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For any finite field k = Fq, we explicitly describe the k-isogeny
classes of abelian surfaces defined over k and their behavior
under finite field extension. In particular, we determine the
absolutely simple abelian surfaces. Then, we analyze numeri-
cally what surfaces are k-isogenous to the Jacobian of a smooth
projective curve of genus 2 defined over k. We prove some par-
tial results suggested by these numerical data. For instance, we
show that every absolutely simple abelian surface is k-isogenous
to a Jacobian. Other facts suggested by these numerical com-
putations are that the polynomials t4+(1−2q)t2+q2 (for all q)
and t4 + (2− 2q)t2 + q2 (for q odd) are never the characteristic
polynomial of Frobenius of a Jacobian. These statements have
been proved by E. Howe. The proof for the first polynomial is
attached in an appendix.

1. INTRODUCTION

Let C be a projective smooth curve of genus 2 defined

over a finite field Fq. If Nm := 2C(Fqm) denotes the
number of points of C over the m-th degree extension of

Fq, the zeta function of C can be written as:

Z(C/Fq, t) = exp

⎛⎝3
m≥1

Nm
tm

m

⎞⎠
=
1 + a1t+ a2t

2 + qa1t
3 + q2t4

(1− t)(1− qt) , (1—1)

for certain integers a1, a2, related to N1, N2 by:

N1 = a1 + q + 1, N2 = 2a2 − a21 + q2 + 1. (1—2)

In this paper, we are interested in determining which

rational functions appear as the zeta function of a curve

C of genus 2, or equivalently, what pairs of integers a1,

a2 satisfy (1—1) for a certain curve C, or equivalently, for

what pairs of nonnegative integers (N1, N2) there exists a

curve of genus 2 having N1 points over Fq and N2 points
over Fq2 .
To any curve C, as above, we can attach a more fea-

sible object: its Jacobian, J(C), which is an abelian sur-

face over Fq. The isogeny class of J(C) is determined
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by the characteristic polynomial of its Frobenius endo-

morphism, which is easily described in terms of a1 and

a2:

fJ(C)(t) = t
4 + a1t

3 + a2t
2 + qa1t+ q

2.

Thus, we can split the characterization of the zeta

functions of curves of genus 2 in two steps: first character-

ize the pairs (a1, a2) arising from characteristic polynomi-

als of abelian surfaces over Fq and, afterwards, determine
what abelian surfaces are Fq-isogenous to the Jacobian
of a smooth projective curve defined over Fq.
The first step is no mystery. The roots of the charac-

teristic polynomial fA(t) of the Frobenius endomorphism

of an abelian surface A are q-Weil numbers. This leads

to bounds on a1 and a2 which determine a finite subset

of Z[t] containing all possible polynomials of the form
fA(t). Moreover, by results of Honda and Tate, the Fq-
isogeny classes of simple abelian varieties A defined over

Fq are ruled by the q-Weil numbers, classified under the
action of the absolute galois group. Combined with re-

sults of Tate [Waterhouse and Milne 69] computing the

dimension of A in terms of the minimal polynomial of the

corresponding q-Weil number, this makes it possible to

determine explicitly all pairs (a1, a2) for which the poly-

nomial t4 + a1t
3 + a2t

2 + qa1t + q
2 is of the form fA(t)

for a certain abelian surface A defined over Fq. These
conditions were described in [Rück 90] and [Xing 94]. In

Section 2 we review these results, and we present them

in a more explicit form (Theorem 2.9). In particular,

we obtain a list of all simple abelian supersingular sur-

faces, that completes that of [Xing 96], where some cases

are missing. Also, we include an exhaustive study of

the behavior of the simple abelian surfaces under finite

field extension, obtaining an explicit description of the

absolutely simple varieties in terms of the pair (a1, a2)

(Theorem 2.15).

The second step, to determine the Jacobians among

all abelian surfaces, seems to be a very difficult question;

we present a numerical analysis. In Section 3, we de-

velop an algorithm computing all curves of genus 2 up to

k-isomorphism and quadratic twist. The algorithm has

been implemented in MATHEMATICA using the pack-

age FF designed by Guàrdia to work over finite fields of

arbitrary degree over the prime field [Guàrdia 98]. As a

by-product, we obtain the complete list of all curves of

genus 2 without rational points (Theorem 3.2).

