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Let K /Q(t ) be a finite extension. We describe algorithms for
computing subfields and automorphisms of K /Q(t ). As an ap-
plication we give an algorithm for finding decompositions of
rational functions in Q(α). We also present an algorithm which
decides if an extension L /Q(t ) is a subfield of K. In case
[K : Q(t )] = [L : Q(t )] we obtain a Q(t )-isomorphism test. Fur-
thermore, we describe an algorithm which computes subfields
of the normal closure of K /Q(t ).

1. INTRODUCTION

Let K/Q(t) be a finite extension of a function field. In
this paper, we develop algorithms for deciding if K/Q(t)
is a normal or even an abelian extension. In this case,

we give a method for computing all automorphisms of

K/Q(t). Another problem we consider is the determina-

tion of all intermediate fields of K/Q(t). Here it is not
necessary to assume that K/Q(t) is a normal extension.
As an application, we show how to obtain decompo-

sitions of rational functions using the fact that rational

functions correspond to rational function fields. Further-

more, we give an explicit description of the main algo-

rithm in [Klüners and Malle 00] in the function field case.

This yields a method for computing subfields of the split-

ting field of a finite extension of Q(t).
All algorithms presented in this paper are based on

the following idea: Let f ∈ Z[t][x] be the minimal polyno-
mial of a primitive element of K/Q(t). Then by Hilbert’s
irreducibility theorem, there are infinitely many special-

izations t0 ∈ Z such that f̄(x) := f(t0, x) ∈ Z[x] is ir-
reducible as well. After finding such a t0, we solve the

corresponding problem in the residue class field and then

use lifting procedures to get the solution of our initial

problem. In contrast to the case of global fields, we have

the advantage that in the generic case the Galois group

of the residue class field is the same as the Galois group

of the given field.

In this paper, we assume that the corresponding prob-

lems can be solved in the number field case. Algorithms
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for the computation of subfields of algebraic number

fields are described in [Klüners and Pohst 97, Klüners

98]. In [Acciaro and Klüners 99, Klüners 97] algorithms

for the computation of automorphisms of algebraic num-

ber fields are explained.

All algorithms are implemented in the computer alge-

bra system KANT [Daberkow et al. 97]. We give several

examples to demonstrate the efficiency of the algorithms.

2. NOTATION

We consider finite extensions of Q(t). We assume that
these extensions are given by a primitive element α with

minimal polynomial f of degree n. By applying suitable

transformations, we can assume that f is a monic polyno-

mial in Z[t][x]. The stem field Q(t)(α) of f is denoted by
K and the splitting field of f is denoted by N . The zeros

of f in N are denoted by α = α1,α2, . . . ,αn. Through-

out, G = Gal(f) is the Galois group of f acting on the

roots α1, . . . ,αn.

In our algorithmic approach, we need to consider

residue class fields. Therefore, let t0 ∈ Z be chosen in
such a way that f̄(x) := f(t0, x) ∈ Z[x] is irreducible. We
denote by ·̄ the corresponding structures in the residue
class field, i.e., K̄ denotes a stem field of f̄ , N̄ the split-

ting field of f̄ . Ḡ is the Galois group of f̄ acting on the

roots ᾱ = ᾱ1, ᾱ2, . . . , ᾱn.

3. NEWTON LIFTING AND RECONSTRUCTION

Let R be a commutative ring with 1 and a an ideal of

R. Furthermore, let g ∈ R[x] be a polynomial and β0 ∈
R such that g(β0) ≡ 0 mod a and g0(β0) is invertible
modulo a. Then for every k ∈ N, we can compute βk
such that βk ≡ β0 mod a and g(βk) ≡ 0 mod a2k using
the extended Newton lifting which avoids divisions. Here

we only give the algorithm. Details can be found in [von

zur Gathen and Gerhard 99, Algorithm 9.22]. Let ω0
be the inverse of g0(β0) modulo a. Then we can use the
following double iteration for i = 0, . . . , k − 1:

βi+1 ≡ βi − ωig(βi) mod a2i+1 ; (3—1)

ωi+1 ≡ ωi[2− ωig0(βi+1)] mod a2i+1 . (3—2)

Let f,α,K, and n be defined as in Section 2. In the

following, we look at the special situation where R is the

equation order Q[t][α] := Q[t] + Q[t]α + · · · + Q[t]αn−1
and a := (t− t0) ⊆ R is the principal ideal generated by
t− t0 ∈ Z[t].

Lemma 3.1. (Newton lifting.) Let g ∈ Z[t][x] be a
polynomial, t0 ∈ Z, and β0 ∈ Q[t][α] such that g(β0) ≡
0 mod (t − t0) and a = (t − t0) disc(f) disc(g). Then

for every k ∈ N we can compute an element βk ∈ Q[t][α]
with g(βk) ≡ 0 mod a2k and βk ≡ β0 mod a.

Proof: From (t− t0) disc(f) disc(g) we get that g0(β0) is
invertible in R/a. Its inverse ω0 can be computed using

the extended Euclidean algorithm. The elements βk are

now obtained using the above double iteration.

In our algorithm, we want to compute an element of the

form

β =
n−1X
i=0

biα
i (bi ∈ Q(t)),

where we make the additional assumption that all de-

nominators of the bi divide a given polynomial d ∈ Q[t].
Now let M := t − t0 ∈ Z[t] be a polynomial which is
prime to d. For a, b, c ∈ Q[t] with gcd(M,b) = 1, we say
that ab ≡ c mod (Mk) if and only if a ≡ bc modMk. We

further say that

n−1X
i=0

biα
i ≡

n−1X
i=0

ciα
i mod ak if and only if

bi ≡ ci mod (Mk) (0 ≤ i ≤ n− 1).

