
On Some Inequalities Concerning π(x)
R. Garunkštis
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We investigate the inequalities π(M+N) ≤ aπ(M/a)+π(N)
and π(M +N) ≤ a (π(M/a) + π(N/a)) with a ≥ 1.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let π(x), as usual, denote the number of primes not ex-

ceeding x. Further byM,N,K and x, y we mean, respec-

tively, positive integers and positive real numbers.

The conjecture that

π(M +N) ≤ π(M) + π(N) (1—1)

for M,N ≥ 2 takes its origin from Hardy and Little-

wood [Hardy and Littlewood 23]. There are many re-

sults concerning this conjecture of which we will mention

a few. Schinzel and Sierpinski [Schinzel and Sierpinski

58] (see also [Schinzel 61]) proved the inequality (1—1)

for 2 ≤ min(M,N) ≤ 146 and from [Gordon and Ro-

demich 98] it follows that inequality (1—1) is valid in a

wider region,

2 ≤ min(M,N) ≤ 1731. (1—2)

Dusart [Dusart 98, Theorem 2.6] obtained the result that

if x ≤ y ≤ 7
5x log x log log x, then

π(x+ y) ≤ π(x) + π(y).

However, in general it is believed that (1—1) is not

valid, as Hensley and Richards [Hensley and Richards

74] have shown that this inequality is incompatible with

another Hardy-Littlewood conjecture, the so called

Prime k -tuples conjecture. Let b1 < b2 < ... < bk be

a set of integers, such that for each prime p, there is

some congruence class (mod p) which contains none of

the integers bi. Then there exist infinitely many integers

n > 0 for which all of the numbers n+ b1, . . . , n+ bk are

prime.

More precisely, Hensley and Richards [Hensley and

Richards 74], under prime k-tuples conjecture, proved
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that for x ≥ x0,

lim sup
y→∞

(π(y + x)− π(y))− π(x) ≥ (log 2− ²) x

log2 x
.

From this it follows easy, that the inequality

π(M +N) ≤ aπ
µ
M

a

¶
+ π(N) (1—3)

is not valid for 1 ≤ a < 2. Under the same assumption,
Clark and Jarvis [Clark and Jarvis 01] showed that it is

also not valid for a = 2.

The inequality

π(M +N) ≤ 2π(M) + π(N) for M ≥ 1,N ≥ 2,
proved by Montgomery and Vaughan [Montgomery and

Vaughan 73], suggests some a for which (1—3) is satisfied.

Theorem 1.1. Let M and N be integers. If a ≥ √M ,
then for M

a ≥ 3 and N ≥ 1,

π(M +N) ≤ aπ
µ
M

a

¶
+ π(N).

If a ≥ 2√M , then this inequality is true for M
a ≥ 2 and

N ≥ 1.

For M ≥ N , a much smaller coefficient a can be cho-
sen in the inequality (1—3). Panaitopol [Panaitopol 00]

proved that for M ≥ N ≥ 2 and M ≥ 6,

π(M +N) ≤ 2π
µ
M

2

¶
+ π(N).

Theorem 1.2. If M ≥ N ≥ 7 are integers, then

π(M +N) ≤ 1.11π
µ
M

1.11

¶
+ π(N).

The proof of Theorem 1.2 requires some computer

calculations; we also make use of Dusart’s evaluations

[Dusart 98, Dusart 99] for the prime counting function:

π(x) ≥ x

log x− 1 , x ≥ 5393, (1—4)

π(x) ≤ x

log x− 1.1 , x ≥ 60184, (1—5)

π(x) ≥ x

log x

µ
1 +

1

log x
+

1.8

log2x

¶
,

x ≥ 32299, (1—6)

π(x) ≤ x

log x

µ
1 +

1

log x
+
2.51

log2x

¶
,

x ≥ 355991. (1—7)

It is easy to obtain the symmetric version of Theo-

rem 1.2:

Corollary 1.3. If M,N ≥ 13 are integers, then

π(M +N) ≤ 1.11π
µ
M

1.11

¶
+ 1.11π

µ
N

1.11

¶
.