In Sections 4 and 5, we display, for any q ≤ 16,

the numerical results obtained by counting for each

isogeny class of abelian surfaces over Fq how many non-
isomorphic curves have a Jacobian belonging to the class.

This is achieved by running the algorithm of Section 3

and by computing for each curve the corresponding pair

(a1, a2). These numerical results present some regular

behavior which has led us to prove some partial results,

both in the positive and negative direction. For instance,

we show that every absolutely simple abelian surface is

k-isogenous to the Jacobian of a smooth projective curve

of genus 2 (Theorem 4.3). The ordinary case has been

proved in [Howe 95] and the nonordinary case is a con-

sequence of the work [Howe 96] and our characterization

of the absolutely simple surfaces.

Other facts suggested by our numerical computations

are that the polynomials t4+(1−2q)t2+q2 (for all q) and
t4+ (2− 2q)t2+ q2 (for q odd) are never the characteris-
tic polynomial of Frobenius of the Jacobian of a smooth

projective curve of genus 2 defined over Fq. These state-
ments have been proved by E. Howe. The proof for the

first polynomial is attached in an appendix and the proof

for the second polynomial appears in [Howe 02]

2. ISOGENY CLASSES OF ABELIAN SURFACES
OVER FINITE FIELDS

2.1 Characteristic Polynomials of Abelian Surfaces

Let A be an abelian surface defined over the finite field

Fq, where q = pa, a ≥ 1 for a certain prime number p.
We denote by

fA(t) = t
4 + a1t

3 + a2t
2 + qa1t+ q

2 ∈ Z[t] (2—1)

the characteristic polynomial of the Frobenius endomor-

phism of A. By abuse of language, we shall sometimes

refer to fA(t) as the characteristic polynomial of A. This

polynomial determines A up to Fq-isogeny and the four
roots of fA(t) in Q̄ (counting multiplicites) are q-Weil

numbers; more precisely,

fA(t) = (t− π1)(t− q

π1
)(t− π2)(t− q

π2
),

with π1,π2 q-Weil numbers, not necessarily different. We

recall that a q-Weil number is an algebraic integer such

that its image under every complex embedding has ab-

solute value
√
q. If A is simple, then fA(t) = hA(t)

e for

some irreducible polynomial hA(t) ∈ Z[t]. By results of
Honda and Tate, the mapping

A )→ π root of hA(t),

is a bijection between Fq-isogeny classes of simple abelian
varieties (of any dimension) and conjugation classes of q-

Weil numbers (of any degree) [Tate 69].
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We review results of Rück and Xing finding necessary

and sufficient conditions for a polynomial of the type

(2—1) to be the characteristic polynomial of an abelian

surface over Fq. We start with well-known bounds on
the size of a1, a2:

Lemma 2.1. Let f(t) ∈ Z[t] be a monic polynomial of
degree 4. The following conditions are equivalent:

(i) f(t) = (t − π1)(t − q
π1
)(t − π2)(t − q

π2
), with π1,π2

q-Weil numbers.

(ii) f(t) = (t2 − β1t+ q)(t2 − β2t+ q), βi ∈ R,
|βi| ≤ 2√q, i = 1, 2.

(iii) f(t) = t4 + a1t
3 + a2t

2 + qa1t+ q
2, with

|a1| ≤ 4√q, 2|a1|√q − 2q ≤ a2 ≤ a
2
1

4
+ 2q. (2—2)

Proof: The relationship βi = πi +
q
πi
shows immediately

that (i) is equivalent to (ii) (cf. [Waterhouse and Milne

69, p. 59]). Analogously, (ii) is equivalent to (iii) since

we can relate pairs β1,β2 satisfying (ii) with pairs a1, a2
satisfying (iii) by:

(x− β1)(x− β2) = x2 + a1x+ a2 − 2q.

Definition 2.2. A polynomial f(t) ∈ Z[t] satisfying the
conditions of Lemma 2.1 will be called a Weil polynomial.

Remark 2.3. The bound on |a1| can be refined to a1 ≤
2[2
√
q], which is much better than 4

√
q for q nonsquare

and large. In fact,

|a1| > 2[2√q] =⇒ 2|a1|√q − 2q >
}
a21
4
+ 2q

]
,

so that in this case there is no integer a2 satisfying (2—2).

