substring par and an equals

sign, assume that a single real number follows the

equals sign, and that this number defines the value

of the variable in metric.cc named parameter.

6. If a line contains the substring cop and an equals

sign, assume that a single integer follows the equals

sign, and that this number defines the variable

copies (which was discussed in Section 2.2).

7. If a line contains the substring che and an equals

sign, assume that a single integer follows the equals

sign, and that this number defines the variable

checks (which was discussed in Section 2.3).

8. If a line contains one of the characters u or v and an

equals sign, assume that a single real number follows

the equals sign, and that this number defines either

uP or vP , respectively.

These rules are applied in the order given, the first match

determining how any line is understood. Note that these

rules do not allow for any actual computation while pars-

ing. For example, the line

tolerance = 1e-3 + 25.6

is understood as if it read

tolerance = 1e-3

(setting the input tolerance to be 10−3).
All of the variables and constants mentioned above

have default values which are used if they are not defined

in the runtime input file.

3.3 Output (to Standard Error cerr)

If Loki is run using the UNIX command batch, then

this output will usually appear in an E-mail informing

the user that the job is finished. The idea is to give a

short summary of what was computed and how long it

took. This information may be of use in keeping track

of exactly which job produced which output file. Also, if

Loki should abort, information concerning the reason for

this will be output here.

Here is the output corresponding to metric.cc as de-

fined in Figure 24 and the runtime input file of Figure

23:
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############################################

## LOKI ##

############################################

tolerance=0.001

parameter=0

u_0=-0.5

v_0=1

t_max=7.5

copies=1

checks=4

computing from (x,y,z)

size=5458

error=1.29506829232

processor time used on

exponential map=256.423076 seconds

total processor time used=7198.078732 seconds

############################################

3.4 Output (to Standard Output cout)

This file contains the actual output data defining the

cut locus. The file contains enough information to al-

low a complete reconstruction of the runtime input file

and the file metric.cc. This is to prevent one from in-

advertently losing track of which output file corresponds

to which surface and starting point etc. One can liter-

ally copy the sections of this output file beginning with

input file and metric.cc into the runtime input file

and metric.cc respectively and then (after removing the

leading #s) recompute.

This file can be read by Maple. It defines a function

called trans, which maps from (u, v) coordinates to R3
(if the surface has been defined in terms of (x, y, z)), the

error estimate and time to compute the approximation

to the exponential map, a list of angles to be explained

below, and then the actual list named l which defines

the cut locus. l consists of sextuples of numerical values.

The first two entries are the (s, t) coordinates of a point

of the cut locus. The next two are the (u, v) coordinates

of the same point. The final two entries are usually the

(s, t) coordinates of another geodesic of same minimal

length, which can help understand the structure of the

cut locus. For numerical reasons, these final two entries

may sometimes simply be a copy of the first two. This

is often the case near a conjugate point, where the algo-

rithm can have difficulty identifying which two geodesics

are intersecting at the cut point.

The list of angles output while Loki is computing indi-

cates how the computation is progressing. Since a single

cut locus computation can take several days, it is useful

to have this practical information.

Here is the output corresponding to metric.cc as de-

fined in Figure 24 and the runtime input file of Figure 23.

Lines have been truncated here. The actual output file

of course contains full lines. Also, vertical dots indicate

where lines have been deleted to save paper.

####################################################

## LOKI ##

####################################################

################ input file ########################

# tolerance=0.001

# parameter=0.0

# u_0=-0.5

# v_0=1.0

# t_max=7.5

# copies=1

# checks=4

################### metric.cc ###################

# x=(cos(u)+2.0)*(cos(v));

# y=(cos(u)+2.0)*(sin(v));

# z=sin(u);

# BUMP(1.5700000000000001,0.0,0.20000000000000001,

###################################################

trans:=proc(u,v)

[(cos(u)+2.0)*(cos(v))+(((-0.00040000000000000013)/

(cos(u)+2.0)*(sin(v))+(((-0.00040000000000000013)/

sin(u)+(((-0.00040000000000000013)/((1.02-(cos(u-(1.

end:

###################################################

# size=5458

# error=1.29506829232

# processor time used on exponential map=256.423076

#################### computing ###################

# -3.09159265359

# -3.04159265359

# -2.99159265359

...

###################################################

l:=[

[-3.14159265359,5.60718139896,0.519178903231,-0.866

[-3.09159265359,6.12407684326,0.503320818319,-1.045

[-3.04159265359,6.11148834229,0.513546541913,-1.041

...