In our applications, we are able to compute γ =Pn−1
i=0 ciα

i with β ≡ γ mod ak. Knowing that all denom-

inators of the bi divide d, the reconstruction of β from γ

can be done coefficientwise using the following lemma:

Lemma 3.2. (Padé approximation.) Let c,M = (t −
t0)

k ∈ Q[t] and k1, k2 ∈ N with k1 + k2 < k. If there

exist a, b ∈ Q[t] with deg(a) ≤ k1 and deg(b) ≤ k2 such
that ab ≡ c mod (M), then a, b can be computed efficiently
based on an extended gcd-algorithm. Furthermore, a

b
is

unique in this case.

The proof can be found in [von zur Gathen and Ger-

hard 99, Section 5.9]. If we want to use the above lemma,

it is important to have estimates for the degrees of a and

b in order to choose the needed precision k.

We denote by | · |∞ the negated degree valuation on

Q(t), i.e., |ab |∞ = deg(a)−deg(b). Let N/Q(t) be a finite
extension. We know that there exists a valuation of N

extending | · |∞. We denote this valuation by | · |∞, too.
Let f ∈ Q[t][x] be an irreducible polynomial. It is well
known how to compute the valuations of the zeros of f

in a splitting field N of f .
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Theorem 3.3. Let f = xn+a1xn−1+ · · ·+an ∈ Q(t)[x] be
a monic polynomial and denote by α1, . . . ,αn the zeros

in a splitting field. Then we can recursively define 1 ≤
k1 < k2 < . . . < ks = n such that the following holds:

(i) Let k1 ∈ {1, . . . , n} be the largest number such that

|ak1 |∞
k1

= max
1≤i≤n

|ai|∞
i
.

Then v1 :=
|ak1 |∞
k1

is the maximal negated degree

valuation of a zero of f and there are exactly k1 zeros

with this valuation.

(ii) Supposing ki < n, we define ki+1 ∈ {ki + 1, . . . , n}
to be the largest number such that

|aki+1 |∞ −
Pi

ν=1 kνvν

ki+1 − ki = max
ki<j≤n

|aj |∞ −
Pi

ν=1 kνvν
j − ki .

Then vi+1 :=
|aki+1 |∞− i

ν=1 kνvν

ki+1−ki is the maximal

negated degree valuation of ki+1 − ki zeros of f .

Proof: Without loss of generality, we can assume that

|α1|∞ ≥ . . . ≥ |αn|∞. The coefficients of f are the ele-
mentary symmetric functions in α1, . . . ,αn. Since | · |∞
is non-archimedean, it follows that |ai|∞ ≤ i|α1|∞ for

1 ≤ i ≤ k1. Furthermore, |ai|∞ < i|α1|∞ for i > k1.

Since there is no cancellation, we get |ak1 |∞ = k1|α1|∞
which proves (i). The second part can be proved in an

analogous way.

Using the preceding theorem, the valuations of the zeros

of a polynomial f ∈ Q(t)[x] can be computed easily.

Lemma 3.4. Let K = Q(t)(α) be an extension of de-
gree n of Q(t) and β ∈ K. Furthermore, let f ∈ Q[t][x]
be the minimal polynomial of α and denote by vj :=

max(0, |αj |∞), where w.l.o.g. α1, . . . ,αn are ordered in a
way such that v1 ≥ . . . ≥ vn. Denote by w the maximal

valuation of a zero of the minimal polynomial of β over

Q(t). Then

β =
1

d

n−1X
i=0

b̂iα
i, with b̂i, d ∈ Q[t];

|b̂i|∞ ≤ |d|∞ − 1
2
| disc(f)|∞ +

n−1X
j=1

(n− j)vj + w.

Proof: Clearly, β = 1
d

Pn−1
i=0 b̂iα

i for some b̂i, d ∈ Q[t].
Denote by α1, . . . ,αn the conjugates of α. Then the con-

jugates of β are given by

βj =
1

d

n−1X
i=0

b̂iα
i
j (1 ≤ j ≤ n).

This defines a linear system of equations:

1

d

1 α1 · · · αn−11
...

...
...

1 αn · · · αn−1n


 b̂0

...

b̂n−1

 =
β1...
βn

 .
Denote by A the above Vandermonde matrix, by

A0, . . . , An−1 the columns of A, and define B :=

(β1, . . . ,βn)
tr. Using Cramer’s rule, we obtain

bi =
d det(A0, . . . , Ai−1, B,Ai+1, . . . , An−1)

det(A)
.

We want to estimate det(A0, . . . , Ai−1, B,Ai+1, . . . ,
An−1) using the fact that the determinant is the sum of

products of n factors, where we have exactly one factor

in each row and in each column. The worst case is when

we place B in the first column. Using det(A)2 = disc(f)

and that | · |∞ is non-archimedean we get

|b̂i|∞ ≤ |d|∞ − 1
2
| disc(f)|∞ +

n−1X
j=1

(n− j)vj + w

for 0 ≤ i ≤ n− 1.
This estimate can be sharpened when f has zeros αi with

negative valuation. Now we are able to give the following

algorithm:

Algorithm 3.5. (Root finding.)

