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Cross Energy of Links
Zheng-Xu He

CONTENTS

1. Introduction
2. Conjectured Minimizers of the Cross Energy
3. A Geometric Interpretation
4. The Minimizer is a Hopf Link
References

2000 AMS Subject Classification: Primary 49Q10
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We give a geometric interpretation for the Euler-Lagrange equa-
tion for the Möbius cross energy of (nontrivially linked) 2-
component links in the euclidean 3-space. The minimizer of
this energy is conjectured to be a Hopf link of 2 round circles.
We prove some elementary properties of the minimizers using
the Euler-Lagrange equations. In particular, we give a rigorous
proof of the fact that the minimizer is topologically a Hopf link.

1. INTRODUCTION

Let γ1, γ2 : S
1 = R/(2πZ) −→ R3 be a pair of loops. The

Möbius cross energy of the pair is defined by

E(γ1, γ2) =

Z Z
S1×S1

|γ01(u)| · |γ02(v)|du dv
|γ1(u)− γ2(v)|2 . (1—1)

The energy is Möbius invariant [Freedman et al. 94].

In other words, if T = bR3 = R3 ∪ {∞} −→ bR3 is a
Möbius transformation (i.e., a composition of inversions

on spheres of bR3), then
E(Tγ1, Tγ2) = E(γ1, γ2). (1—2)

This follows by the following elementary formula,

|T 0x| |T 0y|
|T (x)− T (y)|2 =

1

|x− y|2 , (1—3)

where |T 0x| = lim
t→0

|T (x+th)−T (x)|
|th| for any h ∈ R3 \ {0}.

Because T preserves angles, |T 0x| is independent of the
choice of h.

We will also use γk to denote the set of points

{γk(u);u ∈ S1}. The pair of loops (γ1, γ2) is (nontriv-
ially) linked if there is no smoothly embedded 2-sphere Σ

in R3 so that each component of R3 \Σ contains exactly
one loop, γ1 or γ2. Thus, for any topological projection

proj : R3 → R2, proj(γ1) ∩ proj(γ2) 6= φ.
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It is proved in [Freedman et al. 94] that for any linked

pair of loops (γ1, γ2),

E(γ1, γ2) ≥ 4π. (1—4)

We conjecture the following:

1. The minimum of E(γ1, γ2) over all linked pairs of

loops in R3 equals 2π2.

2. The minimum is attained by a link formed by

(round) circles.

3. The minimizer is unique up to Möbius transforma-

tion.

If (γ1, γ2) are not required to be linked, then E(γ1, γ2)

can be arbitrarily small. For example, γ1 and γ2 can be

a pair of circles of arbitrarily small radii centered at two

points at a distance equal to 1.

It is elementary to prove the existence of the min-

imizers of E(γ1, γ2) over all linked pairs of loops (see

Section 2). In this paper, we will give a geometric in-

terpretation of the Euler-Lagrange equation and prove

some elementary properties of the minimizers. In par-

ticular, we will show that any minimizer is topologically

equivalent to the Hopf link.

We wish to point out that there has been some exper-

imental work done which supports this conjecture [Kim

and Kusner 93], [Kusner and Sullivan 97]. Also, note that

Abrams et al. settled a related minimization problem for

a class of knot energies [Abrams et al. 00]. Their result

solves a question suggested in O’Hara’s original papers

on knot energies ([O’Hara 91], [O’Hara 98]) and consid-

erably generalizes the earlier Freedman et al. theorem

[Freedman et al. 94] that circles are the only minimizers

of the Möbius energy.

In Section 2, we will discuss some elementary proper-

ties of a minimizer using the idea of average crossing num-

ber, and give details about the shape of the conjectured

minimizers. In Section 3, we will give a geometric inter-

pretation of the Euler-Lagrange equation for any critical

pair of E, and derive some consequences. In Section 4,

we give the geometric properties of any minimizers. We

will try to get as close as possible to the conjectured pic-

ture of the minimizers. In particular, we will see that the

minimizer is ambiently isotopic to the Hopf link.