[3.14159265359,5.59918803018,0.519406330002,-0.8632

###################################################

# total processor time used=7198.078732 seconds

###################################################

3.5 Performance

Table 1 gives some idea of the performance of Loki for

various input tolerances. In every case, the surface has

been defined by metric.cc as in Figure 24 and the run-

time input file of Figure 23 (with the various different

tolerances).

Roughly speaking, for a reduction in input tolerance

by a factor of ten, one can expect a doubling of memory
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usage and a quadrupling of computing time. At the same

time, the estimated error of the output drops by approxi-

mately a factor of ten (but with large fluctuations in this

factor).

Some readers may be alarmed at the long computing

times recorded in Table 1. First, it must be said that a

“reasonable” time will always depend upon the context

in which the program is used. Most mathematics depart-

ments have idle computing power. Most mathematicians

have enough to keep them busy that they can wait a few

days for a new cut locus. Loki has been written with ro-

bustness as the highest priority, and speed as a secondary

consideration. If one were to find that a research project

actually needs a large number of cut loci to be computed

in a short time, then the algorithm would have to be im-

proved. The first author does not believe that programs

should be optimized unless there is a demonstrated need

for it. We must remember that the purpose of this soft-

ware package is primarily mathematical, and it was never

intended as a contribution to high speed computing.

An obvious improvement to the inversion algorithm

would be the use of a quadtree (a data structure which

naturally represents objects distributed in space, allow-

ing rapid access to the neighbours of any given object

– see [Warren and Salmon, 92] for an excellent descrip-

tion of how this idea is used in astrophysical simulations)

to group neighbouring (in terms of (u, v) coordinates)

patches together. One can expect that this would sig-

nificantly improve the efficiency of the inversion process,

since one would be able to locate relevant patches with-

out searching the entire data structure. The fact that

the gaps/overlaps between patches are not stored, but

recomputed each time the exponential map is inverted,

would however make this a nontrivial modification.

4. KOKKENDORFF’S CONJECTURE

The point of this section is to illustrate how Loki has

already contributed in a small way to research in global

differential geometry, by providing inspiration for a new

hypothesis.

Simon Kokkendorff, a Ph.D. student of Professor

Markvorsen at the Department of Mathematics of the

Technical University of Denmark, has used Loki to study

the cut loci of surfaces similar to the one shown in Fig-

ure 1. This experimentation led to the following, very

preliminary conjecture:

Given a smooth (or analytic) surface, the graph

of the distance to cut points of a point as a

function of initial angle from the starting point

is smooth at local minima, but not differentiable

at local maxima.

Clearly this was only the first step in formulating a pre-

cise hypothesis.

The motivation for the conjecture was plots such as

Figure 5, although one might be unsure as to what is

happening for s ≈ 1.8, where it is not quite clear whether
the local minimum is smooth. Figure 28 is a close-up of

the relevant portion, and shows that the graph is indeed

smooth at the local minimum, although quite some com-

putation was required to show it (the crosses correspond

to 9 days’ computing time – see Table 1). Note that the

curve joining the two vertices of Figure 9 could also have

been examined more closely.

The conjecture was then studied from a purely theo-

retical point of view by the second author, leading to a

proof of the first part (concerning minima) and a coun-

terexample to the second (concerning maxima). These

are presented in the next Section. Note that the proof of

the first part given here is for the more general situation

of the cut locus of a closed submanifold in a surface.

It is hoped that Loki will lead to more such conjec-

tures. This is the very essence of experimental mathe-

matics.

4.1 A Counterexample and a Proof to

Kokkendorff’s Conjecture

Let C be a closed submanifold of a complete 2-

dimensional Riemannian manifold M (cf. [Chavel, 93] or

[Sakai, 92] for Riemannian geometry). A unit speed geo-

desic segment γ : [0, a] → M emanating from C is called
a C-segment if t = d(C, γ(t)) on [0, a]. Here d( , ) denotes
the Riemannian distance function ofM. Let π : N1C → C
be the unit normal bundle over C. We define a function
ρ(v), v ∈ N1C, which is called the distance function to
the cut locus of C, by

ρ(v) := sup{ t > 0 | γ|[0,t] is a C-segment }.
Each point exp(ρ(v)v) with ρ(v) < ∞ is called a cut

point of C and the set of all cut points is called the cut
locus of C. Here exp denotes the exponential map on the
tangent bundle TM ofM. For each unit speed curve v(τ ),