It is easy to characterize when a Weil polynomial is

irreducible:

Lemma 2.4. Let f(t) = t4+ a1t3+a2t2+ qa1t+ q2 ∈ Z[t]
be a Weil polynomial and let ∆ = a21 − 4a2 + 8q. Then,
the following conditions are equivalent:

(i) f(t) is irreducible in Z[t].

(ii) ∆ is not a square in Z and |a1| < 4√q,
2|a1|√q − 2q < a2 < a21

4 + 2q.

(iii) ∆ is not a square in Z and (a1, a2) W= (0,−2q).

Proof: The equalities |a1| = 4
√
q or a2 = 2q + a21/4

lead to ∆ = 0, whereas the equality 2|a1|√q − 2q = a2
leads to either a1 = 0, a2 = −2q or to q a square and
∆ = (|a1|+ 4√q)2. Thus, (ii) and (iii) are equivalent.
With the notation of Lemma 2.1, ∆ is the discriminant

of (x−β1)(x−β2); hence, if∆ is a square, then β1,β2 ∈ Z
and f(t) decomposes in Z[t]. Thus, (i) implies (iii). Con-
versely, if f(t) is not irreducible in Z[t], then either some
πi belongs to Z, or some πi is a quadratic integer with
conjugate q/πi, or π1,π2 are conjugate quadratic inte-

gers, π2 W= q/π1. In the first two cases, some βi belongs
to Z and ∆ is a square, whereas in the third case, π1,π2
are real and f(t) = (t2 − q)2. Thus, (iii) implies (i).

If A is a simple abelian surface defined over Fq whose
characteristic polynomial decomposes in Z[t], then fA(t)
has to be the square of a quadratic irreducible polyno-

mial. The only real quadratic q-Weil numbers are ±√q
(for a odd) and the corresponding simple abelian vari-

ety has dimension 2. We compute the dimension of the

simple abelian variety associated with a pair of complex

conjugate quadratic q-Weil numbers.

Proposition 2.5. Let β ∈ Z, with |β| < 2√q and let b =
vp(β) (taking b =∞ if β = 0). Let F (t) = t2−βt+q and
let d = β2− 4q be the discriminant of F (t). Let B be the

simple abelian variety defined over Fq with hB(t) = F (t).
Then:

dim(B) =

⎧⎨⎩
a

(a,b) , if b < a
2 ,

2, if b ≥ a
2 , d ∈ Q∗p2,

1, if b ≥ a
2 , d W∈ Q∗p2.

Proof: By [Waterhouse and Milne 69, pp. 58—59], we

have fB(t) = hB(t)
e and

dim(B) = e = least common denominator of
vp(Fν(0))

a
,

where ν runs among the finite places of Q(
√
d) lying

above p and Fν(t) denotes the corresponding factor of

F (t) in Qp[t]. If d is not a square in Qp, then F (t) is
irreducible in Qp[t], vp(F (0)) = a, and e = 1. If d is

a square in Qp then F (t) = F1(t)F2(t) in Qp[t] and de-
noting bi = vp(Fi(0)), an easy manipulation of Newton

polygons shows that

b ≥ a
2
=⇒ b1 = b2 =

a

2
=⇒ e = 2,

b <
a

2
=⇒ b1 = b, b2 = a− b =⇒ e =

a

(a, b)
.
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Corollary 2.6. By adequate choice of q and β, we can

find simple abelian varieties of arbitrarily large dimension

with hB(t) = t
2 − βt+ q.

Definition 2.7. We say that an integer β ∈ Z, |β| ≤ 2√q,
is a q-Waterhouse number if there is an elliptic curve E

defined over Fq such that fE(t) = t2 − βt + q. Equiva-

lently, β ∈ Z is a q-Waterhouse number if either |β| =
2
√
q or |β| < 2√q and the simple abelian variety B asso-

ciated to the polynomial t2 − βt+ q has dimension 1.

Waterhouse found in [Waterhouse 69] very explicit

conditions determining the q-Waterhouse numbers. We

list below similar explicit conditions for the 2-dimensional

case:

Corollary 2.8. Let β ∈ Z, |β| < 2
√
q. There exists a

simple abelian surface B defined over Fq with hB(t) =
t2 − βt+ q if and only if a is even and

β = ±√q, p ≡ 1 (mod 3), or β = 0, p ≡ 1 (mod 4).