Input: Minimal polynomial f ∈ Z[t][x] of a primitive
element α of an extension K/Q(t), a polyno-
mial g ∈ Z[t][x], t0 ∈ Z such that f(t0, x)

and g(t0, x) are irreducible, and β̄ with g(β̄) ≡
0 mod (t− t0).

Output: β =
Pn−1

i=0 biα
i (bi ∈ Q(t)) with g(β) = 0 and

β ≡ β̄ mod (t− t0), or indication that such a β
does not exist.

Step 1: Compute the valuations v1 ≥ . . . ≥ vn of the
zeros of f using Theorem 3.3 (n = [K : Q(t)])
and set vi := max(vi, 0).

Step 2: Compute the maximal valuation w of the zeros

of g using Theorem 3.3.
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Step 3: Compute the discriminant of f and its fac-

torization disc(f) =
rQ
i=1

deii in Q[t]. Set

d :=
rQ
i=1

d
b ei2 c
i .

Step 4: Compute

k̃ := |d|∞ − 1
2 | disc(f)|∞ +

Pn−1
j=1 (n− j)vj +w.

We get |b̂i|∞ ≤ k̃ using Lemma 3.4.

Step 5: Set k := k̃ + |d|∞ + 1.

Step 6: Using Newton lifting (Lemma 3.1), compute

b̃i ∈ Q[t] such that

g(

n−1X
i=0

b̃iα
i) ≡ 0 mod (t− t0)k.

Step 7: Using Lemma 3.2, retrieve the rational coeffi-

cients bi ≡ b̃i mod (t− t0)k.

Step 8: If β :=
n−1P
i=0

biα
i is a zero of g, return β, other-

wise return that β /∈ K.

The polynomial d computed in Step 3 is a multiple of

all denominators of the bis. In case a smaller polynomial

with this property is known, this can be used to improve

the algorithm. We remark that Step 3 can be improved

by using square-free factorization. The correctness of this

algorithm follows from the considerations in this section.

4. AUTOMORPHISMS

We use the notations of Section 2 and assume that

K/Q(t) is a normal extension of degree n. Our aim is

to compute the automorphism group of K/Q(t). An au-
tomorphism σ of K/Q(t) is uniquely determined by its
image:

β := σ(α) =

n−1X
i=0

biα
i with bi ∈ Q(t).

Once we know this image, it is easy to apply σ to an

element γ =
n−1P
i=0

ciα
i with ci ∈ Q(t), since

σ(γ) =

n−1X
i=0

ciσ(α)
i.

In case we want to apply σ more than once, it is desirable

to store the normal form of σ(α),σ(α)2, . . . ,σ(α)n−1 in
order to save computing time.

Later in this section, we describe how to compute one

single automorphism. If we want to get the whole auto-

morphism group A, we have to compute generators of A.

Afterwards, we can apply Dimino’s algorithm [Butler 91,

pp. 14—23] to compute all elements of A.

By Hilbert’s irreducibility theorem there exists t0 ∈ Z
such that f̄(x) := f(t0, x) ∈ Q[x] is irreducible. Then
Gal(f) = Gal(f̄). Denote as before by ¯ the correspond-

ing structures in the residue class field of the prime ideal

(t− t0). We obtain

σ(α) = β =
n−1X
i=0

biα
i ≡ σ̄(ᾱ) =

n−1X
i=0

b̄iᾱ
i mod (t− t0).

Therefore, if we are able to compute an automorphism

in a residue class field, we can apply the Newton lifting

and reconstruction techniques of Section 3 to determine

the corresponding automorphism ofK/Q(t). Acciaro and
Klüners [Acciaro and Klüners 99] describe how to com-

pute automorphisms of an abelian number field. The

author extended this algorithm to the nonabelian case

[Klüners 97].

Now we are able to give the algorithm for computing

automorphisms of finite extensions of Q(t).

Algorithm 4.1. (Computation of automorphisms.)

Input: Minimal polynomial f ∈ Z[t][x] of a primitive
element α of a normal extensionK/Q(t), t0 ∈ Z
such that f(t0, x) is irreducible, and an auto-

morphism σ̄ of the corresponding residue class

field extension.

Output: An automorphism σ of K/Q(t) such that

σ(α) ≡ σ̄(ᾱ) mod (t− t0).

Step 1: Call Algorithm 3.5 with f, f, t0, and β̄ = σ̄(ᾱ)

and store the result in β.

Step 2: Return the corresponding automorphism σ

with σ(α) = β.

The correctness of this algorithm follows from the con-

siderations in this section. We remark that the above al-

gorithm can also be used to check if the extensionK/Q(t)

is normal. In the negative case,
n−1P
i=0

biα
i fails to be a zero

of f .
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5. EMBEDDING OF SUBFIELDS

This situation is very similar to the one in the preceding

section. Let K = Q(t)(α) be a finite extension of degree
n of Q(t). Furthermore, we have a field L = Q(t)(β) of
degree m over Q(t). We denote by f and g the mini-
mal polynomials of α and β, respectively. W.l.o.g. we

assume that f, g ∈ Z[t][x]. We want to decide if L/Q(t)
is a subfield of K/Q(t). In the latter case, we want to
determine the embedding of L in K which can be done

by expressing β in terms of α:

β =

n−1X
i=0

biα
i.

Note that in the case [K : Q(t)] = [L : Q(t)], this gives
an Q(t)-isomorphism test.