2. CONJECTURED MINIMIZERS OF THE
CROSS ENERGY

Let γk : Ik → bR3 be a curve, k = 1, 2, where Ik is an

interval in R or S1. The cross energy of the pair (γ1, γ2) is

E(γ1, γ2) =

ZZ |γ01(u)| |γ02(v)|du dv
|γ1(u)− γ2(v)|2 , (2—1)

where the integral is evaluated in (I1 \ γ−11 (∞)) × (I2 \
γ−12 (∞)). For any Möbius transformation T : bR3 → bR3,

E(Tγ1, Tγ2) = E(γ1, γ2). (2—2)

Lemma 2.1. There is a linked pair of loops η1, η2 : S1 →bR3 which minimizes E in the sense that for any linked

pair of loops (γ1, γ2) in bR3,
E(η1, η2) ≤ E(γ1, γ2). (2—3)

Proof. The proof resembles the elementary theorem that

a shortest length geodesic exists between any pair of

points in a complete Riemannian manifold. Let (γn1 , γ
n
2 )

be a sequence of linked pairs of loops so that E(γn1 , γ
n
2 )

converges to infinity. By means of Möbius transforma-

tions, we may assume that ∞ ∈ γn1 , 0 ∈ γn2 and the

(Euclidean) diameter of each γn2 is 1. Because E(γ
n
1 , γ

n
2 )

is uniformly bounded, for any ball B in R3 centered at
0, all of the γn1 ∩B have uniformly bounded length. On

the other hand, as each γn2 is contained in the closed ball

of radius 1 centered at 0, γn1 must intersect the closed

ball; otherwise the pair (γn1 , γ
n
2 ) would be unlinked. It

follows that γn1 contains an arc connecting the point at

infinity to a point in the ball of radius 1 centered at 0.

Thus, the uniform boundedness of E(γn1 , γ
n
2 ) implies the

uniform boundedness of the lengths of γn2 .

Thus, replacing by subsequences if necessary, we may

assume that γn1 and γ
n
2 converge locally uniformly in R3

to some curves η1 and η2 with ∞ ∈ η1 and 0 ∈ η2

and diameter (η2) = 1. Moreover, as a limit of linked

pairs, (η1, η2) is also linked. The lemma follows because

E(η1, η2) ≤ lim
n→∞E(γ

n
1 , γ

n
2 ) = minimum of E.

Following ideas of Gauss, the average crossing num-

ber was first introduced in [Freedman and He 91] in the

study of lower bounds for the energy of incompressible

flows in certain physical problems. Later, it was used

in [Freedman et al. 94] in the study of Möbius energy

and the cross Möbius energy. For example, it is shown

that the average crossing number of a knotted loop is

bounded by its Möbius energy. More studies were done

by other mathematicians on related problems (see, e.g.,

[Buck and Simon 99],[Cantarella et al. 00],[Cantarella et

al. 98],[Diao 01],[Kusner and Sullivan 98]). Here, we will

need to use the average crossing number of a pair (γ1, γ2),

ac(γ1, γ2) =
1

4π

ZZ |hγ01(u), γ02(v), γ1(u)− γ2(v)i| dudv
|γ1(u), γ2(v)|3 ,

(2—4)
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FIGURE 1. The Hopf link.

where h·, ·, ·i denotes the triple scalar product, and the
domain of integration is (S1 \ γ−11 (∞))× (S1 \ γ−12 (∞)).
This number is actually equal to the expected value of

the number of over-crossings of γ1 on γ2 in a random

orthogonal projection R3 → R2. If γ1 and γ2 are disjoint
loops with ac(γ1, γ2) < 2, then either the pair (γ1, γ2) is

not linked, or it can be deformed while keeping the pair

disjoint from each other (but not necessarily isotopic) to

the Hopf link (such deformation is usually referred to as

link homotopy). See Figure 1. Note that ac(γ1, γ2) is not

Möbius-invariant.