Proof: Straightforward by Proposition 2.5.

Now we can resume the explicit determination of the

Weil polynomials corresponding to abelian surfaces de-

fined over Fq:

Theorem 2.9. Let f(t) = t4+a1t3+a2t2+qa1t+q2 ∈ Z[t]
be a Weil polynomial and let

∆ = a21 − 4a2 + 8q, δ = (a2 + 2q)
2 − 4qa21.

Then, f(t) is the characteristic polynomial of a simple

abelian surface defined over Fq if and only if one of the
following conditions holds:

(M) ∆ is not a square in Z, vp(a1) = 0, vp(a2) ≥ a
2

and δ is not a square in Zp.

(O) ∆ is not a square in Z and vp(a2) = 0.

(SS1) (a1, a2) belongs to the following list:

(0, 0), a odd, p W= 2, or: a even, p W≡ 1 (mod 8),
(0, q), a odd,

(0,−q), a odd, p W= 3, or: a even, p W≡ 1 (mod 12),
(±√q, q), a even, p W≡ 1 (mod 5),
(±√5q, 3q), a odd, p = 5,
(±√2q, q), a odd, p = 2.

(SS2) (a1, a2) belongs to the following list:

(0,−2q), a odd,
(0, 2q), a even, p ≡ 1 (mod 4),
(±2√q, 3q), a even, p ≡ 1 (mod 3).

Moreover, let β1, β2 be the roots of the quadratic polyno-

mial x2 + a1x + (a2 − 2q), with discriminant ∆. Then,
f(t) = fA(t) for an abelian surface A ∼ E1 × E2 if and
only if ∆ is a square in Z and β1,β2 are q-Waterhouse
numbers. In this case, the elliptic curves E1, E2 are Fq-
isogenous if and only if ∆ = 0.

Proof: By Lemma 2.4 in the cases (M), (O), (SS1),

f(t) is irreducible and the conditions determining when

f(t) = fA(t) for some surface A were found in [Rück 90].

Actually, Rück wrote condition (SS1) as

vp(a1) ≥ a
2
, vp(a2) ≥ a, f(t) has no roots in Zp,

but it is easy to check that the irreducible Weil polynomi-

als with (a1, a2) satisfying this last condition are precisely

those listed in condition (SS1) above.

The case where f(t) is reducible (SS2) is a consequence

of Proposition 2.5 and it was first described in [Xing 94].

Corollary 2.10. If Fq is the prime field Fp (that is q = p),
then every Weil polynomial is the characteristic polyno-

mial of an abelian surface defined over Fq.

Proof: Assume that (a1, a2) ∈ Z2 satisfies the inequali-
ties (2—2). If ∆ = a21 − 4a2 + 8q is a square in Z, then
the integers β = (−a1 ±

√
∆)/2 satisfy: |β| < 2

√
p and

any integer satisfying this inequality is a p-Waterhouse

number. If ∆ is not a square in Z and (a1, a2) W= (0,−2q),
then (a1, a2) falls in one of the cases (M), (O), (SS1).

Corollary 2.11. A Weil polynomial is the characteristic

polynomial of a simple supersingular abelian surface de-

fined over Fq if and only if it appears in the list (SS1) or
(SS2).

Proof: The supersingular condition is equivalent to

vp(a1) ≥ a/2, vp(a2) ≥ a. In the list of simple abelian
surfaces given in Theorem 2.9, only those of (SS1) and

(SS2) satisfy this condition.