Let t0 ∈ Z such that f̄(x) := f(t0, x) ∈ Q[x] and
ḡ(x) := g(t0, x) ∈ Q[x] are irreducible. Denote by ¯ the
corresponding structures in the residue class field of the

prime ideal (t− t0). If L is a subfield of K, it follows that
L̄ is a subfield of K̄. We assume now that L̄ is a subfield

of K̄ and that we are able to determine the embedding

β̄ =

n−1X
i=0

b̄iᾱ
i.

If L is a subfield of K, we know that there exist bi ∈ Q(t)
with

β =

n−1X
i=0

biα
i ≡ β̄ mod (t− t0).

Again, we can apply the Newton lifting and reconstruc-

tion techniques of Section 3 to compute the embedding.

There are algorithms to solve the subfield problem in the

number field case. One possibility is to use factorization

of polynomials over number fields to decide the prob-

lem. Another possibility is described in [Pohst 87]. In

our context, we get this information as a part of the sub-

field algorithm described in Section 7. Now we state the

algorithm.

Algorithm 5.1. (Subfield test.)

Input: Minimal polynomial f ∈ Z[t][x] of a primitive
element α of an extension K/Q(t), minimal
polynomial g ∈ Z[t][x] of a primitive element
β of an extension L/Q(t).

Output: Embedding β =
n−1P
i=0

biα
i, or indication that L

is not a subfield of K.

Step 1: Find t0 ∈ Z such that f(t0, x) and g(t0, x) are
irreducible.

Step 2: Test, if L̄ is a subfield of K̄. If this is the case,

compute the embedding of β̄. Otherwise, re-

turn that L is not a subfield of K.

Step 3: Call Algorithm 3.5 with f, g, t0, and β̄.

Step 4: In case the computation of β was successful, re-

turn the corresponding embedding. Otherwise,

return that L is not a subfield of K.

The correctness of this algorithm follows from the con-

siderations in this section.

6. ZEROS OF POLYOMIALS IN Z[t ][x ]

We use the notations of Section 2. In this section, we de-

velop a method to compute approximations to the zeros

of f . It is well known that all zeros of f can be expressed

as power series in N̄ [[t]]. In our applications, it is suffi-

cient to know these series modulo tl for a suitable l ∈ N.
We have the problem that computations in the splitting

field N̄ of f̄ are not very convenient. Therefore, we em-

bed N̄ into some unramified p-adic extension. Let p be

the prime ideal of the valuation ring of this p-adic field.

We approximate p-adic numbers by truncated series mod-

ulo pk. The necessary p-adic arithmetic is described in

[Klüners 98].

Using Newton lifting, we can express α as a power

series:

α = ᾱ+
∞X
i=1

ai
di
ti, where ai ∈ Z[ᾱ], di ∈ N. (6—1)

Note that even if Z[ᾱ] is the maximal order of K̄ the de-

nominators di are not necessarily equal to 1. In the p-adic

approach, it is important to find a prime p which does

not divide any denominator di as the following lemma

shows.

Lemma 6.1. Let p be a prime which divides di for some
i ∈ N in the above power series. Then p divides disc(f̄).

Proof: Define a0 := ᾱ, d0 := 1, and ci :=
iP

j=0

aj
dj
tj . Using

linear Newton lifting we find that

ci+1 ≡ ci − f(ci)

f 0(c0)
mod ti+2

which implies
ai+1
di+1

=
ci+1 − ci
ti+1

≡
−f(ci)
ti

f 0(c0)
mod t.
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We see that all di must divide f
0(c0). Denote by N the

norm function of the number field K̄. Using f 0(c0) ≡
f̄ 0(ᾱ) mod t and the fact that disc(f̄) = ±N(f̄ 0(ᾱ)), we
find that all primes dividing f̄ 0(ᾱ) also divide disc(f̄).

From Equation (6—1) we know that one root α of f

can be expressed as a power series in K̄[[t]]. We use the

double iteration described in Section 3 to find an approx-

imation modulo tl for some l ∈ N. Now we describe how
to get all zeros of f in a suitable completion. We start

to express the zeros as power series in C[[t]]. The fol-
lowing lemma is an immediate consequence of the above

considerations.

Lemma 6.2. Let α̂1, . . . , α̂n ∈ C be the zeros of f̄ . For

1 ≤ i ≤ n, define φi : K̄[[t]] → C[[t]], ᾱ 7→ α̂i, t 7→ t.

Furthermore, let α be defined as in equation (6—1). Then

α̌i := φi(α) (1 ≤ i ≤ n) are the zeros of f in C[[t]].

Using complex approximations it is very difficult to

get proven results. Therefore, we only use complex ap-

proximations to get bounds for the coefficients ai
di
. We

need to find a representation for elements in the splitting

field N̄ . As suggested in [Klüners 98], we want to use p-

adic approximations in unramified p-adic extensions. Let

p be a prime not dividing disc(f̄). From Lemma 6.1 we

know that p does not divide any denominator di of a coef-

ficient of α in Equation (6—1). Now let p be a prime ideal

of ON̄ lying above p. Therefore, f̄ splits into linear fac-

tors over N̄p. Denote the zeros of f̄ in N̄p by ᾱ1, . . . , ᾱn.

For 1 ≤ i ≤ n define
ψi : K̄[[t]]→ N̄p[[t]], ᾱ 7→ ᾱi, t 7→ t and αi := ψi(α).

Then it is immediate that α1, . . . ,αn are the roots of f

in N̄p[[t]] and we get the following lemma.

