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We develop numerical implementations of several criteria to as-
sess the regularity of functions. The criteria are based on the fi-
nite difference method and harmonic analysis: Littlewood-Paley
theory, and wavelet analysis.

As a first application of the methods, we study the regularity
of conjugacies between critical circle maps (i.e., differentiable
homeomorphisms with a critical point) with a golden mean ro-
tation number. These maps have a very well-developed mathe-
matical theory as well as a wealth of numerical studies.

We compare the results produced by our methods among
themselves and with theorems in the mathematical literature.
We confirm that several of the features that are predicted by the
mathematical results are observable by numerical computation.
Some universal numbers predicted can be computed reliably.
Our calculations suggest that several simple upper bounds are
sharp in some cases, but not in others. This indicates that there
may be conceptually different mechanisms at play.

1. INTRODUCTION

Classification of circle homeomorphisms under changes of

variables is an old and famous problem in mathematics.

It was initiated in [Poincaré 1885], motivated by studies

in differential equations more than a century ago, and

has been actively studied ever since.

Circle maps are also important because of their appli-

cations to natural sciences. They appear in the Pomeau-

Manneville scenario for transition to turbulence through

intermittency [Pommeau and Manneville 80], second or-

der ODEs with periodic potentials [Moser and Pöschel

84], cardiac arrhythmias [Glass 95], oscillations in plasma

[Ignatov 95], electronic devices [Bohr et al. 84], and opti-

cal resonators with a periodically moving wall [de la Llave

and Petrov 99], to name just a few. We would like to draw

the reader’s attention to the collections of reprints, [Cvi-

tanović 89] and [Bai-Lin Hao 90], which contain many

articles devoted to circle maps and their applications.
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The main dynamical invariant of homeomorphisms of

the circle is the rotation number (see Section 2.1). It was

quickly realized that it is an invariant under topological

equivalence [Poincaré 1885] and that for C2 maps, it is

an invariant for topological conjugacy [Denjoy 32]. The

theory of smooth equivalence of smooth diffeomorphisms

is now very well understood ([Herman 79], [Katznelson

and Ornstein 89]).

Nevertheless, the theory of smooth equivalence of

“critical circle maps,” i.e., smooth circle maps that are

homeomorphisms, but not diffeomorphisms (the simplest

one–and the only one that we will consider in this

paper–being a smooth map with a critical point), is

much less developed. This will be the main subject of

our empirical studies.

In the articles [Shenker 82], [Feigenbaum et al. 82],

[Rand et al. 82], and [Ostlund et al. 83], it was found

numerically that cubic critical circle maps exhibit inter-

esting “universal” properties–for large classes of circle

maps there exist numbers and functions that are the same

for all functions in the class–similar to the Feigenbaum-

Coullet-Tresser universality of unimodal maps of the in-

terval. (Lately, similar studies have been carried out for

maps with critical points of higher degrees [Dixon et al.

97], [Briggs at al. 98]).

Shortly after the initial numerical studies, a renormal-

ization theory that explains these properties was devel-

oped and some parts of the theory were given a firm

mathematical basis [Feigenbaum et al. 82], [Ostlund et

al. 83], [Shraiman 84], [Epstein 86], [Eckmann and Ep-

stein 86], [Eckmann and Epstein 87], [Lanford 86], [Lan-

ford 87], [Lanford 88], [Rand 87], [Rand 88a], [Rand

88b], [Kim and Ostlund 89], [Epstein 89], [Veerman and

Tangerman 90], [Tangerman and Veerman 91], [Pinto and

Rand 92], [Rand 92]. Recently there has been significant

progress in the renormalization theory of critical circle

maps [Świa̧tek 98], [de Melo 98], [Yampolsky 99], [de

Faria 99], [de Faria and de Melo 99], [de Faria and de

Melo 00].

In [Shenker 82], a one-parameter family of smooth

circle maps, {fK}, all of rotation number equal to the
golden mean, γ =

√
5−1
2 , was studied numerically. It was

found that if fK is a diffeomorphism, the conjugacy be-

tween fK and the rotation by γ is a smooth function (as

predicted by the general theory) [Herman 79]. However,

if fK has a cubic critical point, the conjugacy between

fK and the rotation becomes very rough. Moreover, it

was noticed that the conjugacy has a self-similar struc-

ture (which was found by studying the first 400 Fourier

coefficients of the conjugacy).

In the present paper, we study numerically the

smoothness of the conjugacies between noncritical, cu-

bic critical, and quintic critical circle maps. To estimate

the smoothness of the conjugacies, we use finite difference

methods and tools from harmonic analysis (Littlewood-

Paley theory and wavelet theory). In some cases, we are

able to reliably calculate millions of Fourier coefficients,

so we hope that our numerical estimates are convincing.

We expect that the numerical methodology developed

here will be used to study several other problems in the

theory of critical phenomena in dynamical systems in

which the regularity of functions and their self-similar

properties play a role. Since the theory of circle maps

has a well-developed mathematical literature, it seemed

a good starting point to assess the validity of the meth-

ods.

We also find evidence that the conjugating functions

are asymptotically self-similar, confirming by very dif-

ferent methods the results obtained previously for cubic

critical maps. (See the numerical studies in [Arneodo and

Holschneider 88].)

The fact that we have precise numbers for the regu-

larity of the conjugacies predicted in the theorems allows

us to observe that some simple upper bounds for the reg-

ularity of the conjugacies appear to be sharp, whereas

in other cases, they seem to be very far from optimal.

This indicates the possibility of conceptually different

phenomena at play. (See Section 8..)

2. RIGOROUS RESULTS ABOUT CONJUGACIES
BETWEEN CIRCLE MAPS

In this section we briefly recall some basic definitions

from the theory of circle maps (for details see, e.g., [Ka-

tok and Hasselblatt 95], [de Melo and Van Strien 98], and

[Herman 79]). We also collect some recent results in the

mathematical literature. We cannot aim for complete-

ness, but just want to set the notation and to give the

reader a feeling for the results.

2.1 Rotation Number

If F : R → R is a map satisfying F (x + 1) = F (x) + 1,
and if

π : R→ T ≡ R/Z : x )→ π(x) := x mod 1 ,

then the map

f := π ◦ F : T→ T

is a map of the circle T, and F is called a lift of f . In

this paper, a “circle map” will always mean orientation-

preserving circle homeomorphism.
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The most important characteristic for the classifica-

tion of circle maps is the rotation number. If f : T → T
is a circle homeomorphism and F is a lift of f , then the

rotation number τ (f) of f is defined by

τ(f) :=

w
lim
n→∞

Fn(x)− x
n

W
mod 1 . (2—1)

The above limit exists and is independent of the choice

of the lift and the point x ∈ T.
The simplest circle map is the rotation,

rρ : T→ T : x )→ (x+ ρ) mod 1,

whose rotation number is obviously τ(rρ) = ρ mod 1.

For rρ, there are two types of orbits of the points of T.
If ρ = p/q ∈ Q (with p and q relatively prime), then

the orbit {rnρ (x)}n∈Z is periodic of minimal period q. If
ρ /∈ Q, then there are no periodic orbits for the rotation
rρ and the orbit of any point x ∈ T is dense in T.

2.2 Conjugacies: Existence Theorems

Because of the simplicity of the rotations, it is natural to

investigate whether a particular circle map f is “equiv-

alent” in some sense to a rotation, i.e., whether there

exists a change of variables y = h(x) such that in the

new variables, f “looks like” a rotation.

Definition 2.1. Two circle maps f and g are topologi-
cally (respectively Ck-, smoothly, analytically) conjugate

if there exists a homeomorphism (respectively Ck, C∞,
or Cω diffeomorphism) h : T→ T such that

f = h−1 ◦ g ◦ h. (2—2)

The map h is called the conjugacy between f and g.

If f and g are conjugate, many of their properties are

the same–e.g., the possible types of the orbits of the

points of T under f and under g are the same, the rota-
tion number of f is equal to that of g, etc.

Early results about the existence of a conjugacy to a

rotation can be found in the following theorems [Poincaré

1885], [Denjoy 32].

Theorem 2.2. (Poincaré.) Assume that the rotation

number of the circle map f is irrational and the orbit of

some point x ∈ T is dense in T. Then f is topologically
conjugate to rτ(f). (If only the first condition is satisfied,

then there exists a continuous map h : T → T such that
h ◦ f = rτ(f) ◦ h.)

Theorem 2.3. (Denjoy.) A circle diffeomorphism

with irrational rotation number and derivative of boun-

ded variation is topologically conjugate to a rotation.

Denjoy’s theorem implies that every C2 circle diffeo-

morphism with irrational rotation number is topologi-

cally conjugate to a rotation. The C2 condition is rather

sharp–Herman [Herman 79, Section X.3.19] constructed

examples of C2−ε circle diffeomorphisms that are not
conjugate to a rotation, even if the rotation number satis-

fies additional restrictions. However, a proof of Denjoy’s

theorem for f , a diffeomorphism in Λ2 (see Definition

5.1), is given in [Hu and Sullivan 97]. (Note that the

derivative of a Λ2 function could fail to have bounded

variation.)

In Denjoy’s theorem, it is important that f−1 is dif-
ferentiable. If f−1 is not differentiable, one cannot guar-
antee the existence of a conjugacy to a rotation even by

assuming that f is C∞. The article by Hall [Hall 81] con-
tains an example of a C∞ circle map with rotation num-

ber ρ (for any irrational ρ ∈ [0, 1)) which has no dense
orbit and therefore cannot be conjugate to rρ. This map

is onto, has no periodic orbits, and has no more than

two points where the derivative of the map vanishes (in

fact, one can construct such a map with only one critical

point).