τ ∈ (−δ, δ), on N1C

Yv(0)(t) :=
∂

∂τ

¯̄̄
τ=0

exp(tv(τ ))

is called a C-Jacobi field along γv(0)(t) := exp(tv(0)).We
define a function λ1(v) on N1C by

λ1(v) := inf{ t > 0 | Y (t) = 0 },
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FIGURE 28. A close-up of Figure 5. The crosses correspond to the finer input tolerance. This illustration supports the
conjecture that local minima of the cut locus in (s, t) coordinates are smooth.

where Y (t) denotes a non-zero C-Jacobi field along γv(t).
It is well known that λ1 is smooth on {v ∈ N1C|λ1(v) <
∞} and λ1 ≥ ρ on N1C (see [Hartman, 64]).

Theorem 4.1. Let C be a closed submanifold of a com-
plete 2-dimensional Riemannian manifold M. Then the

distance function ρ to the cut locus of C is differentiable
where ρ attains a local minimum.

Proof: Suppose ρ attains a local minimum at v0. Choose

a positive number r which is less than the injectivity

radius at p := exp(ρ(v0)v0). Suppose that λ1(v0) >

ρ(v0). Then γv0 |[0,ρ(v0)] is an isolated C-segment. Let

Σ+,Σ− denote the two distinct connected components of
B(p, r) \ {γ[ρ(v0)− r, ρ(v0)] | γ is an C-segment } whose
boundaries contain { exp(tv0) | ρ(v0) − r ≤ t ≤ ρ(v0) }.
Here, B(p, r) denotes the open ball centered at p with

radius r. Let v : (−δ, δ) → N1C denote a unit speed
geodesic with v(0) = v0. Since either v(0, δ0) ⊂ Σ+ or

v(0, δ0) ⊂ Σ− for a sufficiently small positive number δ0,
we may assume v(0, δ0) ⊂ Σ+. Hence v(−δ0, 0) ⊂ Σ−.
Let Y (t) denote the Jacobi field along γv0 with Y (0) = 0,

Y 0(0) = v0(0), where Y 0(t) denotes the covariant deriva-
tive of Y (t) along γv0(t). It follows from Proposition 2.2

in [Itoh and Tanaka, 01] that

lim
t→+0

ρ(v(t))− ρ(v(0))
t

= −||Y (ρ(v(0))|| cot θ+ (4—1)

and

lim
t→−0

ρ(v(t))− ρ(v(0))
t

= ||Y (ρ(v(0))|| cot θ−, (4—2)

where θ+ and θ− denote the inner angle at p of Σ+,Σ−

respectively. Since ρ attains a local minimum at v0,

lim
t→+0

ρ(v(t))− ρ(v(0))
t

≥ 0

and

lim
t→−0

ρ(v(t))− ρ(v(0))
t

≤ 0.

Therefore, by (4—1) and (4—2), we get 2θ+ ≥ π and 2θ− ≥
π. Since 2θ+ + 2θ− ≤ 2π, we have θ+ = θ− = π, i.e.

lim
t→+0

ρ(v(t))− ρ(v(0))
t

= lim
t→−0

ρ(v(t))− ρ(v(0))
t

= 0.

This implies that ρ is differentiable at v0 if λ1(v0) >

ρ(v0). If λ1(v0) = ρ(v0), then dλ1 is zero at v0 (see

Lemma 1 in [Itoh and Tanaka, 98] or Proposition 5.4

in [Hartman, 64]). Since λ1 ≥ ρ on N1C and ρ attains a
local minimum at v0,

0 ≥ lim
t→−0

ρ(v(t))− ρ(v(0))
t

≥ lim
t→−0

λ1(v(t))− λ1(v(0))
t

= lim
t→+0

λ1(v(t))− λ1(v(0))
t

≥ lim
t→+0

ρ(v(t))− ρ(v(0))
t

≥ 0.

Hence ρ is differentiable at v0, if ρ(v0) = λ1(v0).

Remark 4.2. Let C² denote a circle centred at a point p in
the manifoldM with radius ² and ρ² the distance function

to the cut locus of C². Then for any sufficiently small ²,
the cut locus of C² equals the one of the point p and
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ρ² ◦(d expp)²v(v) = ρp(v)−² holds for any tangent vector
v at p, where expp denotes the exponential map on the

tangent space of M and ρp denotes the distance function

to the cut locus of p. Therefore ρp is differentiable where

ρp attains a local minimum.