Lemma 6.3. For k, l ∈ N and for 1 ≤ i ≤ n, let

αi =
∞

j=0

ai,jt
j ∈ N̄p[[t]] and α̃i =

l−1

j=0

(ai,j mod p
k)tj ∈ N̄p[t].

Then α̃1, . . . , α̃n are the zeros of f modulo (t
l, pk) in

N̄p[t], i.e., f(α̃i) ≡ 0 mod (tl, pk).

Using the above lemma, approximations to the zeros

of f can easily be computed:

(i) Compute p-adic approximations modulo pk of the

zeros of f̄ .

(ii) Using Newton lifting, compute α ∈ K̄[[t]] modulo tl.

(iii) Using ψi and Lemma 6.3 to compute approximations

modulo (tl, pk) of the zeros of f .

The approximations to the zeros of f are used in the sub-

field algorithm. In the next section, we give an algorithm

to compute sufficiently large k and l.

7. SUBFIELDS

The algorithm for computing subfields is more compli-

cated than the ones presented in the preceding sections.

Similar to the other algorithms, we want to use the fact

that we are able to compute subfields in the residue class

field which is a number field. But from this computation,

we do not have enough information to lift the subfields.

Therefore, we have to recall some properties of subfields.

For more details see [Klüners and Pohst 97, Klüners 98].

Let G be a transitive permutation group acting on

Ω := {α1, . . . ,αn}. Recall that ∆ ⊆ Ω is called a block
of size |∆|, if ∆τ ∩∆ ∈ {∅,∆} for all τ ∈ G. The orbit
of a block ∆ under G is called a block system. The full

set and all sets of size 1 are blocks, the so called trivial

blocks. Suppose that α1, . . . ,αn are the roots of an irre-

ducible polynomial f ∈ Z[t][x] and G is the Galois group
of f . Then the subfields of a stem field of f are in bijec-

tion with the groups Gα1 ⊆ H ⊆ G, where Gα1 denotes
the point stabilizer of α1. Therefore, the following the-

orem establishes a bijection between subfields and block

systems.

Theorem 7.1. The correspondence ∆ 7→ G∆ := {τ ∈ G |
∆τ = ∆} is a bijection between the set of blocks of size
d which contain α and the set of subgroups of G of index

m = n/d containing the subgroup Gα of α.

Proof: The proof of the theorem can be found in

[Wielandt 64, Theorem 2.3].

We use the notation of Section 2. We want to deter-

mine the intermediate fields Q(t) < L < K using the

correspondence to block systems. The diagram in Fig-

ure 1 illustrates the situation:

Suppose we are able to determine a block system con-

sisting of blocks∆1, . . . ,∆m of size d. Then we can define

g(t, x) :=

mY
i=1

(x−
Y
α∈∆i

(α+ a)) ∈ Z[t][x] (a ∈ Z). (7—1)

It is an immediate consequence of the definition of a block

system that g has coefficients in Z[t]. Instead of just tak-
ing products, it is possible to consider an arbitrary sym-

metric function of the zeros in a block. The product has
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Q(t)(α1, . . . ,αn)

Q(t)(α1) Gα1

{id}

{α1}

d

Q(t)(β) H Hα1 = {αi1 , . . . ,αid} = ∆1

m = n
d

Q(t) G {α1, . . . ,αn}

FIGURE 1.

the advantage that we can prove that at most n choices

of a lead to a polynomial g which has multiple zeros, e.g.,

[Klüners 98, Lemma 4.5]. If the polynomial has no mul-

tiple zeros, it is irreducible and, therefore, we have found

a minimal polynomial of a primitive element of the cor-

responding subfield L. Let t0 ∈ Z be chosen such that
f̄(x) := f(t0, x) ∈ Z[x] is irreducible. We assume w.l.o.g.
that t0 = 0. We denote by Ḡ the Galois group of f̄ and

by ᾱ1, . . . , ᾱn the zeros of f̄ . Using the subfield algo-

rithm for number fields, we are able to compute a block

system ∆̄1, . . . , ∆̄m. We know that the zeros of f can be

expressed as power series in N̄ [[t]], where N̄ denotes the

splitting field of f̄ . We obtain

αi = ᾱi +

∞X
j=1

ai,jt
j , where ai,j ∈ N̄ .

If we are able to compute the power series (see Section 6),

we can establish the correspondence between the αi and

the ᾱi. For the computation of the zeros, we have to find

integers k and l such that it is sufficient to compute the

zeros modulo (tl, pk). In a first step, we give an estimate

for l. As in Section 3, we denote by | · |∞ the negated

degree valuation on Q(t). For a polynomial f(t, x) =
nP
i=0

fi(t)x
i ∈ Q(t)[x], we denote by |f |∞ := max

0≤i≤n
(|fi|∞)

the valuation of the polynomial.

Theorem 7.2. Let g be defined as in equation (7—1). Then
|g|∞ ≤ |f |∞.

Proof: Assume that a = 0 in equation (7—1). Then

|g|∞ = |
mY
i=1

(x−
Y
α∈∆i

α)|∞

=

mX
i=1

max(0,
X
α∈∆i

|α|∞) ≤
mX
i=1

X
α∈∆i

max(0, |α|∞)

=

nX
i=1

max(0, |αi|∞) = |
nY
i=1

(x− αi)|∞ = |f |∞.

In case a 6= 0, |αi + a|∞ = max(|αi|∞, 0). Therefore, the
same argument shows the assertion for arbitrary a.

Theorem 7.2 shows that we are allowed to do all com-

putations modulo tl, where l = |f |∞ + 1. The next step
is to derive a bound for the real size of the coefficients.