In striking contrast to the C∞ Denjoy counterexam-

ples of [Hall 81], it was shown [Yoccoz 84a] that the maps

exhibiting the behavior of those in [Hall 81] cannot be

real analytic. More precisely:

Theorem 2.4. (Yoccoz.) Any real analytic circle map

with no periodic orbits is topologically conjugate to a ro-

tation.

This theorem guarantees that any two real analytic

circle maps with irrational rotation numbers are topo-

logically conjugate (we will use this fact in Section 4.3).

The above result was extended in [Świa̧tek 91], and

[Świa̧tek 98].

2.3 Smoothness of the Conjugacy

The theorems in Section 2.2 do not assert anything about

the smoothness of the conjugacy h. Can one say more

about the differentiability properties of the conjugacies

in the case of smooth or analytic maps? The answer to

this question involves number-theoretic properties of the

rotation number.

2.3.1 Arithmetic Properties of the Rotation Number.
It turns out that, to guarantee that a smooth circle dif-

feomorphism f is smoothly conjugate to a rotation, it is
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not enough that τ(f) be irrational; it also should not be

well approximable by rationals.

Definition 2.5. A number ρ is called Diophantine of type
(C, ν) (or simply of type ν) for positive C and ν, if for

any p/q ∈ Q eeeeρ− pq
eeee > C

|q|2+ν . (2—3)

A number that is not Diophantine is called a Liouville

number.

It is easy to show that there are no numbers that sat-

isfy (2—3) when ν < 0. Hence, we will assume ν ≥ 0.
Each irrational number ρ ∈ (0, 1) can be written in

the continued fraction representation as

ρ = �ρ0, ρ1, ρ2, . . .X := 1

ρ0 +
1

ρ1 +
1

ρ2 + · · ·

,

where the positive integers ρn are called partial quotients

of ρ.

In this representation, a number is Diophantine if its

partial quotients increase slowly. In this sense, the “most

irrational” number between 0 and 1 is the golden mean,

γ := �1, 1, 1, . . .X =
√
5− 1
2

= lim
n→∞

Qn
Qn+1

,

where Q1 = 1, Q2 = 2, Qn+1 = Qn + Qn−1 are the
Fibonacci numbers.

When the partial quotients of ρ are bounded, ρ is

called a number of bounded (or constant) type. This is

equivalent to the fact that (2—3) holds with ν = 0. The

combinatorial type of ρ is by definition supn ρn.

2.3.2 Results for Noncritical Maps. The question

about the smoothness of the conjugacy in the case of an-

alytic circle maps close to a rotation was first addressed

in [Arnold 61]. There, it was proved that any analytic

circle map whose rotation number ρ is Diophantine of

type ν ≥ 0, and which is close to a rotation, is analyt-
ically conjugate to rρ. This result was extended to the

case of finite differentiability in [Moser 66].

The first theorem without the hypothesis of closeness

to a rotation was proved in [Herman 79]. The theorem

states that there exists a set K ⊂ [0, 1] of full Lebesgue
measure such that if f ∈ Ck for 3 ≤ k ≤ ω and τ(f) ∈ K,
then the conjugacy is Ck−2−ε for any ε > 0. The set

K is characterized in terms of the growth of the par-

tial quotients of the continued fraction expansions of its

members; all numbers in K are Diophantine of order ν

for any ν > 0. This result was significantly improved

in [Yoccoz 84b]. Similar theorems were proved by using

renormalization group techniques [Sinai and Khanin 89],

which lowered the minimal regularity required. The most

comprehensive result we have found in the literature is

the one in [Katznelson and Ornstein 89].

Theorem 2.6. If f is a Ck circle diffeomorphism whose

rotation number is Diophantine of order ν, and k > ν+2,

then the homeomorphism h that conjugates f with the

rotation rτ(f) is of class C
k−1−ν−ε for any ε > 0.

2.3.3 Results for Critical Maps. We recall that a crit-

ical circle map is a circle homeomorphism whose deriva-

tive is positive except at one point where it is a zero of

finite order. The order of the zero is called the type of

the critical map.

The following result was proved recently ([de Faria and

de Melo 99], [de Faria and de Melo 00]; see also [de Melo

98], [de Faria 99], and [Yampolsky 99]):

Theorem 2.7. Let f and g be real analytic critical circle
maps with the same type of the critical point and with the

same rotation number ρ of bounded type. Then f and g

are C1+α conjugate for some α ∈ (0, 1) depending only
on the combinatorial type, N := supn ρn, of ρ.

It was conjectured in [de Melo 98] that the Hölder ex-

ponent of the conjugacy between two critical circle maps

whose critical points are of the same order and which

have the same rotation number of bounded type does

not depend on N (although in the proof of Theorem 2.7

α does depend on N).

For the regularity of the conjugacies between criti-

cal maps and rotations, which exist because of Theorem

2.4, the sharpest result of which we are aware is from

[Świa̧tek 98], whose Theorem 1.1 (the theorem and a pre-

vious proof are credited to an unpublished manuscript of

M. Herman) implies:

Theorem 2.8. Let f be an analytic critical circle map with
an irrational rotation number. The conjugacy between

the map and a rotation is quasi-symmetric if and only if

the rotation number is of constant type.

We note that it is a well-known fact in the theory

of quasi-conformal maps that the quasi-symmetric maps

are Hölder ([Väisälä 71, Section 18], [Ghering and Palka,

xx]). Hence, we can conclude that the conjugacy between
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a critical map and a rotation is Hölder. Therefore, the

conjugacies between critical circle maps of the same ro-

tation number have to be Hölder with exponent 1. It is

not difficult to show that, when the critical maps have

different order, the conjugacy between them cannot have

Hölder exponent 1.

Putting together Theorem 2.8, the Hölder regularity

of quasi-symmetric maps and Theorem 2.7, we obtain:

Corollary 2.9. The conjugacy between critical circle maps
with a golden mean rotation number is Hölder. The

Hölder exponent depends only on the order of the crit-

ical points of the two functions.

The above results seem to give very little information

about what the actual values of these regularities are.

In this paper, we will develop methods that allow us to

compute these numbers as well as to explore numerically

some geometric properties of the conjugacies.

3. SOME GENERAL HEURISTIC REMARKS ON
RENORMALIZATION AND CONJUGACIES

A unifying point of view in the study of long term

dynamics–especially in one-dimensional systems–has

been provided by scaling and renormalization group

ideas. Formulated somewhat loosely, the unifying idea of

a renormalization group says that “highly iterated maps,

when observed in small scales, have forms that are largely

independent of the map” (The universal properties can

be different in sets of maps of positive codimension.).

In this section, we present a heuristic point of view on

the relation between the asymptotics of the renormaliza-

tion group and the smoothness of the conjugacy which

seems to be applicable to a wide variety of models.

The main connection between the study of regular-

ity properties of conjugacies and renormalization groups

arises from the fact that the regularity of the conjugacies

is a very good test of universality properties.

Note that regularity depends on very fine scales.

Moreover, Formula (4—8), which we will establish later,

makes it clear that the conjugacies in increasingly smaller

scales are determined by the increasingly longer recur-

rence times.

The fact that some conjugacies examined in very small

scales are self-similar leads, at least in an informal way,

to several consequences of universality for the conjugacies

that we will explore empirically in the rest of the paper.

(A1) The regularity of the conjugacies between maps of

the same universality class is a “universal number.”

Note that for the case of golden mean circle maps,

this is a consequence of Corollary 2.9.

(A2) These universal regularities of the conjugacies be-

tween maps in the same class are higher than those

between maps of different classes.

Note that for circle maps, this follows from the obser-

vation that critical circle maps can be only Hölder

of exponent less than one conjugate to maps with

critical points of different order. By Theorem 2.7,

the conjugacies between maps of the same order is

C1+α.

(A3) The functions giving the conjugacies are asymptot-

ically self-similar.

If h1 and h2 are conjugacies of maps f1, f2 to the golden

mean rotation, (i.e., f1 ◦ h1 = h1 ◦ rγ , f2 ◦ h2 = h2 ◦ rγ),
then f1◦h1◦h−12 = h1◦h−12 ◦f2. The fact that we observe
that h1 ◦ h−12 = k, h−11 ◦ h2 = f are very smooth means

that h1 = k ◦ h2, h1 = h2 ◦ f−1; in other words, we can
obtain h1 from h2 by composition with a very smooth

map. This makes the notion precise that h1 and h2 are

very similar. Even if each of them is rather rough, the

roughness of one is very precisely comparable to that of

the other.

We hope that the present work serves as a stimulus

for further mathematical investigations. Our calculations

are precise enough that we can even study the corrections

to (A3). We formulate them as:

(A4) The convergence to self-similarity is exponentially

fast.

Somewhat more precisely (but still very far from a

mathematically rigorous statement), we can write conju-

gacies in the form

h(x) =
3
n

λn1 H1(α
nx) +

3
n

λn2 H2(α
nx) + · · · (3—1)

for some |α| > 1, 1 > λ1 > λ2 > · · · , where µ, λ1, λ2, . . .
are universal numbers.

Of course, scalings such as those in (3—1) do not,

strictly speaking, make sense in the case where the vari-

ables are in the circle. Nevertheless, since (3—1) is sup-

posed to hold in the asymptotic sense of the very small

scales, we can identify the whole circle with the real line.