Comparing (2—1) and (2—4), we easily arrive at

E(γ1, γ2) ≥ 4π ac(γ1, γ2). (2—5)

Let (η1, η2) be a mininizer of E(·, ·) among all linked pairs
of loops in cR3. Then by (2—7),

E(η1, η2) ≤ 2π2. (2—6)

Lemma 2.2. Let (η1, η2) be a minimizer of E(·, ·) among
all linked pairs of loops in fR3. Then η1 and η2 are mu-

tually disjoint simple loops with linking number = ±1.

It does not follow directly from the lemma that the

pair (η1, η2) is topologically a Hopf link. At this point,

we do not yet know whether η1 (or η2) is topologically

unknotted.

Proof: First, η1 and η2 must be disjoint from each

other, otherwise E(η1, η2) would be infinite. A simple

proof follows. Without loss of generality, assume that η1

and η2 are parametrized by arc-length, and assume that

η1(u0) = η2(v0). Then,

E(η1, η2) ≥
Z δ

0

Z δ

0

dsdt

|η(u0 + s)− η(v0 + t)|2

≥
Z δ

0

Z δ

0

dsdt

(s+ t)2
=

Z δ

0

µ
1

s
− 1

δ + s

¶
ds =+∞,

where δ > 0 is any number smaller than the lengths of

η1 and η2.

By means of a Möbius transformation, we may assume

that η1, η2 ⊂ R3. By (2—5) and (2—6), we deduce

ac(η1, η2) ≤ 1

4π
E(η1, η2) ≤ 2π

2

4π
=
π

2
< 2.

It follows that for some orthogonal projection proj :

R3 → R2, the loop proj(η1) crosses proj(η2) less than
4 times. We may also assume that the curves proj(η1)

and proj(η2) are transversal with respect to each other.

Thus, by topological considerations, there must be either

0 or 2 crossings. Since the pair is linked, there must be at

least one over-crossing (i.e., η1 over η2) and one under-

crossing (i.e., η1 under η2). Thus, we must have exactly

one over-crossing, and one under-crossing, as shown in

Figure 2. The linking number of the pair is clearly ±1,
depending on the orientations of the curves.

α

η2

η1

•

FIGURE 2. The projections of η1 and η2 intersect at two
points.

If one of η1 and η2, say η2, is not simple, then η2 con-

tains a subloop α which does not cross η1 when projected

to the plane by proj. By removing α from η2, we obtain

a new loop eη2 which has linking number ±1 with η1 and
therefore, (η1, eη2) is linked, but E(η1, eη2) < E(η1, η2) =
minimum of E. This is a contradiction, thus proving the

lemma.

Let eγ1 be the extended line x1 = x2 = 0 (including

the point at infinity, and let eγ2 be the circle x21 + x22 =
1, x3 = 0. Then (eγ1, eγ2) is topologically the Hopf link inbR3 ∼= S3:
E(eγ1, eγ2) = Z ∞

−∞
du

Z 2π

0

dv

|(0, 0, u)− (cos v, sin v, 0)|2
(2—7)

= 2π

Z ∞
−∞

du

1 + u2
= 2π2.

The conjecture is that (eγ1, eγ2) is a minimizer of E among
all linked pairs of loops in bR3, and any other minimizer
is Möbius-equivalent to (eγ1, eγ2).
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3. A GEOMETRIC INTERPRETATION

Let γ : I → R3 be a curve of finite length. Then the
center of mass of γ is the point q ∈ R3 such thatZ

I

(γ(u)− q)|γ0(u)|du = 0. (3—1)

Lemma 3.1. Let (η1, η2) be a critical pair of the functional
E(·, ·). Let p ∈ η1 and let Tp = bR3 → bR3 be a Möbius
transformation with Tp(p) = ∞. (For example, Tp can
be the inversion on a sphere centered at p.). Let L be the

line which is asymptotic to Tpη1 at ∞ = Tp(p). Then the

center of mass of Tpη2 is on L. The same property holds

if η1 and η2 are switched.