Let

f(t, x) =

nX
i=0

fi(t)x
i ∈ Z[t][x], where fi =

riX
j=0

fi,jt
j ∈ Z[t].

We denote by ||fi||∞ := max
1≤j≤ri

(|fi,j |) the maximum norm
of fi and by ||f ||∞ := max

0≤i≤n
(||fi||∞) the maximum norm

of f . We are interested in computing a bound for ||g||∞.

Theorem 7.3. Let f ∈ Z[t][x] be a monic irreducible poly-
nomial and denote by

αi =

∞X
j=0

ai,jt
j ∈ C[[t]] (1 ≤ i ≤ n)

the zeros of f . Let g be defined as in Equation (7—1)

where a = 0 and set l := ||f ||∞ + 1. For 0 ≤ j ≤ l − 1,
define cj := max

1≤i≤n
(d|ai,j |e, 1). Define

h(t) := c0 + c1t+ · · ·+ cl−1tl−1 ∈ Z[t]

and

H(t, x) := (x+ h(t)
n
m )m mod tl.

Then we have ||g||∞ ≤ ||H ||∞.

Proof: From Theorem 7.2, we know |g|∞ ≤ |f |∞ = l− 1.
Since |ai,j | ≤ cj for 0 ≤ j ≤ l − 1, it is immediate that
||g||∞ ≤ ||H ||∞.

Bounds for the ci can be computed easily using Equation

(6—1) and a bound for a maximal root of f̄ . Experience

shows that cl−1 tends to be larger than c0. We are now
able to give the complete algorithm for computing sub-

fields.
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Algorithm 7.4. (Computation of subfields.)

Input: Minimal polynomial f ∈ Z[t][x] of a primitive
element α of an extension K/Q(t).

Output: All subfields Q(t) < L < K of K described by

a pair (g,β), where g ∈ Z[t][x] is the minimal
polynomial of β =

n−1P
i=0

biα
i.

Step 1: Compute t0 ∈ Z such that f(t0, x) is irre-

ducible. By applying a linear transformation

to f , we assume that t0 = 0.

Step 2: Compute all subfields Q < L̄ < K̄ of K̄ and

the corresponding block systems ∆̄1, . . . , ∆̄m.

Each L̄ is described by a pair (ḡ, β̄), where ḡ ∈
Z[x] is the minimal polynomial of β̄ =

n−1P
i=0

b̄iᾱ
i.

Step 3: If there are no such L̄, return the empty list.

Step 4: For each L̄, do

(i) Choose a prime p such that p

disc(f̄) disc(ḡ).

(ii) Compute l := |f |∞ + 1 and a bound M
such that ||g||∞ ≤M using Theorem 7.3.

(iii) Compute the smallest k ∈ N such that

pk ≥ 2M .
(iv) Compute α̃1, . . . , α̃n modulo (t

l, pk) using

Lemma 6.3.

(v) Identify the α̃i with the ᾱi to compute the

corresponding block system ∆̃1, . . . , ∆̃m
consisting of the zeros α̃i.

(vi) Use Equation (7—1) to compute g ∈ Z[t][x]
modulo (tl, pkZ) taking the symmetric

residue system modulo pk.

(vii) Call Algorithm 5.1 with f, g to test if L is

a subfield of K. If this is the case, return

g and the computed embedding β.

Proof: The correctness of the algorithm follows from the

above considerations. In Theorem 7.2, we proved that

|g|∞ < l. Therefore we can perform all computations

modulo tl. In Theorem 7.3, we showed that ||g||∞ ≤ M .

Since pk ≥ 2M , we can take the symmetric residue sys-
tem to retrieve the true coefficients of g ∈ Z[t][x] from
the computed approximations. If L is a subfield of K, L̄

is a subfield of K̄. The converse is not necessarily true.

Therefore, in Step 4 (vi), we compute g modulo (tl, pk)

since pk ∩Z = pkZ. In Step 4 (vii), we test if L is indeed
a subfield of K.

We have given a simplified version of the subfield algo-

rithm. One improvement could be to try several t0 ∈ Z
which lead to irreducible polynomials f̄ . Afterwards, we

can take the t0 which corresponds to the field K̄ with

minimal number of subfields to avoid unnecessary call-

ings of Algorithm 5.1.

In practice, it is important to store the zeros α̃i com-

puted in Step 4 (iv). To use the stored results, it is

important to choose the same prime p for all subfields L̄.

For large examples, it is a good idea to choose the prime

p in such a way that the corresponding p-adic extension

N̄p has small degree. In the case that the subfield al-

gorithm over Q has chosen a different prime, the block

systems in Step 2 can be computed using the following

lemma:

Lemma 7.5. Let L̄ = Q(β̄) be a subfield of K̄ = Q(ᾱ) with
corresponding minimal polynomials ḡ and f̄ . Let β̄ =
n−1P
i=0

b̄iᾱ
i and define h̄(x) :=

n−1P
i=0

b̄ix
i ∈ Q[x]. Denote by

ᾱ1, . . . , ᾱn, β̄1, . . . , β̄m the zeros of f̄ and ḡ in a suitable

closure, respectively. Define

∆̄i := {ᾱj | h̄(ᾱj) = β̄i}.
Then ∆̄1, . . . , ∆̄m form a block system of Gal(f̄) acting

on the roots ᾱ1, . . . , ᾱn corresponding to the subfield L̄.

