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We investigate the inequalities (M +N) < an(M/a)+m(N)
and 7(M + N) < a(w(M/a) + n(N/a)) with a > 1.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let 7(x), as usual, denote the number of primes not ex-
ceeding . Further by M, N, K and z,y we mean, respec-
tively, positive integers and positive real numbers.

The conjecture that

(M + N) <7n(M)+n(N) (1-1)

for M, N > 2 takes its origin from Hardy and Little-
wood [Hardy and Littlewood 23]. There are many re-
sults concerning this conjecture of which we will mention
a few. Schinzel and Sierpinski [Schinzel and Sierpinski
58] (see also [Schinzel 61]) proved the inequality (1-1)
for 2 < min(M, N) < 146 and from [Gordon and Ro-
demich 98] it follows that inequality (1-1) is valid in a
wider region,

2 < min(M, N) < 1731. (1-2)

Dusart [Dusart 98, Theorem 2.6] obtained the result that
ifa<y< %xlogwloglogx, then

m(z +y) <m(z) +7(y).

However, in general it is believed that (1-1) is not
valid, as Hensley and Richards [Hensley and Richards
74] have shown that this inequality is incompatible with
another Hardy-Littlewood conjecture, the so called

Prime k-tuples conjecture. Let by < by < ... < by be
a set of integers, such that for each prime p, there is
some congruence class (mod p) which contains none of
the integers b;. Then there exist infinitely many integers
n > 0 for which all of the numbers n+b1,...,n+ by are
prime.

More precisely, Hensley and Richards [Hensley and
Richards 74|, under prime k-tuples conjecture, proved
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that for z > xo,

lim sup(n(y + ) — 7(y)) — 7(z) = (log2 — €)

y—00 log2 x

From this it follows easy, that the inequality

(1-3)

(M + N) <ar (%) + m(N)

is not valid for 1 < a < 2. Under the same assumption,
Clark and Jarvis [Clark and Jarvis 01] showed that it is
also not valid for a = 2.

The inequality
m(M+ N) <2x(M)+n(N) for M >1,N > 2,

proved by Montgomery and Vaughan [Montgomery and
Vaughan 73], suggests some a for which (1-3) is satisfied.

Theorem 1.1. Let M and N be integers. If a > VM,
then for % >3 and N > 1,

(M + N) <ar (%) + m(N).

If a > 2/ M, then this inequality is true for % > 2 and
N > 1.

For M > N, a much smaller coefficient a can be cho-
sen in the inequality (1-3). Panaitopol [Panaitopol 00]
proved that for M > N > 2 and M > 6,

m(M +N) < 2r (%) + 7(N).

Theorem 1.2. If M > N > 7 are integers, then

(M +N) < 111n (%) + (),

The proof of Theorem 1.2 requires some computer
calculations; we also make use of Dusart’s evaluations
[Dusart 98, Dusart 99] for the prime counting function:

T

> — > 1-4
w(z) > — x > 5393, (1-4)
x
< > 60184 1-
m(z) < gz 11’ x > 60184, (1-5)
1 1.8
m(z) > — (1+ + =,
log z logz  log“x
x>32299,  (1-6)
1 2.51
m(x) < (14 +—
log logz  log“x
z>355091.  (1-7)

It is easy to obtain the symmetric version of Theo-
rem 1.2:

Corollary 1.3. If M, N > 13 are integers, then
M N
<1. —_— . — .
(M + N)<1lllrm (1.11> + 1117w (1.11)

Udrescu [Udrescu 75] has proved that (1-1) is
‘e-exact,’ i.e., that for any € > 0 and any z,y > 17 with
T+y>1+etdH/e

m(z +y) < (1+ &) (r(z) + 7(y)).

Using estimates (1-6), (1-7) we obtain

Theorem 1.4. For any 0 < € < 1 and any x,y > 32299
3
with x +y > 64(6,62/2)+13}

m(x+y) < (1+e) <w<1i€> +w(lie)>.

2. PROOFS OF THE THEOREMS

To prove Theorem 1.1, we first obtain several auxiliary
inequalities.