In fact, the proof below shows that the converse of

the lemma also holds (at least in the case that η1 and

η2 admit integrable second order derivatives). If for any

j, k = 0, 1 and for any p ∈ ηk, the center of mass of Tpηj is
contained on the line which is asymptotic to Tpηk− {∞}
at ∞, then (η1, η2) is a critical pair for E. This gives a
geometric interpretation for the Euler-Lagrange equation

for E. See [He 00] for a similar interpretation for the

Möbius energy of knots.

Proof: Without loss of generality, we may assume that

p = η1(u0) = 0 ∈ R3, η01(u0) = (0, 0, 1) and (η01/|η01|)0 = 0
at p. That is, the osculating circle of η1 at p = 0 is the

extended line L: x1 = x2 = 0. Let Tp(x) = x/|x|2. Then
TpL = L is the line asymptotical to Tpη1 at ∞ = Tp(0).

We need to show that the center of mass of Tpη2 is on

the x3-axis.

It is elementary to show that η1 and η2 are smooth

curves. Let h1 = S
1 → R3 be any smooth function. Since

(η1, η2) is a critical pair of E, we have by the definition

of E:

0 = ∇1E(η1, η2)h1
= lim

t→0
E(η1 + th1, η2)− E(η1, η2)

t

=

ZZ h¿
h01(u),

η01(u)
|η01(u)|

À
1

|η1(u)− η2(v)|2

− 2hη1(u)− η2(v), h1(u)i
|η1(u)− η2(v)|4 |η01(u)|

i
|η02(v)|du dv

=

Z ¿
h1(u),

Z "
−
µ
η01(u)
|η01(u)|

¶0
1

|η01(u)|
1

|η1(u)− η2(u)|2

+
η01(u)
|η01(u)|

2hη1(u)− η2(v), η01(u)i
|η1(u)− η2(v)|4

− 2(η1(u)− η2(v))
|η1(u)− η2(v)|4

¸
|η02(v)|dv

À
|η01(u)|du.

For any nonzero y ∈ R3, let Py⊥ : R3 → R3 denote
an orthogonal projection onto the plane through 0 in R3
orthogonal to y:

Py⊥x = x−
y

|y|
¿
x,
y

|y|
À
,

where x ∈ R3. Then,

0 = ∇1E(η1, η2)h1 = −
Z
S1
hh1(u), H1(u)i|η01(u)|du,

(3—2)

where

H1(u) =

Z
S1

"
−
µ
η01(u)
|η01(u)|

¶0
1

|η01(u)|
(3—3)

+ 2Pη01(u)⊥

µ
η2(v)− η1(u)
|η2(v)− η1(u)|2

¶¸ |η02(v)|dv
|η2(v)− η1(u)|2 .

Because h1 : S1 → R3 is arbitrary, we deduce that
H1(u) = 0 for all u ∈ S1.
We may define H2(v) by computing ∇2E(η1, η2)h2 in

a similar way. It is clear from the above that (η1, η2) is

a critical pair for E if and only if both H1(u) and H2(v)

vanish for all u and all v.

Let u = u0, so that η1(u) = 0 ∈ R3, η01(u) = (0, 0, 1),
Pη01(u)⊥(x1, x2, x3) = (x1, x2, 0), and (η

0
1(u)/|η01(u)|)0 =

0. Then Equation (3—3) becomes

0 = H0(u0) = 2

Z
S1

∙
P(0,0,1)⊥

µ
η2(v)

|η2(v)|2
¶¸ |η02(v)|dv

|η2(v)|2 .
(3—4)

But Tpx = x/|x|2. So Tpη2(v) = η2(v)/|η2(v)|2 and

|(Tpη2)0(v)| = |η02(v)|
|η2(v)|2 .