Proof: Let σ ∈ Gal(f̄) with σ(β̄i) = β̄k. Then

γ̄ ∈ ∆̄i ⇔ h̄(γ̄) = β̄i ⇔ σ(h̄(γ̄)) = h̄(σ(γ̄))

= β̄k ⇔ σ(γ̄) ∈ ∆̄k.

Consequently, ∆̄1, . . . , ∆̄m is a block system. Assuming

ᾱ1 ∈ ∆̄1, we find that the subgroups fixing β̄1 and ∆̄1
coincide. Therefore, the block system ∆̄1, . . . , ∆̄m corre-

sponds to L̄.

8. RATIONAL DECOMPOSITIONS

Let t = a(α)
b(α) ∈ Q(α) with a, b ∈ Q[α] monic and

gcd(a, b) = 1 be a rational function. Recall that the de-

gree of a rational function a(α)
b(α) is defined to be the max-

imum of the degrees of a(α) and b(α). It is an interest-

ing question to determine if there exist rational functions



Klüners: Algorithms for Function Fields 179

u, v ∈ Q(α) with 1 < deg(u), deg(v) < deg(t) such that

t = u ◦ v. It is an immediate consequence of a theorem
of Lüroth (see e.g., [Jacobson 80]) that such a decompo-

sition corresponds to a proper subfield Q(t) < L < Q(α).
Therefore, it is natural to apply the subfield algorithm of

the last section to compute such decompositions.

Define f(t, x) := a(x) − tb(x) ∈ Q[t][x]. Since a and
b have no common divisor, f has to be irreducible. Fur-

thermore, f is the minimal polynomial of α over Q(t).
By applying suitable transformations, we assume that f

is a monic polynomial in Z[t][x].
Now assume that we have computed a subfield Q(t) <

L < Q(t,α) = Q(α) using Algorithm 7.4. The algorithm

returns a polynomial g ∈ Z[t][x] which is a minimal poly-
nomial of

β =

n−1X
i=0

bi(t)α
i,

where α is a zero of f . Since we know that |f |∞ = 1,

Theorem 6—1 implies that |g|∞ = 1 as well. We remark

that from Lüroth’s theorem, it is clear that such a poly-

nomial g exists, but it is not a priori clear that a general

subfield algorithm will produce such a g.

Since |g|∞ = 1, we can write g(t, x) = c(x) − td(x)
with c, d ∈ Z[x]. Then for a root β of g, t = c(β)

d(β) and

Q(β) is a subfield of Q(α) containing Q(t). It remains to
express β as a rational function in α. We have

β =

n−1X
i=0

bi(t)α
i.

Replacing t by a(α)
b(α) , we can express β as a rational

function in α, say β = µ(α)
ν(α) with µ, ν ∈ Q[α] and

gcd(µ, ν) = 1. Altogether, this shows a(α)
b(α) =

c(α)
d(α) ◦ µ(α)ν(α) .

The algorithm for rational function fields can be im-

proved compared to the general subfield algorithm. Ex-

periments on a computer show that the embedding part,

i.e., the computation of β, is the most time consuming

part. This step can be improved as follows: At some

point in the computations, we know the rational func-

tions t = a(α)
b(α) and t =

c(β)
d(β) and would like to know the

rational function β = µ(α)
ν(α) . Since

a(α)

b(α)
=
c(β)

d(β)
,

we consider the polynomial a(α)d(β) − b(α)c(β) ∈
Q[α,β]. If Q(β) is a subfield of Q(α), this polynomial has
a linear factor ν(α)β − µ(α), where deg(µ(α)ν(α) ) = [Q(α) :
Q(β)]. Therefore, we have to find linear factors in β of

a(α)d(β) − b(α)c(β) ∈ Q[α,β], which can be done using
well-known methods.

Note that there are specialized algorithms for the ra-

tional function field case, e.g., [Alonso et al. 95]. Ex-

periments show that the perfomance of the algorithms

depends on the examples (see Section 10).

9. THE COMPUTATION OF SUBFIELDS
OF A SPLITTING FIELD

In [Klüners and Malle 00, Section 3.3], we explained

how to compute a subfield L of a field extension of

the rationals which was given by a minimal polyno-

mial f ∈ Z[x] of a primitive element. In the same pa-
per, we also explained how to compute a polynomial

RG,H,F [x1, . . . , xn][x], where G is the Galois group of

f , H is the stabilizer of a subfield of the splitting field,

and n is the degree of f . F is a so-called H-invariant

G-relative polynomial [Klüners and Malle 00, Definition

3.1]. Let α1, . . . ,αn be the roots of f . Then it is shown

that RG,H,F (α1, . . . ,αn) ∈ Z[x] is the characteristic poly-
nomial of an element of L over Q. If this polynomial is
not square-free, i.e., the element is not primitive, a suit-

able transformation on the αi yields a primitive element.

Back to our function-field setting, we aim at comput-

ing RG,H,F (α1, . . . ,αn) ∈ Z[t][x] using approximations
to the αi as before. We have explained in Section 6. how

to represent the roots αi of a polynomial f ∈ Z[t][x].
The remaining problem is to determine sufficiently large

k, l (see Lemma 6.3). We have to use Theorem 3.3 to

get the (degree-)valuations of the roots of f . Unfortu-

nately, we are not in the nice situation of Theorem 7.2.

After determining the degree bound, we have to compute

a bound for the p-adic approximations. Let us explain

this procedure with an example.