This result completes the list given in [Xing 96], where

some cases are missing.
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(a1, a2) L

(0,0), (a odd, p W= 2) or (a even, p W≡ 1 (mod 8)), p W≡ 1 (mod 4) Fq2
(0,0), (a odd, p W= 2) or (a even, p W≡ 1 (mod 8)), p ≡ 1 (mod 4) Fq4
(0, q), a odd, p W≡ 1 (mod 3) Fq2
(0, q), a odd, p ≡ 1 (mod 3) Fq6
(0,−q), (a odd, p W= 3) or (a even, p W≡ 1 (mod 12)), p W≡ 1 (mod 3) Fq2
(0,−q), (a odd, p W= 3) or (a even, p W≡ 1 (mod 12)), p ≡ 1 (mod 3) Fq3
(±√q, q), a even, p W≡ 1 (mod 5) Fq5
(±√5q, 3q), a odd, p = 5 Fq5
(±√2q, q), a odd, p = 2 Fq4
(0,−2q), a odd Fq2
(0, 2q), a even, p ≡ 1 (mod 4) Fq2
(±2√q, 3q), a even, p ≡ 1 (mod 3) Fq3

TABLE 1. The minimum field L of decomposition of the supersingular surfaces.

2.2 Absolutely Simple Abelian Surfaces

We now characterize in terms of the pair (a1, a2) when

an abelian surface A defined over Fq is absolutely simple.
By abuse of language, we denote simply by A = (a1, a2)

the (isogeny class of an) abelian surface determined by a

pair (a1, a2) satisfying the conditions of Theorem 2.9.

We have classified the simple abelian surfaces in three

groups: (M) for mixed, (O) for ordinary and (SS1),

(SS2) for supersingular. They can be distinguished

by the Newton polygon of their characteristic polyno-

mial, which has 3, 2, 1 sides, respectively. The num-

ber of sides of the Newton polygon is invariant un-

der scalar extension; thus, attending to the particu-

lar shape of the polygon, we see that after scalar ex-

tension, a simple surface of type (M), (O), (SS) ei-

ther remains simple of the same type or decomposes as

the product of two elliptic curves, which are, respec-

tively, ordinary×supersingular, ordinary×ordinary, and
supersingular×supersingular. Actually, we shall prove

that all simple surfaces of type (M) are absolutely sim-

ple.

Since the invariant ∆ can be a square in Z, or the
characteristic polynomial can be reducible only for su-

persingular simple surfaces, we have

Lemma 2.12. Let A be a nonsupersingular simple abelian
surface defined over Fq. The following conditions are

equivalent:

(i) A remains simple over Fqn .

(ii) The invariant ∆(Fqn) is not a square in Z.

(iii) The characteristic polynomial fA|Fqn (t) is

irreducible.

The proof of the following observation is straightfor-

ward.

Lemma 2.13. Let A = (a1, a2) be an abelian surface de-
fined over Fq and let A|Fq2 = (b1, b2), A|Fq3 = (c1, c2).

Then

b1 = 2a2 − a21, b2 = a
2
2 − 2qa21 + 2q2;

c1 = a1(a
2
1−3a2+3q), c2 = a

3
2+6q

2a21−3q2a2−3qa21a2.
Moreover,

∆(Fq2) = a21∆, ∆(Fq3) = (q − a21 + a2)2∆.
We can tell the minimum field L of decomposition of

the supersingular surfaces just by checking Lemma 2.13

and Theorem 2.9. (See Table 1.)

In the nonsupersingular case, it is easy to analyze,

using Lemmas 2.12 and 2.13, the decomposition in Fqn ,
for n = 2, 3, 4, 6:

Proposition 2.14. Let A = (a1, a2) be a simple abelian

surface defined over Fq, which is not supersingular. Then

(i) A decomposes over Fq2 iff a1 = 0.

(ii) A decomposes over Fq3 iff q = a21 − a2.
(iii) A is simple over Fq2 and decomposes over Fq4 iff

a21 = 2a2.

(iv) A is simple over Fq2 and Fq3 but decomposes over
Fq6 iff a21 = 3(a2 − q).

(v) If A is simple over Fq4 then it is simple over Fq8 .

(vi) If A is simple over Fq4 and Fq6 then it is simple over
Fq12 .
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Proof: Suppose that A decomposes over Fqn and n = 2 or
3. Then ∆(Fqn) is a square in Z, but since ∆(Fq2) = a21∆
(respectively, ∆(Fq3) = (q − a21 + a2)2∆) and ∆ is not a

square in Z, this implies a1 = 0 (respectively, q−a21+a2 =
0). Conversely, if a1 = 0 (respectively, q − a21 + a2 = 0),
then ∆(Fqn) = 0 and A decomposes over Fq2 by Lemma
2.12. This proves (i) and (ii).