We also note that the following conjecture seems to be

reasonable for many areas in which renormalization ap-

plies. The case of period doubling is studied extensively

in [de la Llave and Schafer, 96].
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Conjecture 3.1. Consider the sets Mν (for odd integer

ν ≥ 1) of analytic maps of the circle such that:
(i) The maps are homeomorphisms.

(ii) They are of the form f(x) = Axν + O(xν+1) with

A a nonzero constant (hence f is a homeomorphism

but not a diffeomorphism).

(iii) Their rotation number is the golden mean γ.

The setsMν are manifolds. Then in an open set Bν ∈
Mν , we can find foliations F i, integers di, and numbers
λi (di > di+1, λi < λi+1, λi → ∞) such that, if W i

f is

the leaf of F i passing through the map f , then:
(a) W i

f ⊂W i+1
f .

(b) W i
f is an analytic submanifold of Mν of codimen-

sion di.

(c) The foliations F i are Hölder (i.e., the ∞-jets of the
leaves W i

f are Hölder with respect to f).

(d) if f ∈ W i
g, then f is C

λi−ε conjugate to g for each
ε > 0.

(e) If f /∈ W i
g, then f is not C

λi+ε conjugate to g for

each ε > 0.

The most important consequence of this conjecture is

that the conjugacies between maps in the classes Mν

can only have regularities which belong to a discrete set

{λi} (ignoring the ε’s which are as small as desired). In
particular, if we know that a conjugacy is Cλi+ε, we can

conclude that it is Cλi+1−ε.
In the rest of the paper, we will present methods that

allow us to carry out high precision calculation of golden

mean circle maps as well as an array of methods that

asses the regularity of the conjugacies between them. By

comparing the results of these different methods among

themselves and with the results in the mathematical lit-

erature, we can assess their validity, and we hope to apply

them in other contexts.

In the process of doing that, we also obtain some infor-

mation about the relation between regularity and renor-

malization. In particular, in Section 8., we obtain in-

dications that the regularities may be limited by other

mechanisms than just simple scaling phenomena.

4. COMPUTING THE CONJUGACIES

4.1 Examples

Let f and g be analytic circle maps whose derivatives

possibly vanish at one point; without loss of generality,

we can take this point to be x = 0. We studied numer-

ically the following families of analytic circle maps (for

values of K for which the maps are invertible):

(i) the noncritical (N) family (0 ≤ K < 1)

fNK,ω(x) =
D
x+ ω − K

2π sin 2πx
i

mod 1 ; (4—1)

(ii) the cubic critical (C) family (0 ≤ K < 4
3 )

fCK,ω(x) =
J
x+ ω − 1

2π (K sin 2πx

+ 1−K
2 sin 4πx)

o
mod 1 , (4—2)

where the coefficients are chosen in such a way that

for every K,

fCK,ω(x) = ω + 2π2(4−3K)
3 x3 +O(x5) ;

(iii) the quintic critical (Q) family (12 ≤ K < 3
2 )

fQK,ω(x) =
J
x+ ω − 1

2π (K sin 2πx+
9−8K
10 sin 4πx

+3K−4
15 sin 6πx)

o
mod 1 , (4—3)

where the coefficients are chosen in such a way that

for every K,

fQK,ω(x) = ω + 8π4(3−2K)
5 x5 +O(x7) .

Of course, there are similar formulae for higher order

critical points, but the calculations cannot be carried out

easily.

We studied the case of rotation number equal to the

golden mean γ,

τ(f•K,ω)
ee
ω=Ω•(K) = γ , (4—4)

where • stands for N, C, or Q. The golden mean is cho-
sen because its continued fraction expansion is periodic

(and simple). Hence, renormalization arguments can be

expressed in terms of operators and, since all partial quo-

tients of γ are 1, renormalization operators are as simple

as possible.

Since we have to iterate f•K,ω, we need to know the

value of Ω•(K) with a very high precision. We used the
C++ software package doubledouble [Briggs 00] which

allowed us to use about 30 decimal places floating point

precision arithmetic and to find 24—25 digits of the para-

meter Ω•(K) in the case of N circle maps and about 16
digits of Ω•(K) in the C and Q cases.
To double check the results, we also used the GNU

MP library [GMP 00]–a public domain library for ar-

bitrary precision arithmetic. We wrote subroutines for
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high precision trigonometric functions using local Taylor

series expansion, and tested them by using the following

elegant and numerically stable method:

For x, y positive, define x1 := x, y1 := y, and

xn+1 :=
xn + yn
2

, yn+1 :=
√
xnyn

for n ∈ N. The sequences {xn} and {yn} converge
quadratically to a common limit called the Arithmetic-

Geometric Mean (AGM) of x and y, M(x, y) (see, e.g.,

[Borwein and Borwein 87]). The AGM has many remark-

able properties, e.g.,

2

π

8 π/2

0

dζ0
x2 cos2 ζ + y2 sin2 ζ

=
1

M(x, y)

(in particular, elliptic integrals can be calculated using

the AGM). To calculate precisely trigonometric func-

tions, e.g., sin, one can use the fact that

arcsinx =
x

M(
√
1− x2, 1) ,

and calculate sin as the inverse function by using the

program zeroin (which is quadratically convergent, so

each iteration doubles the number of correct digits).

The AGM has been used for precise computations, in

[Brent 76]; see also the discussion in [Borwein and Bor-

wein 84] (both papers reprinted in [Berggren et al. 00]).

4.2 Calculating Parameters for the Rotation Number of
the Golden Mean

Having chosen some K (for which f•K,ω is a homeomor-
phism), we first have to determine the value Ω•(K) such
that (4—4) is satisfied. To achieve this, we use the follow-

ing method [Greene 79], [Shenker 82]: First we determine

the phase-locking intervals

I•K,n :=
+
ω ∈ [0, 1]

eee τ(f•K,ω) = Qn

Qn+1

�
, n ∈ N.

It is guaranteed that the value Ω•(K) we are looking for
is between I•K,n and I

•
K,n+1. If Ω

•
n(K) is the end of I

•
K,n

that is closer to I•K,n+1, then we assume that

Ω•n(K) = Ω
•(K) + Cβn• , (4—5)

for some constants −1 < β• < 0 and C (β• is a universal
number that depends only on the degree of the critical

point, while C is different for different maps), and find

Ω•(K) by Aitken extrapolation [Press et al. 92]. This as-
sumption does not affect the validity of our results, and

it speeds up our searches since the rotation numbers of

fewer maps are computed. We note that the renormal-

ization group picture also predicts (4—5). Moreover, this

assumption is in excellent agreement with our computa-

tions:

(i) in the N case, we find

βN = −0.381966011250± 10−12 = −γκN

for |κN − 2| < 6× 10−12 (according to Theorem 2.6,

κN = 2);

(ii) in the C case, we find

βC = −0.3529067± 10−7 = −γκC

for κC = 2.1644347± 0.0000006;
(iii) in the Q case, we find

βQ = −0.32858± 10−5 = −γκQ

for κQ = 2.31286± 0.00006.
The values we found are in perfect agreement with those

found in [Shenker 82] (for the C case), and, for different

families of circle maps, in [Hu et al. 90], and [Delbourgo

and Kenny 91]. Note that what we call β is called δ−1 in
these papers .

To find the phase-locking interval I•K,n, we used the
fact that when ω enters this interval, the map

x )→ (F •K,ω)
Qn+1(x)−Qn

(where F •K,ω is the lift of f
•
K,ω, i.e., it is given by the

same formula as f•K,ω, but without the mod 1) under-

goes a tangent bifurcation. To determine the values at

which bifurcations occur, we used the subroutines fmin

and zeroin from [Forsythe et al. 77] (translated into C

and slightly modified).

We will denote by f•K the map f•K,Ω•(K) for Ω
•(K)

such that τ(f•K) = γ. In Table 1, we give the values of

Ω•(K) for the values of K we studied numerically.

4.3 Calculating the Conjugacies on an Equidistant Grid

Having found appropriate values of the parameters of the

maps f and g such that τ (f) = τ (g) = γ, we construct

numerically the conjugacy h between them. Instead of

h, it is more convenient to study

θ := h− Id (4—6)

because θ is a periodic function; hence it is better suited

for harmonic analysis. For brevity, we will denote the
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Map Ω•(K)
fN0.2 0.617425455584922780978570

fN0.3 0.6166923606057855021928

fN0.5 0.6145263876774487765559862

fN0.8 0.61007440530846512053842071

fC0.3 0.626871059546737818

fC0.6 0.617607758640542315

fC0.7 0.6148131852529150525

fC1.0 0.606661063470112017

fQ0.6 0.633133040895040332

fQ0.9 0.616330501795706578

fQ1.2 0.60250115301615805

fQ4/3 0.59694625982733198

TABLE 1. Values of Ω•(K) such that τ(f•K) = γ.

map θ defined by (4—6) for h being a conjugacy between,

say, an N map f and a C map g by θNC, and will call θ

a “conjugacy.”

From (2—2) we obtain

h ◦ fn = gn ◦ h . (4—7)

Theorem 2.4, which guarantees the existence of the con-

jugacies between f (resp., g) and the rotation rγ , allows

us to impose the condition h(0) = 0 or, equivalently,

θ(0) = 0. This implies that θ(fn(0)) = gn(0)− fn(0), so
the points

(fn(0), gn(0)− fn(0)) (4—8)

belong to the graph of θ and fill it densely. It is apparent

that one can compute the points in (4—8) by iterating f

and g on 0.