Lemma 2.1.4 Let x be a real number and ¢ > b > 1. Then

z Tog2 €
for £ >el" 5,

i (3) <on(2)

Proof: The lemma follows immediately from the follow-
ing result of Panaitopol [Panaitopol 00]: If @ > 1 and
z > e21°089) ™" then 1(az) < an(x). O

Lemma 2.2. Let M be an integer. If1 < a < 12, @ >3
and M < 1731, then

v M
(M) < avMm < ) . (2-1)
a
The latter inequality is also true for2 < a <12, —Véw >2

and M < 1731.

Proof: Let b > 1, ¢ > 0 and [z] denotes the greatest
integer not exceeding x. If

(M) < bVMn <@> ,
b+c



then the inequality (2-1) is valid for a € [b,b+ ¢]. Hence
in order to prove the lemma, we check the following in-
equalities with a computer:

, Ny Vi
7(i) < (1+0.215)Vin (max (m,?)))

for j =0,1,...,5; i = [3%(1+0.215)?] +1

Vi
) < . )V
(i) < (24 0.0915)Vi 7 (max (2 +0.0915 + 0.091° 2

for j =0,1,...,121; i = [22(1 4 0.0915)?] +1,...,1731.
This proves the lemma. O

.,1731 and

Lemma 2.3. Let M be an integer. If 2.44 < a < 4 and
4
—V1a720 < —”éw < min (17,6103&), then

2M < a\/Mﬂ' (\/M) .

- (2-2)

Proof: The proof is analogous to the proof of Lemma 2.2.
Here we check the inequalities

%gii < (244 +j)Vin <L>

244+ j+1

where j =0, 1;

i=1720,...,min <(2.44 +4)%17, {(2.44 + j)%ele?2 44+J>D.

Proof of Theorem 1.1. Montgomery and Vaughan [Mont-
gomery and Vaughan 73] have shown that

2M
— <
m(M + N) W(N)_logM

for M >2, N > 1. (2-3)

Then, in view of the inequality ([Rosser and Shoen-
feld 62])

T
—  f >1 2-4
m(z) > gz or z > 17, (2-4)
if d > 1, then for M > 1724, N > 1,
vM
(M + N)—n(N) < N <dvM (2-5)
log ¥~ d

By (1-2) and Lemma 2.2, for 1 < d < 12, Y& > 3,
M <1731 and for 2 < d < 12, ¥M > 2 M < 1731,

7(M+N)—n(N) <n(M) <dVM = (@) . (2-6)
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From (2-5) and (2-6), since 172d? is less than 1731 if 1 <
d < 2.44, we prove the theorem for v M < a < 2.44V/M.
By Lemma 2.1, we obtain

VMr(VM) < dVM = (g) for \/(?_4 > elod,

We have already proved that
N)< VM (\/M) for VM >3, N > 1.

From this and (2-5), (2-6), (2-3) and Lemma 2.3, since
oy < VI731 - :

glos?d < M=re2 if d > 4, we obtain the theorem for the

remaining case a > 2.44v M. O

(M + N) —x(

The next two lemmas will be useful in the proof of
Theorem 1.2.

Lemma 2.4. If v > y > 5393 and x + y > 60184, then

(a:+y)<1117r(111)+7r( ).

Proof: From (1-4) and (1-

(14+a)r ( ) y) —m(x +y)
log (14 %) +log(1 +a) — 0.1

¢ (log - 1) (log(z +y) — 1.1)
1og(1+ )—0.1

(logy —1) (log(z +y) —1.1)
when a > 0.106. O

5) we have

>0

Lemma 2.5. If M > 619901, then

M
1117 <m) > (M + 5393).

Proof: Most of the calculations below were made using
For 619901 < M < 1040000, we check
the lemma directly. For the remaining range we will use
P. Dusart’s inequalities for the prime counting function.
Let us define

a computer.

1 1.8
log t97 log 757 log" {3
and
@ = O 15393
g log( + 5393)

(14 o )
log(z +5393)  log?(z +5393) )
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Then by (1-6) and (1-7), the lemma for M > 1040 000

will follow from the inequality
f(z) > g(z) if x> 1040000. (2-7)

As f(1040000) > g(1040000), it is enough to prove that,
for x > 1040000,

(f(z) = g(z))" > 0.