Let S be an ellipsoid in the 3-dimensional Euclidean

space defined by the equation

x2 + y2 +
z2

c2
= 1,

where c is a constant greater than 1. The Gaussian cur-

vature K(x, y, z) of S at a point (x, y, z) ∈ S is given
by

K(x, y, z) =
c6

(c4 + z2(1− c2))2 .

In particular, K(γ(t)) =
1

c2
, where γ(t) := (cos t, sin t, 0).

The parallel γ is a geodesic on S. Hence the first con-

jugate point of p := γ(0) along γ is γ(πc). Therefore

the geodesic segment γ|[0,π] has no conjugate point of p
along γ.

Theorem 4.3. Let S be an ellipsoid in the 3-dimensional
Euclidean space defined by the equation

x2 + y2 +
z2

c2
= 1,

where c > 1. The cut locus Cp of p is τ [−b, b] for
some b ∈ (0, d(p,N)), where N := (0, 0, c) and τ is

the unit speed geodesic emanating from (−1, 0, 0) with
τ 0(0) = (0, 0, 1). Hence the distance function ρ to the

cut locus Cp is differentiable everywhere.

Proof: It is known that the cut locus Cp is a tree (cf.

[Hebda, 94] or [Shiohama and Tanaka, 96]). Suppose that

there exists a cut point (x, y, z) of p with y 6= 0. This im-
plies that the cut locus has an endpoint (x0, y0, z0) with

y0 6= 0. Hence there exists a cut point (x1, y1, z1) of p

with y1 6= 0 and two minimizing geodesics α, β joining

p to (x1, y1, z1) such that these geodesics bound a disk

domain D containing (x0, y0, x0). Since S is symmetric

with respect to the xy-plane, we may assume that the

two geodesics lie in { (x, y, x) ∈ S | z ≤ 0 }. Since the
Gaussian curvature K(x, y, z) is a monotone decreasing

function in z on D, we get a contradiction by imitat-

ing the proof of Theorem 1.4 in [Tanaka, 92]. Hence

the cut locus is a subset of τ [−d(p,N), d(p,N)]. Since
the point N is not a cut point of p, the cut locus of p

is τ [−b, b] for some b ∈ (0, d(p,N)). Since K(x, y, z) is

a strictly monotone decreasing function in z ∈ [−c, 0],
τ |[−2d(p,N),−d(p,N)] is the unique minimizing gedesic join-
ing p to N (see Proposition 1.5 in [Tanaka, 92]). This

implies that ρ attains a local minimum at the tangent

vectors (±1, 0, 0) at p. Hence the latter claim is clear from
Theorem 1 and Proposition 2.2 in [Itoh and Tanaka, 01].

Note that this proposition is applicable for conjugate cut

points, since the cut locus has no branch points.

5. CONCLUSION AND FURTHER WORK

The software package Loki is able to compute the cut

loci of 2 dimensional torus-like surfaces, which may be

defined via a parametrization of an embedding in R3, or
via an explicit metric. An input tolerance influences the

error of the output data. In general, very high accuracy

is achievable.

Loki has been designed with robustness and ease of use

in mind. Once one has discovered which command one

must use to compile for a new surface, it is in fact quite a

simple software package to use. Usually, one can expect

to have to spend some time transforming the output data

into an illustration of some sort using Maple. This is also

typically quite simple if one has some experience in using

Maple.

The code is freely available. Interested parties should

contact R. Sinclair.

It is clear that Loki should be able to be extended to

also compute conjugate loci, and this is being looked in

to.

Loki could be extended to treat surfaces of genus

greater than one by replacing the regular square lattice

used to identify points on a torus (see Figure 13) with

other regular lattices, and then identifying points in var-

ious manners. This would require a set of basis functions

with the same symmetry, and that is not entirely trivial,

but it would appear that such changes could be made

with minimal alterations to the code.

One would like to study surfaces which are topologi-

cally equivalent to the surface of a sphere embedded in

R3. It is not immediately clear how to do this, since a
change of chart may be necessary in all but the simplest

cases. This would require a significant amount of new

code allowing the algorithm to change from one chart to

another.

We have been able to present a proof of the first part

of what we call Kokkendorff’s conjecture. It would be in-

teresting to see if the second part of the conjecture can be

saved by reformulation, taking into account the existence

of the counterexamples presented here. In any case, it is
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hoped that Loki will stimulate further analytical work on

cut loci.
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