One problem with this calculation is that the points

in (4—8) do not have first coordinates that are distrib-

uted on a equidistant grid, and to apply fast Fourier of

wavelet transforms, we need to know the values of θ on

an equidistant grid. We used the grid

xf := 2
−Lf , f = 0, 1, . . . , 2L − 1 (4—9)

for some L ∈ N (typically about 20). Since the iterates
{fn(0)} are not equidistantly distributed, we used in-
terpolation and calculated the values of the interpolating

function at the points {xf}2
L−1
f=0 . To this end, we used the

cubic interpolation subroutines spline and seval from

[Forsythe et al. 77] (the periodicity of θ was taken into

account).

A major source of difficulty for the numerical compu-

tation is the fact that the iterates of a C or Q map are

very nonuniformly distributed. To illustrate the serious-

ness of the problem, we show (in Figure 1) the distribu-

tion of four million iterates of fQ0.6 and, for comparison,

FIGURE 1. Density of the iterates of a Q and an N map.
The number of iterates in a bin (in thousands) vs. the
position of the bin, for four million iterates of fQ0.6 (thin
line) and of fN0.5 (thick line), in 256 bins.

of fN0.3, in 256 bins, each of size
1
256 , between 0 and 1.

The number of iterates of fQ0.6 in a bin varies from 15

to 118304; for fN0.5, it varies from 13076 to 18739. The

largest gap between the iterates of fQ0.6 is 0.001308.

If the gaps are very large, it is complicated and unsta-

ble to compute the values of the interpolating function at

the gaps. We dealt with this by using a large number of

iterates which is, however, very memory-consuming and

leads to accumulation of numerical error. This problem

becomes more severe when the order of the critical point

is higher. This is the main reason why our investigation

did not cover critical maps of degree higher than 5.

4.4 Conjugacies—Visual Explorations

Theorem 2.6 guarantees that each θNN (recall that this

means a conjugacy between two N circle maps) is an-

alytic, but does not say anything about critical circle

maps. The goal of this paper is to study the conjuga-

cies of critical circle maps to a golden mean rotation and

assess their regularity and asymptotic scaling properties.

To motivate our subsequent analysis, we start with some

preliminary visual explorations.

In Figure 2, we show two θNC and one θCC. Obviously

the θNCs are less differentiable then the θCC; visually, θCC

is smoother than C1.

In Figure 3, we show the conjugacies between a map of

type N (resp., C, Q) and a Q map. Again, the conjugacy

between two maps of the same type is evidently more

differentiable than the ones between maps of different

types.
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FIGURE 2. Conjugacies θ between: fN0.2 and f
C
0.3 (thin

solid line), fN0.2 and f
C
0.6 (thick solid line), and f

C
0.6 and

fC0.3 (dashed line).

FIGURE 3. Conjugacies θ between: fN0.3 and f
Q
0.9 (thin

solid line), fC0.6 and f
Q
0.9 (thick solid line), and f

Q
0.6 and

fQ0.9 (dashed line).

FIGURE 4. Zooming in the graph of the conjugacy be-
tween fN0.8 and f

Q
0.9.

FIGURE 5. Plot of log10 |θ̂k| vs. log10 k where θ is the
conjugacy between fN0.2 and f

C
0.6.

FIGURE 6. Plot of log10 |θ̂k| vs. log10 k where θ is the
conjugacy between fN0.3 and f

Q
0.9.

Another observation is the self-similar structure of the

conjugacy between an N map and a critical (C or Q)

map. To illustrate this, in Figure 4 we show magnified

regions of the conjugacy between fN0.8 and f
Q
0.9. The self-

similarity of the conjugacies between an N and a C map

is one of the predictions of the theory of renormalization

for C maps; we observed a self-similar structure in the

case of the conjugacy between an N map and a Q map

as well.

The self-similarity of the conjugacies of type θNC and

θNQ can be seen distinctly from their Fourier spectra

displayed in log-log form (Figures 5 and 6). The self-

similarity manifests itself in the “periodicity” of the

Fourier spectrum for large |k|.
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FIGURE 7. Plot of log10(|k|1.29|θ̂k|) vs. log10 |k| where θ
is the conjugacy betweeh fN0.2 and f

C
1.0.

FIGURE 8. Plot of log10(|k|1.19|θ̂k|) vs. log10 |k| where θ
is the conjugacy between fN0.2 and f

Q
0.6.

This effect becomes even more prominent in the plot

of log10(|k|λ|θ̂k|) vs. log10 |k|, as shown in Figure 7 (for
θNC, λ = 1.29) and Figure 8 (for θNQ, λ = 1.19). In both

cases, the width of the “periodic windows” is approxi-

mately equal to log10 γ, as predicted by renormalization

theory.

5. METHODS FOR STUDYING REGULARITY

In this section, we describe the function spaces studied

and collect the theorems from harmonic analysis we used

to compute the regularity of conjugacies.

5.1 Hölder Spaces

Let Cn(T) (n ∈ N) stand for the space of n times contin-
uously differentiable functions on T.

Definition 5.1. The Hölder spaces Λα(T) are defined as
follows:

(i) For α ∈ (0, 1):

,θ,Λα(T) := sup
|y|>0

|θ(x+ y)− θ(x)|
|y|α ,

Λα(T) :=
\
θ ∈ L∞(T) : ,θ,Λα(T) <∞

�
.

(ii) For α = n+ αI (n ∈ N, αI ∈ (0, 1)):

Λα(T) :=
+
θ ∈ Cn(T) : θ(n) ∈ ΛαI(T)

�
.

(iii) For α = 1:

,θ,Λ1(T) := ,θ,L∞(T) + sup|y|>0 |θ(x+y)+θ(x−y)−2θ(x)||y| ,

Λ1(T) :=
\
θ ∈ L∞(T) ∩ C0(T) : ,θ,Λ1(T) <∞

�
.

(iv) For α = n ∈ {2, 3, 4, . . .}:
Λn(T) :=

\
θ ∈ L∞(T) ∩ Cn−1(T) : θ(n−1) ∈ Λ1(T)

�
.

Remark 5.2.

1. C1(T) ⊂ Lip (T) ⊂ Λ1(T) and Cn(T) ⊂ Λn(T) (n ≥
2); all these inclusions are strict.

2. Every θ ∈ Λα(T) (0 < α) may be modified on a set

of measure zero so that it becomes continuous [Stein

70, Sec. V.4.1].

The spaces in these scales have several characteriza-

tions some of which lead to algorithms that can be used

to assess the regularity of functions numerically. Some of

these characterizations will de discussed in Sections 5.2—

5.4. The numerical implementation of these methods will

be discussed in Section 6..

5.2 Finite Difference Method

We now look at the characterization of Hölder spaces by

means of finite differences (FD) [Krantz 83]. Let Dny be
the finite difference operator:

DDny θi (x) := n3
j=0

(−1)j
w
n

j

W
θ(x+ (n− 2j)y) .

Theorem 5.3. (FD.) Let θ ∈ L∞(T)∩C0(T) and 0 < α <

n ∈ Z. Then θ ∈ Λα(T) if and only if ∃ C > 0 such that
∀ y ∈ T

,Dny θ,L∞(T) ≤ C|y|α, for all y ∈ T. (5—1)
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The FD method is simple and convenient to use if one

can compute the values of the function in points that

are arbitrarily close and equally spaced. As mentioned

before, this requires interpolation between the iterates

fn(0).

5.3 Fourier Methods—Littlewood-Paley Theorem

The trigonometric system {e2πikx}k∈Z is an orthonormal
basis of L2(T, dx); hence, according to Plancherel’s the-
orem, a function

θ(x) =
3
k∈Z

θ̂k e
2πikx, (5—2)

belongs to L2(T) if and only if3
k∈Z

|θ̂k|2 <∞.

The main result of the Littlewood-Paley theory is that

similar characterization of Lp(T) (1 < p < ∞) can be
obtained by grouping the terms of the Fourier series in

dyadic blocks. Define the decomposition

θ =

∞3
M=1

LMθ

of θ ∈ L1(T) in dyadic partial sums

(LMθ) (x) :=
3

AM−1≤|k|<AM
θ̂k e

2πikx ,

(M ∈ N), L0θ := θ̂0, and A > 1.

Remark 5.4. Usually, A is taken to be 2, since the precise
value does not make any difference for the mathematical

treatment. In the numerical applications, we will find it

convenient to use some values of A other than 2. Never-

theless, we have not introduced A in the notation, since it

will be clear from the context, and we follow the standard

practice of calling the decomposition “dyadic.”

The dyadic blocks can be written as

LMθ = (φAM − φAM−1) ∗ θ , (5—3)

where the function

φN (x) :=
3
|k|<N

e2πikx (5—4)

plays a role of a “low-pass filter,” or, in the terminology

of physicists, introduces an “ultraviolet” cutoff.

To formulate the celebrated Littlewood-Paley (LP)

theorem, we introduce the Littlewood-Paley d-function,

d(θ)(x) :=

X ∞3
M=0

|LMθ(x)|2
~1/2

,

and its “continuous” analog, the G-function,

G(θ)(x) :=

X8 1

0

(1− s)
eeeewdPsds ∗ θ

W
(x)

eeee2 ds
~1/2

,

where

Ps(x) =
3
k∈Z

s|k| e2πikx

=
1− s2

1− 2s cos 2πx+ s2 , s ∈ [0, 1) (5—5)

is the periodic Poisson kernel. Note that if∆ is the Lapla-

cian, then

Pexp(−2πt) ∗ θ(x) = e−t
√−∆ θ(x)

=
3
k∈Z

θ̂k e
−2πt|k| e2πikx .