By (i), A decomposes over Fq4 and not before if and
only if a1 W= 0 and b1 = 0. This is equivalent to b1 = 0

since the condition a1 = 0 = b1 is satisfied only by the

supersingular surface A = (0, 0). This proves (iii).

By (i) and (ii), A decomposes over Fq6 and not before
if and only if c1 = 0, a1 W= 0, q W= a21 − a2. The two
first conditions are equivalent to a21 − 3a2 + 3q = 0 and
this latter condition already implies that q W= a21 − a2. In
fact, a21 − 3a2 + 3q = 0 = q − a21 + a2 leads to (a1, a2) =
(
√
3q, 2q) which is either impossible or satisfied only by

a supersingular surface. This proves (iv).

Suppose that A is simple over Fq4 and decomposes
over Fq8 . By (iii), applied to the surface A|Fq2 , we have
b21 = 2b2, but this equation is impossible. In fact, it leads

to

a41 + 2a
2
2 − 4a2a21 + 4qa21 − 4q2 = 0.

This relation implies a1, a2 both even and 4q
2 ≡ 0 (mod

8), which is possible only for p = 2. But then, A would

be supersingular. This proves (v).

Suppose that A is simple over Fq4 and Fq6 , but it
decomposes over Fq12 . By (iv), applied to the surface
A|Fq2 , we have b

2
1 = 3(b2 − q2), which is impossible. In

fact, it leads to

a41 + (6q − 4a2)a21 + a22 − 3q2.

The discriminant of this quadratic equation in a21 is

12(a2 − 2q)2, which is a square in Z only if a2 = 2q;

but then a21 = q and (for a even) A would be supersin-

gular. This proves (vi).

Actually, Proposition 2.14 collects all possible cases in

which a non-supersingular simple abelian surface is not

absolutely simple.

Theorem 2.15. Let f(t) = t4+a1t3+a2t2+qa1t+q2 ∈ Z[t]
be a Weil polynomial and let

∆ = a21 − 4a2 + 8q, δ = (a2 + 2q)
2 − 4qa21.

Then there exists an absolutely simple abelian surface A

defined over Fq with f(t) = fA(t) if and only if ∆ is not

a square in Z and either

(a) vp(a1) = 0, vp(a2) ≥ a/2, δ is not a square in Zp,
or

(b) vp(a2) = 0, a
2
1 W∈ {0, q + a2, 2a2, 3(a2 − q)}.

Proof: We have already checked that all surfaces other

than those listed above are not absolutely simple. We

prove now that if A = (a1, a2) is a nonsupersingular sim-

ple abelian surface which is not absolutely simple, then

a21 ∈ {0, q + a2, 2a2, 3(a2 − q)}. For such a surface, the
characteristic polynomial fA(t) is irreducible. Let π be

one of its roots in Q̄ and let K = Q(π) be the quar-
tic field generated by π. The quadratic algebraic integer

β = π + q/π belongs to K, hence, the discriminant ∆ of

its minimal polynomial over Q is a square in K, so that
K contains Q(

√
∆) as a quadratic subfield.

By Lemma 2.12, A decomposes over Fqn if and only
if the characteristic polynomial of A|Fqn reduces and this
is equivalent to Q(πn) K. Take n minimum with this

property and let L be a quadratic subfield of K contain-

ing πn. If Gal(K/L) = {1,σ}, we have

πn ∈ L⇐⇒ (πn)σ = πn ⇐⇒ πσ = 6π,

where 6 ∈ K is a primitive n-th root of 1, by the minimal-

ity of n. Thus, n belongs to the set {2, 3, 4, 5, 6, 8, 10, 12}.
By Proposition 2.14, the cases n = 8, 12 are not pos-

sible and in the cases n = 2, 3, 4, 6, we have a21 ∈
{0, q + a2, 2a2, 3(a2 − q)}.
Finally, assume that n = 5 or 10. Then K = Q(µ5) is

a cyclic extension of Q whose only quadratic subfield is

Q(
√
5). In this case, πn = ±√qn, since πn is a real Weil

number. Thus, A would be supersingular.

The ordinary case (b) has already been settled in

[Howe and Zhu 02].

Corollary 2.16. The minimum positive integer n for

which a not absolutely simple abelian surface over Fq de-
composes over Fqn belongs to {1, 2, 3, 4, 5, 6}.