Udrescu [Udrescu 75] has proved that (1—1) is

‘²-exact,’ i.e., that for any ² > 0 and any x, y ≥ 17 with
x+ y ≥ 1 + e4(1+1/²),

π(x+ y) ≤ (1 + ²)(π(x) + π(y)).

Using estimates (1—6), (1—7) we obtain

Theorem 1.4. For any 0 < ² < 1 and any x, y ≥ 32299
with x+ y ≥ e 3

4(²−²2/2)+13,

π(x+ y) ≤ (1 + ²)
µ
π

µ
x

1 + ²

¶
+ π

µ
y

1 + ²

¶¶
.

2. PROOFS OF THE THEOREMS

To prove Theorem 1.1, we first obtain several auxiliary

inequalities.

Lemma 2.1. Let x be a real number and c > b ≥ 1. Then
for x

c > e
4

log2 c
b ,

bπ
³x
b

´
< cπ

³x
c

´
.

Proof: The lemma follows immediately from the follow-

ing result of Panaitopol [Panaitopol 00]: If a > 1 and

x > e4(log a)
−2
then π(ax) < aπ(x).

Lemma 2.2. Let M be an integer. If 1 ≤ a ≤ 12,
√
M
a ≥ 3

and M ≤ 1731, then

π(M) ≤ a
√
Mπ

Ã√
M

a

!
. (2—1)

The latter inequality is also true for 2 ≤ a ≤ 12,
√
M
a
≥ 2

and M ≤ 1731.

Proof: Let b ≥ 1, c ≥ 0 and [x] denotes the greatest

integer not exceeding x. If

π(M) ≤ b
√
Mπ

Ã√
M

b+ c

!
,
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then the inequality (2—1) is valid for a ∈ [b, b+ c]. Hence
in order to prove the lemma, we check the following in-

equalities with a computer:

π(i) ≤ (1 + 0.21j)
√
i π

Ã
max

Ã √
i

1 + 0.21j + 0.21
, 3

!!

for j = 0, 1, . . . , 5; i =
£
32(1 + 0.21j)2

¤
+ 1, . . . , 1731 and

π(i) ≤ (2 + 0.091j)
√
i π

Ã
max

Ã √
i

2 + 0.091j + 0.091
, 2

!!

for j = 0, 1, . . . , 121; i =
£
22(1 + 0.091j)2

¤
+ 1, . . . , 1731.

This proves the lemma.

Lemma 2.3. Let M be an integer. If 2.44 ≤ a ≤ 4 and√
1720
a ≤

√
M
a ≤ min

³
17, e

4
log2 a

´
, then

2M

logM
≤ a
√
Mπ

Ã√
M

a

!
. (2—2)

Proof: The proof is analogous to the proof of Lemma 2.2.

Here we check the inequalities

2i

log i
≤ (2.44 + j)

√
i π

Ã √
i

2.44 + j + 1

!
where j = 0, 1;

i = 1720, . . . ,min (2.44 + j)2172, (2.44 + j)2e
8

log2(2.44+j) .

Proof of Theorem 1.1. Montgomery and Vaughan [Mont-

gomery and Vaughan 73] have shown that

π(M +N)− π(N) ≤ 2M

logM
forM ≥ 2, N ≥ 1. (2—3)

Then, in view of the inequality ([Rosser and Shoen-

feld 62])

π(x) >
x

log x
for x ≥ 17, (2—4)

if d ≥ 1, then for M ≥ 172d2, N ≥ 1,

π(M +N)− π(N) ≤ M

log
√
M
d

< d
√
M π

Ã√
M

d

!
(2—5)

By (1—2) and Lemma 2.2, for 1 ≤ d ≤ 12,
√
M
d
≥ 3,

M ≤ 1731 and for 2 ≤ d ≤ 12,
√
M
d
≥ 2, M ≤ 1731,

π(M +N)− π(N) ≤ π(M) < d
√
M π

Ã√
M

d

!
. (2—6)

From (2—5) and (2—6), since 172d2 is less than 1731 if 1 ≤
d ≤ 2.44, we prove the theorem for

√
M ≤ a ≤ 2.44√M .