Equation (3—4) reduces toZ
S1
P(0,0,1)⊥(Tpη2(v))|(Tpη2)0(v)|dv = 0. (3—5)

The above relation means that the center of mass of Tpη2
is on the x3-axis. The lemma is proved.

Lemma 3.2. Let (η1, η2) be a critical pair of E and let

p ∈ γ2. Let S be a round 2-sphere in bR3 which contains
the osculating circle of η2 at p. Then S ∩ η1 6= ∅. In
fact, if η1 is not contained in S, then each component ofbR3 \ S contains points of η1.
Proof: Using Möbius transformations, we may assume

that p =∞ and thus the osculating circle is an extended

line which is asymptotic to η1 at ∞. By Lemma 3.1, the
center of gravity of η2 is on the line and therefore is on

the extended plane S. This implies that η2 intersects S.

The last statement in the lemma also follows.
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α η2

η1 ββ

p1 p2

ϕβ

FIGURE 3. Replacing β by φβ decreases Möbius cross energy.

4. THE MINIMIZER IS A HOPF LINK

Throughout this section, (η1, η2) will denote a minimizer

of E among linked loops in bR3.
Lemma 4.1. Let B be an open (round) ball in bR3 disjoint
from η1 ∪ η2. Then for k = 1 or 2, ∂B ∩ ηk contains at
most one point.

Proof: Without loss of generality, assume that k = 1,

B = R2 × (−∞, 0), and ∞ 6∈ η1 ∪ η2. Let ϕ : R3 → R3
denote reflection in the plane R2 × {0}:

ϕ(x1, x2, x3) = (x1, x2,−x3). (4—1)

Suppose, to the contrary, that ∂B∩η1 contains at least
two points, p1, p2. Let α and β be the subarcs of η1 with

ends at p1 and p2. (See Figure 3.)

Because (η1, η2) is linked and η1 ⊆ R2 × [0,∞), the
loop η2 cannot be entirely contained in R2 × {0} (other-
wise η2 can be deformed to a nearby curve in the lower

half-space R2 × (−∞, 0)). So by Lemma 3.1, no oscu-
lating circle of η1 can be contained in R2 × {0}. Thus,
neither of the arcs α and β can entirely be contained in

R2 × {0}.
By Lemma 2.2, the linking number of η1 and η2 is ±1.

Therefore, in the orthogonal projection in some direction

parallel to the x1x2-plane, the loop η2 over-crosses α or

β an odd number of times. Let us assume the former.

Let eη1 = α∪ (ϕβ). Then the linking number of eη1 and η2
is odd, and by comparing the integrals in the definition

of E, we obtain

E(eη1, η2) < E(η1, η2),

η2

η1

FIGURE 4. η1 \ {∞} is strictly inside the cylinder Σ× R1.

contradicting the minimality of E(η1, η2). The lemma is

proved.

Let p1 : R3 → R2 denote the projection:

p1(x1, x2, x3) = (x1, x2). (4—2)

Theorem 4.2. Assume that ∞ ∈ η1 and the asymptotic

line to η1 at ∞ is x1 = x2 = 0. Then p1 maps η2 home-

omorphically onto a strictly convex (C∞) smooth curve
Σ with nonzero curvature in R2. Moreover, η1 \ {∞} is
contained in the interior of the cylinder Σ× R ⊆ R3.

As a consequence of Theorem 4.2, p1(η1 \ {∞}) is an
open curve (from 0 to 0) contained in the convex Jordan

domain (in R2) bounded by Σ. (See Figure 4.)