Heuristically, it seems clear that the partial sums, φn∗
θ, behave like the Abel means, P1− 1

n
∗ θ. In fact, one

can prove that the Lp(T) norms of d(θ) and G(θ) are
equivalent for 1 < p <∞ if θ̂0 = 0.

Remark 5.5. The Poisson kernel can also be considered
as defined on the real line. In that case, it can be given

by the formula Pt = e
−t√−∆ or as the convolution with

the kernel Pt(x) = π−1/2 t/(x2 + t2).
We can consider a periodic function of period 1 on the

real line as a function on the circle. When we apply the

real Poisson kernel to a periodic function of period 1, it

also produces a periodic function of period 1.

It is well-known and not difficult to check (Poisson

summation formula) that applying the real Poisson ker-

nel to a periodic function of period one defined on R,
and considering the function as defined on the circle and

applying the periodic Poisson kernel (5—5) are the same.

Remark 5.6. On the real line, it makes sense to define
scaling transformations and to investigate how the Pois-

son kernel behaves under scalings. It is very easy to check

that, for every λ > 0, the Poisson kernel on R satisfies

Pλt(λx) = λ−1Pt(x) . (5—6)

On the circle, we cannot speak about scaling, there-

fore the relation (5—6) does not, strictly speaking, make
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sense for the Poisson kernel on the circle when λ is not

an integer. Nevertheless, for small scales, the circle can

be identified with the real line so that the scalings of

the periodic Poisson kernel can be used when examining

asymptotic features in small scales.

Theorem 5.7. (Littlewood-Paley.) If θ ∈ Lp(T), 1 < p <
∞, then there exist positive constants Ap and Bp such
that

Ap ,θ,Lp(T) ≤ ,d(θ),Lp(T) ≤ Bp ,θ,Lp(T) .

Analogous inequalities hold for G(θ) in place of d(θ).

Theorem 5.7 has many important implications. In

particular, it gives useful characterizations of Sobolev,

Hölder, Hardy, Besov spaces–see [Stein 70, Ch. 5],

[Hernández and Weiss 96, Ch. 6], [Meyer 90, Ch. 6], and

[Frazier et al. 91].

In our numerical explorations, we use methods based

on the following two corollaries of Theorem 5.7, which

we will call “discrete” (DLP) and “continuous” (CLP)

versions of the Littlewood-Paley theorem.

Theorem 5.8. (DLP.) The function θ (5—2) is of class

Λα(T) (α ∈ R+) if and only if there exists a C > 0 such
that for any M ∈ N [Krantz 83, Theorem 5.9]

,LMθ,L∞(T) ≤ C A−αM . (5—7)

Theorem 5.9. (CLP.) The function θ (5—2) is of class

Λα(T) (α ∈ R+) if and only if for each η ≥ 0 there exists
a C > 0 such that for any t > 0 [Stein 70, Ch. 5, Lemma

5] eeeeeeeew ∂

∂t

Wη
e−t
√−∆ θ

eeeeeeee
L∞(T)

≤ C tα−η . (5—8)

5.4 Wavelet Methods

The guiding idea of wavelet theory is to decompose

functions systematically into functions that have definite

scales decreasing geometrically. This is, of course, related

to the decompositions used in Littlewood-Paley (cf. (5—

3)).

Expansions in wavelet bases are very well-suited to

studying the local properties of functions because of their

localization in space. Wavelet methods are especially ap-

propriate for analyzing self-similar functions like some of

the conjugacies between circle maps studied in this pa-

per. Below we introduce the notations and collect the

basic theoretical results about regularity of functions ex-

panded in wavelet bases. For more details, see [Meyer

90], [Daubechies 92], [Mallat 98], [Hernández and Weiss

96], [Härdle et al. 98], and [Louis et al. 97].

Let L2(T)2L be the “discrete” version of the space of
square integrable circle maps, i.e., the 2L-dimensional

space of the circle maps defined on the grid xf = 2
−Lf,

f = 0, 1, . . ., 2L−1. We use the following multiresolution
analysis of L2(T)2L :

V0 ⊂ V1 ⊂ · · · ⊂ VL−1 ⊂ VL = L2(T)2L .

Let Wj be the orthogonal complement of Vj in Vj+1, so

that

L2(T)2L = V0 ⊕
L−17
j=0

Wj

 ;

dimVj = dimWj = 2
j .

The space Wj is spanned by {ψjk}2
j−1
k=0 , where

ψjk(x) = 2
j/2ψ(2jx− k)

and ψ is the “mother wavelet.” Let θ2L := {θ(xf)}2
L−1
f=0 ∈

L2(T)2L be the discrete representation of the function θ,
and

ΠJ : L
2(T)2L → VJ : θ2L )→

J3
j=0

2j−13
k=0

�θ,ψjkXψjk

be the projections onto VJ , J = 0, 1, . . ., L.

The Littlewood-Paley theorem can be generalized to

bases other than the trigonometric one by observing that

the proofs do not use the explicit form of φN (5—4) and

Ps (5—5), but only some of their properties, so that the

results are valid for larger function classes. In particular,

the following theorem holds:

Theorem 5.10. If ψ ∈ Λα(T), then the function θ is of

class Λα(T) if and only if there exists a C > 0 such that
for any j ∈ N [Hernández and Weiss 96, Theorem 7.16]

sup
0≤k≤2j−1

|�θ,ψjkX| ≤ C 2−j(α+ 1
2 ) . (5—9)

Another formulation which is useful for numerical

computations is

Theorem 5.11. If ψ ∈ Λα(T), then the function θ is of

class Λα(T) if and only if there exists a C > 0 such that
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for any j ∈ N,

,θ −Πjθ,L∞(T) ≤ C 2−jα. (5—10)

For more subtle results on applications of wavelets to

studies of local regularity of functions, see [Jaffard and

Meyer 96], [Holschneider and Tchamitchian 91], [Jaffard

97], and [Meyer 98]. We will not explore local regularity

here, even if our numerical methods are related to the

results in [Jaffard 97].

6. NUMERICAL IMPLEMENTATION

6.1 General Remarks

The characterizations mentioned above involve inequal-

ities that have to be satisfied for an infinite number of

integers. Obviously, the numerical calculation can only

compute the Fourier and wavelet transform up to a finite

order. It is conceivable that the behavior of the functions

is different for high Fourier modes than for the values that

can be explored.

In spite of the above solipsistic argument, there are

good reasons (a renormalization group description) that

strongly suggest that the functions we are studying are

asymptotically self-similar, so that the the study of a fi-

nite number of scales accurately predicts the behavior

at all scales. Indeed, we find empirically that the up-

per bounds giving the regularity become approximately

identities. We see that, after a very short transient, the

upper bounds become identities up to a small periodic

error whose interpretation we will discuss in Section 6.5.

Because of this empirical observation and the renor-

malization group description, we believe that it is rea-

sonable to extrapolate from the observed values and con-

clude that the upper bounds giving regularity are satu-

rated to all scales.

Another issue that one has to discuss in numerical im-

plementations is the effect of the round off and discretiza-

tion error. This analysis is very similar to the standard

considerations of numerical analysis.

Finding numerically the regularity of functions that

are very smooth is difficult because their Fourier/wavelet

coefficients decrease faster. That is why we were not

able to assess the precise values of the smoothness of the

conjugacies of type θCC and θQQ, whose smoothness is

more than one.

In these two cases, as well as for all conjugacies be-

tween f and g for f being critical (C or Q), an impor-

tant issue is the presence of big gaps between the iterates

fn(0) (see Section 4.3). This is because we perform a Fast

Fourier Transform (FFT) or Discrete Wavelet Transform

(DWT) not on the exact values of θ at the points xf
(4—9), but on the values of the interpolating cubic poly-

nomials at these points, which significantly deteriorates

the precision of the spectra.

For the FFT, we used the routines four1 and realft

from [Press et al. 92] (for long double precision). For

the DWT, we used the freely available C routines doc-

umented in detail in the book [Wickerhauser 94]. For

the graphing and some of the data analysis, we used the

plotting tool ACE/gr.

Numerically, the most important restriction on the

number of Fourier or wavelet coefficients computed was

not the speed, but the memory usage (in some of the

cases, about 200Mb).

6.2 Calibration of the Methods

To assess the validity of the numerical methods that have

been employed, we have taken an empirical approach,

testing them on functions whose regularity is known. One

particularly good class of functions for calibration is the

Weierstrass functions,

wa,b(x) =

∞3
k=1

ak sin(2πbkx) , (6—1)

where a < 1, b ∈ N. As it is well known, wa,b ∈ Λ− logb a,
and for any δ > 0, wa,b /∈ Λ− logb a+δ.
To calibrate our numerical methods, we have gener-

ated the wa,b functions at points obtained by iterating

the diffeomorphisms we are studying. Then, we obtained

the regularity applying the methods outlined above. This

procedure gave us an idea of the severity of the problem

of the lack of equidistribution of the iterates. The use of

the Weierstrass function to calibrate the methods seems

appropriate because the working hypothesis (A3) asserts

that the functions we are studying are very similar to the

functions (6—1). Hence, one can hope that the problems

of interpolation and lack of distribution can be assessed

by testing the methods on (6—1).