By Lemma 2.1, we obtain

√
Mπ(

√
M) < d

√
M π

Ã√
M

d

!
for

√
M

d
> e

4
log2 d .

We have already proved that

π(M +N)− π(N) ≤
√
M π

³√
M
´
for
√
M ≥ 3, N ≥ 1.

From this and (2—5), (2—6), (2—3) and Lemma 2.3, since

e
4

log2 d ≤
√
1731
d if d ≥ 4, we obtain the theorem for the

remaining case a > 2.44
√
M .

The next two lemmas will be useful in the proof of

Theorem 1.2.

Lemma 2.4. If x ≥ y ≥ 5393 and x+ y ≥ 60184, then
π(x+ y) < 1.11π

³ x

1.11

´
+ π(y).

Proof: From (1—4) and (1—5) we have

(1 + a)π

µ
x

1 + a

¶
+ π(y)− π(x+ y)

≥ x log
¡
1 + y

x

¢
+ log(1 + a)− 0.1³

log x
1+a − 1

´
(log(x+ y)− 1.1)

+y
log
³
1 + x

y

´
− 0.1

(log y − 1) (log(x+ y)− 1.1) > 0

when a ≥ 0.106.

Lemma 2.5. If M ≥ 619 901, then

1.11π

µ
M

1.11

¶
> π(M + 5393).

Proof: Most of the calculations below were made using

a computer. For 619 901 ≤ M < 1 040 000, we check

the lemma directly. For the remaining range we will use

P. Dusart’s inequalities for the prime counting function.

Let us define

f(x) :=
x

log x
1.11

Ã
1 +

1

log x
1.11

+
1.8

log2 x
1.11

!
and

g(x) :=
x+ 5393

log(x+ 5393)

×
µ
1 +

1

log(x+ 5393)
+

2.51

log2(x+ 5393)

¶
.
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Then by (1—6) and (1—7), the lemma for M ≥ 1 040 000
will follow from the inequality

f(x) > g(x) if x ≥ 1 040 000. (2—7)

As f(1 040 000) > g(1 040 000), it is enough to prove that,

for x ≥ 1 040 000,

(f(x)− g(x))0 > 0. (2—8)

After removing the denominator, we see that, for x >

5393, inequality (2—8) becomes equivalent to the inequal-

ity

∆(x) := 100 log4(5393 + x) log3
x

1.11

−100 log4 x

1.11
log3(5393 + x)

−20 log4(5393 + x) log x

1.11
(2—9)

−51 log4 x

1.11
log(5393 + x)

−540 log4(5393 + x) + 753 log4 x

1.11
> 0.

Now using

log
x

1.11
= log x− log 1.11,

log(5393 + x) =: log x+
5393a

x

where a = a(x), and |a| ≤ 1, we rewrite ∆(x) as

∆(x) =M(log x) +R
³
log x,

a

x

´
, (2—10)

where

M(y) = 753 log4 1.11− (3012 log3 1.11 + 51 log4 1.11)y
+ (4518 log2 1.11 + 204 log3 1.11)y2

− (3012 log 1.11 + 306 log2 1.11 + 100 log4 1.11)y3

+ (213 + 224 log 1.11 + 300 log3 1.11)y4

− (71 + 300 log2 1.11)y5 + 100 log(1.11)y6,

and R
¡
log x, a

x

¢
is the remaining, ‘small’ part of ∆(x). If

x ≥ 1 040 000, then it is easy to compute, where bijk are
appropriate coefficients, that

¯̄̄
R
³
log x,

a

x

´¯̄̄
=

¯̄̄̄
¯̄̄̄
¯
X
0≤i≤4
0≤j≤6
1≤k≤4

bijk log
i 1.11 logj x

³a
x

´k
¯̄̄̄
¯̄̄̄
¯

≤
X

|bijk| logi 1.11 logj x
µ
1

x

¶k
< 4× 106, (2—11)

Considering the main part, we have M 0(y) > 0 for

y > 2 and M(log 1 040 000) > 4× 107. Then

M(log x) > 4× 107 for x ≥ 1 040 000.