After removing the denominator, we see that, for x >
5393, inequality (2-8) becomes equivalent to the inequal-

ity

(2-8)

100 log® log?® ——
001og®(5393 + ) log 111

~100log* % log® (5393 + )

Alz) =

X
—201og*(5393 log ——
og (5393 +@)log 197

—51log* % log (5393 + )

(2-9)

—5401og* (5393 + z) + 753 log® 1% > 0.

Now using

log B logz —log1.11,

111
5393
log(5393 + ) =: log z + ——2

where a = a(z), and |a| < 1, we rewrite A(z) as

A(z) = M(logz) + R <10g x, %) , (2-10)

753log* 1.11 — (30121og® 1.11 + 51log* 1.11)y
+ (4518log? 1.11 + 204 log® 1.11)y?

(301210og 1.11 + 306 log® 1.11 + 1001log™* 1.11)y>
+ (2134 224log1.11 + 3001og® 1.11)y*

(71 4 3001log® 1.11)y° 4 100 log(1.11)y5,

=

—

Y
I

and R (log x, %) is the remaining, ‘small’ part of A(z). If
x > 1040000, then it is easy to compute, where b;;;, are
appropriate coefficients, that

o (nn2)] -

, C sank
Z bijk log" 1.11 log’ x <—>
x

0<i<4
0<j<6
1<k<4

i j 1\
Z |biji|log’ 1.11 log? = -

< 4x10°, (2-11)

IN

Considering the main part, we have M'(y) > 0 for
y > 2 and M (log1040000) > 4 x 107. Then

M(logz) > 4 x 107 for x > 1040 000.

From this and (2-7)—-(2-11), we obtain the lemma for
x > 1040 000. This finishes the proof. O

Proof of Theorem 1.2. From Lemma 2.4, it follows that
the inequality of the theorem holds if M > N > 5393
and M + N > 60184. By Lemma 2.5, it also holds if
M > 619901 and 7 < N < 5393. A computer check for
the remaining cases completes the proof of the theorem.

O

Proof of Corollary 1.3. For 13 < M < N < 1644, we
check the inequality of the corollary with a computer.
By (1-6) and (1-7) we know that 1.11w(N/1.11) > m(N)
for N > 355991 and a computer check shows that this in-
equality is true for NV > 1644. Now Corollary 1.3 follows
from Theorem 1.2. O

We will use the following lemma in the proof of The-

orem 1.4.

Lemma 2.6. Let f’(z) < 0 for x > z¢9 > 0 and let
f'(xo)wo < f(xo). Then, if x1,29 > 0,

[z +22) < f(z1) + fz2).

Proof: Let the line [ : y = kx + ¢ cut the curve y = f(x)
at points (z1, f(z1)) and (z9, f(z2)). Then the point
(z1 + xa, f(z1) + f(x2) — ¢) lies on [ and, because of the
concavity of f(x), this point is above the curve y = f(z).
Thus

f(z1) + f(22) — ¢ > f(x1 + 22).

Now we will prove that ¢ > 0. Let z; < x5 (the case
1 > x2 is analogous). By Lagrange’s theorem, there
exists r1 < & < xo, such that k = f/(£). Then

¢ = f(x1) — f'(§)z1.

Let the line y = kox + ¢p be a tangent to the curve
y = f(x) at (zg,yo). Since f'(z) is not increasing,

co = f(xo) — f'(wo)zo < f(20) — f'(€)0.

Once again, by Lagrange’s theorem, there exist o < &y <
z1 and & < & < &, such that

c—co > (f'(0) = f'(§)) (1 — z0) = f" (&) (0 — &) (21 — o).

Thus ¢ — ¢g > 0. Since ¢g > 0, the lemma is proved. O



Proof of Theorem 1.4. Let’s define

x 1 1.8
T 1 + T + 2 x
log T log T log T
x 1 2.51
1+ +— |-
logz logz = log“z

(&) — ) = log? wlog® =

> 1001log(1 + €) log* z — 711og® z.

flz) =

and

g(x) =

Then, if z > 32299,

Thus, f(z+y) > g(x+vy), if the conditions of the theorem
are satisfied. Since f”’(z) <0 and

27x 2x T

= +
5log* Tre log®

>0
> =
1+e€

f(z) = fl(z)z

)

log?

1+€
by Lemma 2.6, we see that f(z) + f(y) > f(z +y) >
g(x+y). From this, (1-6), and (1-7), the theorem follows.
O
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