6.3 Finite Differences Method

We applied Theorem 5.3 for y = 2−j , in which case (5—1)
yields

log2 ,Dn2−jθ,L∞(T) ≤ const− αj
(naturally, one can consider the case of arbitrary y). As

examples of the results obtained by applying this method,

we show in Figure 9 the plot of log2 ,D12−jθ,L∞(T) as a
function of j for four conjugacies of type NC (x’s) and
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FIGURE 9. Plot of log2 ,D1
2−jθ,L∞(T) vs. j for four θNC’s

(x’s) and four θCQ’s (circles).

four ones of type CQ (circles); to calculate θNC, we used

107 iterates and 222 interpolated values, while for θCQ,

these numbers were 2× 106 and 222, respectively.
In the favorable case (NC), we see that the numeri-

cal results correspond to parallel straight lines that cover

the whole range plotted. On the other hand, in the un-

favorable case (CQ), the numerical results present two

straight lines joined by a break.

This can be clearly explained because the graph pre-

sented for the NC case includes computations in which

many of the points in the finite difference operator are in-

cluded in the gaps. Hence, the finite difference operator

is observing the regularity of the interpolating spline.

In the NC case, the gaps between the iterates did not

exceed 1.5 × 10−7. In the CQ case, the maximum gap

was about 2 × 10−4 ≈ 2−12, which corresponds quite
exactly to the position of the break in the graph. When

we restrict the differences to regions larger than the gaps,

the method produces results consistent with the other

methods.

6.4 DLP Method

Theorem 5.8 implies that

logA ,LMθ,L∞(T) ≤ const− αM ,

i.e., the Hölder exponent of θ is the negative of the slope

of the graph of logA ,LMθ,L∞(T) vs. M .
Graphs of this type for some classes of conjugacies are

shown in Figure 10. Each case is represented by two con-

jugacies, the first one depicted by a big empty shape,

and the second one by a small full shape: (fN0.3, f
C
0.6) and

(fN0.3, f
C
0.7)–circles; (f

N
0.5, f

Q
0.6) and (f

N
0.5, f

Q
0.9)–squares;

FIGURE 10. Plot of log10 ,LMθ,L∞(T) vs. M (for
A = 1.4) for pairs of conjugacies of five different types.

(fC0.6, f
Q
0.6) and (f

C
0.3, f

Q
0.9)–diamonds; (f

C
0.6, f

C
0.3) and

(fC0.7, f
C
0.6)–triangles down; (f

Q
0.6, f

Q
0.9) and (f

Q
0.9, f

Q
1.2)–

triangles up. Clearly, the smoothness of the conjugacies

of different classes is different, but this graph does not

allow us to find the smoothness of the conjugacies pre-

cisely (and for θCC and θQQ, the results are very poor).

The reasons for this are as follows:

First, each point on this graph is computed by us-

ing not all Fourier coefficients of θ, but rather only a

dyadic block of them, so for small M , the points on the

graph are based on a small number of Fourier coefficients.

For large M , the points are based on larger number of

Fourier coefficients, but these coefficients are affected by

the numerical noise. Also, the number of points in the fig-

ure is of order logA of the number of Fourier coefficients

found, i.e., it is significantly smaller than the number

of coefficients. In our explorations we used values of A

around 1.5.

6.5 CLP Method

From a numerical point of view, the CLP method (based

on Theorem 5.9) is much better than DLP. First of all, we

can calculate , ∂η∂tη e−t
√−∆f,L∞(T) for as many values of

t as we wish. Furthermore, for each value of t, the value

of this norm is based on the values of all known Fourier

coefficients of f . Finally, one can perform calculations

for different values of η and check whether they yield the

same value of α–this is a very good test of the reliability

of the numerical results.

To illustrate how well this method works, Figure 11

shows plots of log10 , ∂
2

∂t2 e
−t√−∆w0.57, 3,L∞(T) vs. log10 t

for 222 (circles), 213 (x), and 210 (pluses) Fourier com-

ponents based on the values of w0.57, 3 at the points
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FIGURE 11. Plot of log10 , ∂
2

∂t2
e−t
√−∆w0.57, 3,L∞(T) vs.

log10 t.

(fN0.5)
n(0) for n = 0, . . . , 221 − 1. Evidently, the posi-

tion of the plateau for small t depends on the number of

Fourier coefficients used in the computation. Theoreti-

cally, the regularity of w0.57, 3 is − log3 0.57 = 0.5117 . . ..
The slope of the straight line that best fits the full circles

in the figure is −1.4908, so the numerically found regu-
larity according to (5—8) is 2− 1.4908 = 0.5092–a value
that differs from the exact one by only 0.002.

Figure 12 shows graphs of log10 , ∂
η

∂tη e
−t√−∆θ,L∞(T)

vs. log10 t for η = 1, 2, 3; θ is the conjugacy between f
N
0.2

and fC0.6. The results of the linear regression of these data

are presented in Table 2. The uncertainties are just the

the standard errors of the regression.

FIGURE 12. Plot of log10 , ∂
η

∂tη
e−t
√−∆θ,L∞(T) vs. log10 t

for η = 2 and η = 3 of all 12 conjugacies between an N
and a C map for four N and three C maps with different
parameter values. Each line connects 146 points; to ob-
tain each point, we have used 106 iterates and 221 ≈ 106
spline points.

η Range of log10 t Regularity

1 [−5.0,−4.0] 0.5247± 0.0009
2 [−3.5,−2.5] 0.5253± 0.0012
3 [−3.0,−1.5] 0.5244± 0.0008

TABLE 2. Regularity of the conjugacy between fN0.2 and
fC0.6, found by linear regression of the data in Figure 12.

In Figure 13, we show log10 , ∂
η

∂tη e
−t√−∆θ,L∞(T) vs.

log10 t for η = 1, 2 for all the 16 conjugacies between the

four N and four C maps we considered. We call attention

to the fact that the lines are not only parallel, but they

are also very close.

The CLP method can be used also to test some fea-

tures of the expansion (3—1). Since (3—1) is supposed to

hold only in the asymptotic limit of very small scales, we

can use Remark 5.6 and the scalings (5—6). Note that,

taking the convolution of (3—1) with the Poisson kernel

and using (5—6), we obtain in the notation of Section 3:

Pt ∗
^3

n

λn1 (H1 ◦ αn)(x) + λn2 (H2 ◦ αn)(x) + · · ·
�

=
3
n

^
λn1 [Pαnt ∗H1](αnx)

+λn2 [Pαnt ∗H2](αnx) + · · ·
�
.

If we take suprema in x and then logarithms, the struc-

ture of the main term for the resulting function consid-

ered as a function of log t is a sum of a linear function

and a function that is periodic. The slope of the linear

function is, of course, according to Theorem 5.9, the de-

gree of differentiability, but if we subtract the linear part,

we should see the periodicity.

FIGURE 13. Plot of log10 , ∂
η

∂tη e
−t√−∆θ,L∞(T) vs. log10 t

for η = 1, 2 for 16 conjugacies of type NC.
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FIGURE 14. Plot of the first differences of the graph of
log10 , ∂

η

∂tη e
−t√−∆θ,L∞(T) (in arbitrary units) vs. log10 t

for η = 2 and η = 3 for four θ of type NC.

This exploration of the first differences is undertaken

in Figure 14, where we plot the first differences of the

graph of log10 , ∂
η

∂tη e
−t√−∆θ,L∞(T) as a function of log10 t

(for η = 2, 3) at equally spaced points.

Note that taking first differences turns a linear func-

tion into a constant, and a periodic function into a pe-

riodic function. Higher order differences eliminate the

linear function and receive contributions of the periodic

part.

In Figure 15, we show the same plot as above for four

conjugacies of type NQ and the first and second differ-

ences of the plot. We call attention to the fact that the

periodic corrections we plot quickly become independent

of the functions we start with, which corresponds to the

fact that the function H1 is universal. This is particu-

FIGURE 15. Plot of log10 , ∂
2

∂t2
e−t
√−∆θ,L∞(T) vs. log10 t

for four θ of type NC and the first and second differences.

larly remarkable for the case of second differences since

they are very susceptible to numerical errors. Hence, this

gives us confidence on the reliability of the methods we

have used.

We note that the computation of first differences is

one of the data analysis features included in ACE/gr, so

it is quite feasible to carry out these explorations in an

interactive way for a variety of functions.

6.6 Wavelet Coefficient Decay

Theorem 5.10 can be used to assess the regularity of the

functions we study by examining the decay of the coeffi-

cients of the wavelet transform. Nevertheless, we do not

think that for our functions it is necessary to appeal to

Theorem 5.10.

Note that the working hypothesis (A4) gives a repre-

sentation of the function. It is not difficult to show that,

for functions of the form (3—1) in the working hypothesis

(A4), the degree of regularity is a simple ratio between

the logarithms of λ and the scaling factor α defined in

(3—1).

For functions of this form, the logarithm of the size of

the projections on a space Vj should decay linearly with

j irrespective of which wavelet is used. In particular, one

does not need to use wavelets which are smoother than

the regularity observed to obtain the scaling exponents,

which also give the regularity.

In our numerical studies, we have used Daubechies

wavelets of order 4, 10, and 20, which we will denote as

D4, D10, and D20, respectively. It is known that D4∈
Λ0.38.... For large N , D2N ∈ ΛlN where lN ≈ 0.20775N .
(See, e.g., [Härdle et al. 98, Sec. 7.1].)

We note that even if Theorem 5.10 does not apply to

the measurements of regularity with D4 in some of the

cases we consider, we obtain decays which are extremely

similar to those obtained using D10 or D20, for which

Theorem 5.10 does apply and also extremely similar to

the regularities obtained by other methods. Moreover, we

also note that the upper bounds given by Theorem 5.10

are identities.