From this and (2—7)—(2—11), we obtain the lemma for

x ≥ 1 040 000. This finishes the proof.

Proof of Theorem 1.2. From Lemma 2.4, it follows that

the inequality of the theorem holds if M ≥ N ≥ 5393

and M + N ≥ 60184. By Lemma 2.5, it also holds if

M ≥ 619901 and 7 ≤ N ≤ 5393. A computer check for
the remaining cases completes the proof of the theorem.

Proof of Corollary 1.3. For 13 ≤ M ≤ N ≤ 1644, we

check the inequality of the corollary with a computer.

By (1—6) and (1—7) we know that 1.11π(N/1.11) ≥ π(N)

for N ≥ 355991 and a computer check shows that this in-
equality is true for N ≥ 1644. Now Corollary 1.3 follows
from Theorem 1.2.

We will use the following lemma in the proof of The-

orem 1.4.

Lemma 2.6. Let f 00(x) ≤ 0 for x ≥ x0 ≥ 0 and let

f 0(x0)x0 ≤ f(x0). Then, if x1, x2 ≥ x0,

f(x1 + x2) ≤ f(x1) + f(x2).

Proof: Let the line l : y = kx+ c cut the curve y = f(x)

at points (x1, f(x1)) and (x2, f(x2)). Then the point

(x1 + x2, f(x1) + f(x2)− c) lies on l and, because of the
concavity of f(x), this point is above the curve y = f(x).

Thus

f(x1) + f(x2)− c ≥ f(x1 + x2).

Now we will prove that c ≥ 0. Let x1 ≤ x2 (the case
x1 ≥ x2 is analogous). By Lagrange’s theorem, there

exists x1 ≤ ξ ≤ x2, such that k = f 0(ξ). Then

c = f(x1)− f 0(ξ)x1.

Let the line y = k0x + c0 be a tangent to the curve

y = f(x) at (x0, y0). Since f
0(x) is not increasing,

c0 = f(x0)− f 0(x0)x0 ≤ f(x0)− f 0(ξ)x0.

Once again, by Lagrange’s theorem, there exist x0 ≤ ξ0 ≤
x1 and ξ0 ≤ ξ1 ≤ ξ, such that

c− c0 ≥ (f 0(ξ0)− f 0(ξ)) (x1 − x0) = f 00(ξ1)(ξ0 − ξ)(x1 − x0).

Thus c− c0 ≥ 0. Since c0 ≥ 0, the lemma is proved.
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Proof of Theorem 1.4. Let’s define

f(x) :=
x

log x
1+²

Ã
1 +

1

log x
1+²

+
1.8

log2 x
1+²

!

and

g(x) :=
x

log x

µ
1 +

1

log x
+
2.51

log2x

¶
.

Then, if x ≥ 32299,

(f(x)− g(x))100
x
log3 x log3

x

1 + ²

≥ 100 log(1 + ²) log4 x− 71 log3 x.

Thus, f(x+y) ≥ g(x+y), if the conditions of the theorem
are satisfied. Since f 00(x) ≤ 0 and

f(x)− f 0(x)x = 27x

5 log4 x
1+²

+
2x

log3 x
1+²

+
x

log2 x
1+²

≥ 0,

by Lemma 2.6, we see that f(x) + f(y) ≥ f(x + y) ≥
g(x+y). From this, (1—6), and (1—7), the theorem follows.
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