Proof: LetD be the interior of the convex hull of p1(η2) ⊆
R2. By Lemma 3.1, the center of mass of η2 is on the line
x1 = x2 = 0. Thus, 0 ∈ D. The open curve p1(η1 \ {∞})
clearly has both endpoints at 0. Thus, p1(η1 \{∞}) ⊆ D.
Otherwise, there would be a vertical extended plane Γ

disjoint from D×R1 which is tangent to η1 \{∞} so that
η1 \ {∞} is in one closed half-space bounded by Γ. As
0 ∈ D and 0 lies at the ends of p1(η1 \ {∞}), we deduce
that η1 and D × R1 (hence η2 ⊂ D × R1) are all in the
same half-space bounded by Γ. But Γ ∩ η1 contains ∞
and another point, a contradiction by Lemma 4.1.

We claim that ∂D ⊆ p1(η2). If not, there would be

a straight arc on ∂D. Let L ⊆ R2 be a straght line
containing such an arc. Then L ∩ p1(η2) has at least
two points. Let Γ1 = (L × R1) ∪ {∞} ⊆ bR3. Then

η1 ∪ η2 ⊆ D×R is on one side of Γ1, but Γ1 intersects η2
in two points, again contradicting Lemma 4.1.
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Let f = p1|p−11 (∂D)∩η2 : p
−1
1 (∂D) ∩ η2 → ∂D. Since

∂D ⊆ p1(η2), f is onto. We now show that f is injective.
Let q ∈ ∂D, and let Γ2 be the vertical extended plane

through q×R1 which is tangent to D×R1. Then, again,
η1 ∪ η2 ⊆ D×R1 are on the same side of Γ2. By Lemma
4.1, there is at most one point in Γ2 ∩ η2 ⊇ p−11 (q)∩ η2 =
f−1(q). So f−1(q) has at most one point, and therefore
f is injective.

Being a closed subset of η2 ∼= S1, p−11 (∂D)∩η2 is com-
pact. It follows that f is a homeomorphism because it is

an injective map from a compact space onto a Hausdorff

space. In particular, p−11 (∂D) ∩ η2 ⊆ η2 ∼= S1 is homeo-
morphic to S1. As no proper subset of S1 is homeomor-

phic to S1, we deduce p−11 (∂D) ∩ η2 = η2 and thus p1

maps η2 homeomorphically onto ∂D. Let Σ = ∂D. The

theorem would be complete if we could show that Σ is a

smooth curve with nonzero curvature.

We claim that the tangent vector of η2 is never vertical

(i.e., never parallel to the vector (0, 0, 1)). By contradic-

tion, assume that the tangent to η2 at a point q is vertical.

Then by applying the fact that p1 maps η2 homeomor-

phically onto Σ, the osculating circle of η2 at q ⊆ ∂D×R1
must be the extended vertical line through q. It is con-

tained in the extended tangent plane S of ∂D×R1 at q.
This contradicts Lemma 3.2 because η1 \ {∞} lies inside
D×R1 which is on one side of (but not contained in) S.
It follows that p1η2 is a (C

∞) smooth convex curve
in R2. Its curvature is nowhere vanishing, otherwise the
osculating circle at the point of vanishing curvature on η2

would be a circle contained in an extended plane S tan-

gent to D×R1, contradicting the second part of Lemma
3.2. This completes the proof of the theorem.

Theorem 4.3. Let (η1, η2) be a minimizer of E over all

linked pairs of loops in bR3. Then the pair is ambiently
isotopic to the Hopf link.

Proof: By means of Möbius transformations, we may as-

sume that ∞ ∈ η1 and that the asymptotic line to η1

at ∞ is x1 = x2 = 0. It follows by Theorem 4.2 that

η2 is unknotted. By symmetry, η1 is also unknotted.

Therefore, using Theorem 4.2 again, η1 is contained in

the unknotted “solid torus” (D × R1) ∪ {∞}. It is ele-
mentary to show that η1 is isotopic within the unknotted

“solid torus” to an extended line. On the other hand, η1
is isotopic to a circle on an orthogonal plane with its cen-

ter on the extended line. The theorem is thus proved.
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