We interpret the coincidence of the rates of decays ob-

tained by any wavelets and the saturation of the bounds

as (at least circumstantial) evidence that the the asymp-

totic scalings in (3—1) indeed hold. As we will discuss

later, similar coincidences are observed for other meth-

ods.

In Figure 16, we show log2 supk |�θ,ψjkX| vs. j for sev-
eral θQN and θNQ maps. The slope of the straight lines

on this graph is −(α + 1
2 ). There is one reason why

this method works much better with wavelet instead of
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FIGURE 16. Plot of log2 supk |�θ,ψjkX| vs. j for 12 con-
jugacies of type NQ (for 222 interpolated values based
on 107 iterates) and 12 of type QN (for 221 interpolated
values based on 106 iterates).

Fourier coefficients (see Figure 10): The cubic interpo-

lation in the large gaps distorts all Fourier coefficients.

At the same time, in the case of wavelets, it only affects

the ones whose support intersects the gap; moreover, the

“artificial local smoothing” due to the interpolation de-

creases |�θ,ψjkX| for the wavelets ψjk supported at the
gap, which does not change supk |�θ,ψjkX| for fixed j.

6.7 Wavelet Approximation

The method based on Theorem 5.11 yields very good

results. Figure 17 shows plots of log2 ,θ−Πjθ,L∞(T) vs.
j for several θNC and θCN. The slope of the straight lines

in this graph is −α.

FIGURE 17. Plot of log2 ,θ − Πjθ,L∞(T) vs. j for 12
conjugacies of type NC (for 222 interpolated values based
on 107 iterates) and 12 of type CN (for 221 interpolated
values based on 2× 106 iterates).

As in the previous case, we note that we have used

D4, D10 and D20. Theorem 5.11 does not apply to D4

in some cases. Nevertheless, we find the same linear de-

cay as with the other methods and we interpret it as a

confirmation of the asymptotic scaling of the function.

7. RESULTS

In this section, we give the numerical values of the Hölder

exponents of the conjugacies. To determine these values,

we used the methods based on Theorems 5.3, 5.8, 5.9,

5.10, and 5.11.

To find the smoothness of a particular type of conju-

gacy, we applied all these methods to study numerically

the smoothness of the conjugacies between all possible

combinations of circle maps studied (four N, four C, and

four Q maps).

As an example, Table 3 shows the results of our analy-

sis of the regularity of the conjugacies between N and Q

maps as well as the results of the same methods applied

to the test functions w0.66745,3, whose Hölder exponent,

0.36800..., is close to the one of the conjugacies of type

θNQ.

The ”Function” column indicates the function ana-

lyzed: “w on fN0.2” means the regularity of the func-

tion w0.66745,3 calculated at the points (f
N
0.2)

n(0), and

θ (fN0.2/f
Q
4/3) means the conjugacy between fN0.2 and

fQ4/3. The “Finite diffs” column shows the results of the

smoothness found by using the finite difference method.

The “CLP, η = 1, 2, 3” columns display the results of the

CLP analysis for different numbers of derivatives. “De-

cay D4, D10, D20” contain the results of analysis of the

decay rate of the coefficients of Daubechies 4 (resp. 10,

20) wavelets, while “Approx D4, D10, D20” shows the

results of the study of the speed of the approximation

using these wavelets. The meaning of the notation is the

following: 0.3661(13) means 0.3661 ± 0.0013. The error
is the standard error of the linear regression.

As seen in Table 3, the results obtained by using dif-

ferent methods are consistent, the most precise being the

ones based on CLP. In Table 4, we give the Hölder ex-

ponent of the conjugacy between the maps f and g. The

margins of error are determined empirically, and only in

very few cases are outliers ignored.

In the case of conjugacies of types CC and QQ, for

reasons explained in the text, we were not able to deter-

mine the smoothness of the conjugacies, but only to give

rough estimates.
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Function Finite diffs CLP, η = 1 CLP, η = 2 CLP, η = 3 Decay D4 Decay D10 Decay D20 Approx D4 Approx D10 Approx D20

w on fN0.2 0.3508(162) 0.3556(4) 0.3661(13) 0.3683(94) 0.3548(126) 0.3455(340) 0.3558(461) 0.3672(36) 0.3658(102) 0.3636(136)

w on fN0.3 0.3511(156) 0.3625(2) 0.3659(13) 0.3680(93) 0.3563(126) 0.3460(350) 0.3554(469) 0.3685(38) 0.3657(101) 0.3650(141)

w on fN0.5 0.3483(155) 0.3632(2) 0.3661(13) 0.3681(94) 0.3569(123) 0.3478(344) 0.3550(461) 0.3659(32) 0.3642(100) 0.3645(140)

w on fN0.8 0.3486(155) 0.3634(4) 0.3660(13) 0.3682(94) 0.3559(126) 0.3482(345) 0.3514(455) 0.3678(33) 0.3641(101) 0.3620(138)

θ (fN0.2/f
Q
4/3

) 0.3652(33) 0.3611(10) 0.3682(8) 0.3676(2) 0.3686(104) 0.3667(247) 0.3643(161) 0.3713(12) 0.3706(75) 0.3664(69)

θ (fN0.2/f
Q
0.6) 0.3642(34) 0.3622(12) 0.3675(9) 0.3710(6) 0.3674(106) 0.3556(160) 0.3670(161) 0.3717(11) 0.3710(76) 0.3660(72)

θ (fN0.2/f
Q
1.2) 0.3649(33) 0.3613(10) 0.3681(8) 0.3670(3) 0.3684(105) 0.3670(249) 0.3647(162) 0.3711(12) 0.3702(75) 0.3661(70)

θ (fN0.2/f
Q
0.9) 0.3684(29) 0.3623(11) 0.3680(8) 0.3667(3) 0.3677(105) 0.3744(217) 0.3629(155) 0.3710(13) 0.3672(49) 0.3658(70)

θ (fN0.3/f
Q
4/3

) 0.3635(27) 0.3616(10) 0.3685(8) 0.3677(3) 0.3692(108) 0.3658(246) 0.3638(155) 0.3701(8) 0.3691(71) 0.3669(67)

θ (fN0.3/f
Q
0.6) 0.3626(28) 0.3625(12) 0.3679(10) 0.3703(5) 0.3686(109) 0.3632(270) 0.3661(155) 0.3703(7) 0.3698(73) 0.3665(68)

θ (fN0.3/f
Q
1.2) 0.3633(28) 0.3618(10) 0.3684(8) 0.3671(3) 0.3691(108) 0.3695(234) 0.3644(155) 0.3698(8) 0.3688(72) 0.3666(67)

θ (fN0.3/f
Q
0.9) 0.3615(29) 0.3628(11) 0.3685(8) 0.3668(3) 0.3684(108) 0.3546(345) 0.3630(169) 0.3700(8) 0.3725(61) 0.3665(67)

θ (fN0.5/f
Q
4/3

) 0.3646(25) 0.3610(10) 0.3677(9) 0.3671(2) 0.3694(106) 0.3631(249) 0.3735(164) 0.3712(9) 0.3772(77) 0.3728(70)

θ (fN0.5/f
Q
0.6) 0.3641(27) 0.3616(11) 0.3672(9) 0.3684(3) 0.3696(107) 0.3641(195) 0.3812(140) 0.3712(9) 0.3780(79) 0.3724(72)

θ (fN0.5/f
Q
1.2) 0.3647(27) 0.3612(10) 0.3676(9) 0.3666(3) 0.3694(106) 0.3663(216) 0.3742(165) 0.3710(9) 0.3766(77) 0.3725(70)

θ (fN0.5/f
Q
0.9) 0.3757(36) 0.3620(10) 0.3681(9) 0.3664(3) 0.3689(106) 0.3642(308) 0.3847(166) 0.3709(10) 0.3594(58) 0.3723(70)

θ (fN0.8/f
Q
4/3

) 0.3674(28) 0.3607(10) 0.3680(9) 0.3654(4) 0.3676(105) 0.3682(249) 0.3629(181) 0.3684(7) 0.3687(73) 0.3692(66)

θ (fN0.8/f
Q
0.6) 0.3640(26) 0.3615(10) 0.3681(9) 0.3645(3) 0.3673(107) 0.3701(239) 0.3560(186) 0.3685(7) 0.3699(66) 0.3695(68)

θ (fN0.8/f
Q
1.2) 0.3666(28) 0.3612(10) 0.3679(9) 0.3649(5) 0.3675(105) 0.3681(250) 0.3634(182) 0.3683(7) 0.3686(73) 0.3691(66)

θ (fN0.8/f
Q
0.9) 0.3592(37) 0.3624(10) 0.3683(7) 0.3649(5) 0.3619(101) 0.3355(325) 0.3440(218) 0.3687(7) 0.3550(86) 0.3694(66)

TABLE 3. Numerically-found regularity of w0.66745,3 and all NQ conjugacies studied.

↓ f g → N C Q

N Analytic 0.527± 0.003 0.368± 0.003
C 0.63± 0.02 1.4+0.4−0.2 0.71± 0.03
Q 0.54± 0.05 0.86± 0.02 1.7± 0.5

TABLE 4. Regularity of the conjugacies.