Let f(t, x) := x7 − 3x6 − x5 + 3x4 + (−t+1)x3 + (t+
1)x2 − 5x+ 4 be the polynomial with Galois group G =
PSL2(7) given in [Malle and Matzat 99, p. 405]. We want

to compute one of the (isomorphic) degree 8 subfields of

the splitting field of f . First we compute the following

F (x1, . . . , x7) := x1x2x7 + x1x3x6 + x1x4x5 + x2x3x4 +

x2x5x6 + x3x5x7 + x4x6x7. Denote by H a subgroup of

index 8 in G and let R be a full system of representatives

of (left) cosets of G/H. Furthermore, we assume that G

acts in the same way on the xi as G acts on the roots of

f . Then we get

RG,H,F =
Y
σ∈R

(x− Fσ).

The next step is to compute the necessary bounds. Us-

ing Theorem 3.3, we find the degree valuations of the
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roots of f : [ 14 ,
1
4 ,

1
4 ,

1
4 , 0,−12 ,− 12 ]. Unfortunately, we have

no chance to determine which root has which valuation.

Since each summand of F has valuation less than or equal

to 3
4 (after substituting the αis), we see that the coeffi-

cients of RG,H,F have valuations which are less than or

equal to 834 = 6. Now we compute the zeros of f as power

series in C[[t]] (compare Theorem 7.3). It is sufficient to

compute these series modulo t7.

The polynomial h(t) in Theorem 7.3 can still be com-

puted as before. Since F consists of seven monomials of

degree 3, we define H̃(t, x) := (x+ 7h(t)3)8 mod t7. The

largest coefficient ofH gives us a bound for the real norm.

In our example, we get the bound 1491576722650942160

and compute everything modulo 4112. The final result is

the following (irreducible) polynomial:

x8 − 18x7 + (14t+237)x6 + (−4t2 − 168t− 1563)x5 +
(−2t3+125t2+2008t+9773)x4+(−10t3−966t2−9231t−
32724)x3+ (6t4+383t3+7002t2+48745t+124283)x2+

(4t5− 38t4− 1757t3− 18994t2− 90189t− 179511)x+ t6+
24t5 + 754t4 + 8030t3 + 60349t2 + 226389t+ 576706.

The whole computation takes about three seconds (see

next section).

10. EXAMPLES

In this section, we give the running times of some exam-

ples to demonstrate the efficiency of our algorithms. All

computations were done on a 500MHz Intel Pentium III

processor running under SuSE Linux 6.1.

We start with an example of degree 12. Let K =

Q(t)(α) be defined by the following minimal polynomial
of α:

f(t, x) = x12 − 36x11 + 450x10 − 2484x9 + 3807x8 +
25272x7 + (27t2 + 299484)x6 + 227448x5 + 308367x4 −
1810836x3 + 2952450x2 − 2125764x+ 531441.
This field has two proper subfields described by the fol-

lowing (g,β). The computations are done in 2.4 seconds.

(i) g(t, x) = x3 + 96x2 − 3840x− 27t2 − 409600,
β = −452+936α−690α2+160α3+( 1

243 t
2+ 33556

243 )α
4+

( 8
729 t

2+ 91544
729 )α

5+ 293
27 α

6+ 284
243α

7− 686
729α

8+ 388
2187α

9−
95
6561α

10 + 8
19683α

11.

(ii) g(t, x) = x6 − 24x5 + 96x4 + 1024x3 − 9984x2 +
30720x+ 27t2 + 409600,

β = −26 + 49α − 92
3 α

2 + 47
9 α

3 + 104
27 α

4 + ( 1
2187 t

2 +
11092
2187 )α

5 + 104
243α

6 + 47
729α

7 − 92
2187α

8 + 50
6561α

9 −
4

6561α
10 + 1

59049α
11.

Now let f(t, x) := a(x) − tb(x) be a polynomial of
degree 36, where a(x)

b(x) is the following rational function:

a(x)

b(x)
:=

(x3 + 4)3(x3 + 6x2 + 4)3(x6 − 6x5 + 36x4 + 8x3 − 24x2 + 16)3
(x− 2)6x6(x+ 1)3(x2 − x+ 1)3(x2 + 2x+ 4)6 .

We use the methods of Section 8 to compute the ratio-
nal decompositions corresponding to the subfields. There
are 10 nontrivial ones and the computing time was 186
seconds. In order to save space, we only give one decom-
position:

a(x)

b(x)
=
−(x3 − 12x2 + 24x− 16)3(x3 + 24x− 16)3

(x− 4)6(x− 1)3x6

◦ −x(x− 2)
x+ 1

.

We have not used the improvements which are possible
in the rational function field case as described in Section
8. Using these improvements, all decompositions can be
computed within 60 seconds. The specialized package
FRAC [Alonso et al. 95] needs 20 minutes for the com-
putation of all rational decompositions.

Let a(x)
b(x) be the rational function of degree 60 shown

below. We only give one of its decompositions (which
was not known before) to save space:

a(x)

b(x)
:=
(x4 + 228x3 + 494x2 − 228x+ 1)3

x(x2 − 11x− 1)5

◦ x4 − 2x3 + 4x2 − 3x+ 1
−x(x4 + 3x3 + 4x2 + 2x+ 1)

We need 31 minutes to compute the three nontriv-
ial rational decompositions. Without using the improve-
ments of Section 8, the computation would take about
85 minutes. Here, the package FRAC needs 114 seconds
to compute all rational decompositions.
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Nombres de Bordeaux 10 (1998), 243—271.
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