8. SOME BOUNDS ON THE REGULARITY
OF CONJUGACIES

8.1 Some Simple Bounds

It follows directly from the definition of Λα, 0 < α < 1,

that if h1 ∈ Λα1 , h2 ∈ Λα2 , then h1 ◦ h2 ∈ Λα1α2 . It is
not difficult to produce functions that satisfy the above

bounds (just take hi(x) = |x|αi) as well as functions for
which this bound is not optimal (take h1(x) = |x|α1 ,
h2 = |x− 0.1|α2).
We also note that if h1,2 ◦ f1 = f2 ◦ h1,2, h2,3 ◦ f2 =

f3 ◦h2,3, and we define h1,3 by h1,3 = h1,2 ◦h2,3, we have
h1,3 ◦ f1 = f3 ◦ h1,3.
Let ρa,b (where a, b are among N, C, Q) be the regular-

ities of the conjugacy between golden mean circle maps

of class a to circle maps of class b, i.e., the entries in Ta-

ble 4. It follows from the regularity of the composition

that when a, b, c are such that a W= b, b W= c, we should

have

ρa,c ≥ ρa,bρb,c. (8—1)

Inequality (8—1) can be verified in two cases in Table 4.

Namely, we can take a = N, b = C, c = Q, or a = Q,

b = C, c = N. When we carry out this verification, up to

the error of the calculation, we find that (8—1) becomes

an identity.

This is presumably not a coincidence. We believe that

it is again a manifestation of the self-similarity of the

function at small scales. If we compose two functions

that, in each small scale, have oscillations comparable

to those allowed by the Hölder exponent, the resulting

function will also have oscillations that are comparable

to the product of the Hölder exponents. Note, however,

that this argument does not suggest that there is a sim-

ple relation between the regularity of a function and its

inverse.

Equation (8—1) can be described by saying that the

regularities of the conjugacies as indexed by the classes

form a multiplicative supercocycle. We find empirically

it is a cocycle.

8.2 Scalings of the Recurrence and Upper Bounds on
Hölder Exponents of Conjugacies

Scalings have been studied numerically from the begin-

ning of renormalization theory: some of them have been

probed to hold.

In this section, we will report some rigorous results

showing that if certain scalings hold, then there are

bounds for the regularity of the conjugacy. Since these

scaling relations–hypotheses of our lemma–are numer-

ically accessible, we can use the rigorous results to obtain

numerical upper bounds.
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One of the first numerical observations made in the

study of the golden mean rotation number critical circle

maps was that

(f•)Qn(0) ≈ ζ−n• , (8—2)

where • stands for N, C, Q, and ζ• are universal con-
stants. The numbers ζ• play a fundamental role in the
fixed point equations.

For noncritical maps, by Theorem 2.6, ζN is the same

as for rotations by the golden mean, and, by using the

well-known relation

Qn
Qn+1

= γ + C(−γ2)n + o(γ2n) ,

we obtain ζN = γ−1.
We note that for the cubic critical case, there are un-

published computer-assisted proofs ([Mestel 84], [Lanford

and de la Llave 84]) that establish the existence of the

ζC, upper and lower bounds for it, and the fact that (8—2)

holds for maps in open sets.

Some relation between the scaling properties of the

returns and the regularity of the conjugacy is given by

the following lemma:

Lemma 8.1. Let

fQn

1 (0) = C1ζ
−n
1 + o(ζ−n1 ) (8—3)

fQn

2 (0) = C2ζ
−n
2 + o(ζ−n2 ) (8—4)

and

α := log |ζ2|/ log |ζ1| /∈ N. (8—5)

If h satisfies h ◦ f1 = f2 ◦ h, h(0) = 0, then, for every

δ > 0, h /∈ Λα+δ.

Proof: For any χ > 0 we have

h ◦ fQn

1 (0)− h(0)�
fQn

1 (0)− 0
=χ =

fQn

2 (0)�
fQn

1 (0)
=χ = C2ζ

−n
2 + o(ζ−n2 )

Cχ
1 ζ
−χn
1 + o(ζ−χn1 )

.

(8—6)

We argue by contradiction: if h ∈ Λχ for some χ > α,

we use (8—6) to prove by induction that h(n)(0) = 0 for

all n ≤ α, n ∈ N. Then we note that h ∈ Λα+δ (for any
δ > 0) would imply that if we substitute χ = α + δ in

(8—6), the lefthand side is bounded uniformly in n. At

the same time, the righthand side of (8—6) is unbounded

in n.

We emphasize that Lemma 8.1 does not conclude any-

thing when α ∈ N; in particular, it does not conclude

anything in the cases when f1 and f2 have the same scal-

ing factor ζ, which happens when f1 and f2 are in the

same universality class.

We have verified relations (8—2) for the maps we con-

sidered and obtained values of ζ as follows,

ζC = −1.2886 , ζQ = −1.194 , (8—7)

which agree with the values reported in [Shenker 82] (for

the C case), and those in the papers [Hu et al. 90], [Del-

bourgo and Kenny 91], even though they consider func-

tions that are periodized versions of polynomials which

are not C1.

Taking the values in (8—7) and the exact value for ζN ,

we obtain the following upper bounds for the regularity

of the conjugacies between the maps f and g.

↓ f g → N C Q

N ? 0.5269 0.368

C 1.898 ? 0.70

Q 2.72 1.43 ?

TABLE 5. Upper bounds for the regularities of the conju-
gacies obtained from scaling of recurrences.

Note that in the cases NC, NQ, CQ, the upper bounds

obtained by applying Lemma 8.1 agree, within the mar-

gin of error, with the values of the regularity reported.

We conjecture that indeed the upper bounds produced

by applying Lemma 8.1 for the other cases can not be

interpreted as scalings at the moment.

The fact that the upper bounds that work in one case

are far off in another seems to imply that there are dif-

ferent mechanisms limiting the regularity.

Since the α defined in (8—5) is the ratio of a quantity

depending on the domain and a quantity depending on

the range, the upper bounds that we have derived form

a multiplicative cocycle.

For the sake of completeness, we also point out that

there is a very similar argument that gives upper bounds

for the regularity of the conjugacy for the maps in the

same class. The following set of ideas was found useful in

[de la Llave and Schafer, 96]. There it is shown that this

argument produced upper bounds that were sharp in the

case of conjugacies of limiting sets of unimodal maps.

Lemma 8.2. Assume that

fQn

1 (0) = C1ζ
−n +D1ζ̃−n + o(ζ̃−n)

fQn

2 (0) = C2ζ
−n +D2ζ̃−n + o(ζ̃−n)

with 1 < |ζ| < |ζ̃|, C1C2 W= 0,
D2 W= (C2/C1)D1 (8—8)
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and α := log |ζ̃|/ log |ζ| /∈ N. Then, if h satisfies h ◦ f1 =
f2 ◦ h, h(0) = 0, then h /∈ Λα+δ for any δ > 0.

Proof: The argument is very similar to the argument that

proved Lemma 8.1. Note that the assumptions imply

that α > 1. Hence we are only excluding regularities

higher than C1.

We argue by contradiction, assuming that h ∈ Λα+δ.
We note that

h ◦ fQn

1 (0)− h(0) = fQn

2 (0) . (8—9)

Since h ∈ Λα+δ , and α > 1, we conclude that hI(0) =
C2/C1 W= 0. Hence h is invertible in a neighborhood of

zero and h−1 ∈ Λα+δ. We note that h(t) = P (t) + R(t)
where P (t) is a polynomial of degree [α] and |R(t)| ≤
|t|α+δ .
Given the assumptions on the degrees we have made,

we have

P (C1ζ
−n +D1ζ̃−n + o(ζ̃−n))

= hI(0)ζ̃−n +
3
j

Cj(ζ
j)−n + o(ζ−n([α]+1)).

We also note that R(C1ζ
−n+D1ζ̃−n+o(ζ̃−n)) = o(ζ̃−n).

Equating the coefficients of the ζ̃−n in (8—9), we ob-
tain D2 = (C2/C1)D1, which contradicts our assump-

tion (8—8). This is the desired contradiction with the

assumption that h admitted a Taylor expansion near 0

with Hölder bounds.

Note that in contrast to Lemma 8.1, Lemma 8.2 con-

tains a hypothesis (8—8) which could fail for a finite codi-

mension set of maps. This is to be expected since the

other hypothesis allows us to take f1 = f2, h = Id. In

this situation, the conjugacy h is very regular. The el-

ementary theory of renormalization tells us that (8—8)

occurs in a set which is of positive codimension.

Conjecture 3.1 amounts to the fact that the upper

bounds produced by applying Lemma 8.2 are sharp.

At the moment, unfortunately, we do not have accu-

rate enough values for the ζ̃ for cubic critical or quin-

tic critical maps and, hence, cannot give concrete values

for the upper bounds of the regularity in the CC or QQ

cases. It is interesting to remark that, in the NN case,

these bounds are far from optimal.

9. CONCLUSION

We have studied the smoothness of the conjugacies be-

tween circle maps with critical points and with golden

mean rotation number. The first step was to obtain an

extremely precise calculation of the parameters of the

function that put us in the correct universality class. The

most important step was to develop a numerical toolkit

based on a wide array of methods from harmonic analysis

(Littlewood-Paley, wavelets) to study the regularity and

the fine scale structure of these functions. We have used

the combination of the methods applied to critical circle

maps to asses their range of validity, and have found in-

dication that the regularity of critical circle maps is pos-

sibly limited by considerations other than just scaling of

recurrences.
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[Świa̧tek 98] G. Świa̧tek. “On critical circle homeomor-
phisms,” Bol. Soc. Brasil. Mat. (N.S.) 29:2 (1998), 329—
351.

[Tangerman and Veerman 91] F. M. Tangerman and J. J. P.
Veerman. “Scalings in circle maps. II,” Comm. Math.
Phys. 141:2 (1991) 279—291.
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