Corollary 2.17. If an abelian surface A defined over Fq
decomposes over Fq as the product of two elliptic curves,
one supersingular, the other ordinary, then A decomposes

already over Fq.

3. CURVES OF GENUS 2 OVER FINITE FIELDS

3.1 Generalities on Curves of Genus 2

Let k be a perfect field. Any smooth projective curve C

defined over k of genus 2 is hyperelliptic; that is, it admits
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a k-morphism, x : C −→ P1, of degree 2. In particular,
the function field k(C) is a separable quadratic extension

of k(P1). The k-automorphism, ι : C −→ C, correspond-

ing to the nontrivial element of Gal(k(C)/k(P1)) is called
the hyperelliptic involution of C. Any two k-morphisms

of degree 2 from C to P1 differ by a k-automorphism of

P1. Thus, the hyperelliptic involution does not depend
on the particular choice of the morphism x. The fixed

points of ι are the ramification points of any such mor-

phism and they coincide also with the Weierstrass points

of C. By the Hurwitz genus formula, the different of

k(C)/k(P1) is a divisor D of degree 6. If char(k) W= 2, D
consists of six different points, but if char(k) = 2, there

are three different possibilities for the structure of this

divisor [Igusa 60],[Lachaud 91]:

(a) D = 5P∞,
(b) D = 3P∞ + P0,
(c) D = P∞ + P0 + P1.

Since the divisor D is defined over k, the points P∞ and

P0 in cases (a) and (b) are defined over k too. However,

in case (c), we have three possibilities:

(c1) P∞, P0, P1 defined over k,
(c2) P∞ defined over k and P0, P1 conjugated over a

quadratic extension,

(c3) P∞, P0, P1 conjugated over a cubic extension.
Clearly, the type of divisor and the structure of the sup-

port of D as a galois set are invariant by k-isomorphism;

thus, the set H of k-isomorphy classes of smooth projec-

tive curves of genus 2 is the disjoint union of 5 subsets:

H = Ha ∪Hb ∪Hc1 ∪Hc2 ∪Hc3.

If char(k) W= 2, there are 11 possibilities for the structure
of the support of D as a galois set, one for each partition

of 6. We have a similar decomposition ofH as the disjoint
union of 11 subsets:

H = H6 ∪H5,1 ∪H4,2 ∪H4,1,1 ∪H3,3 ∪H3,2,1 ∪H3,1,1,1

∪H2,2,2 ∪H2,2,1,1 ∪H2,1,1,1,1 ∪H1,1,1,1,1,1,

where, for instance, H4,1,1 denotes the set of classes of

curves in H having two Weierstrass points defined over k

and four Weierstrass points defined over a quartic exten-

sion of k and forming a complete orbit under the action

of Gal(k̄/k).

We choose a point ∞ ∈ P1(k), and we call it infinity.
This choice determines an embedding A1 ⊆ P1 and iden-
tifications k(P1) = k(x), Aut(P1) = PGL2. The function
field k(C), as a quadratic extension of k(x), admits a

generator y ∈ k(C) satisfying:

y2 = f(x) (if char(k) W= 2),
(3—1)

y2 + y = f(x) (if char(k) = 2),

for some rational function f(x) ∈ k(x). This equation
for the function field of C is unique up to two actions: x

can be replaced by any automorphism γ(x) ∈ PGL2(k)
and f(x) can be replaced, respectively, by

f(x)g(x)2 (if char(k) W= 2),
f(x) + g(x) + g(x)2 (if char(k) = 2),

where g(x) ∈ k(x) is an arbitrary rational function,

g(x) W= 0 in the odd characteristic case. Accordingly,

one is able to exhibit a family of plane affine models con-

taining all k-birational classes of curves of genus 2.

If char(k) W= 2, any projective smooth curve of genus 2
is k-isomorphic to the normalization of the projective clo-

sure of the plane affine curve C0 defined by the equation

y2 = f(x), where f(x) = anx
n+ · · ·+a0 ∈ k[x] is a sepa-

rable polynomial of degree 5 or 6. The curve C0 is smooth

and its closure C̃ in P2 has only one point at infinity, P∞,
which is a singular point. If n = 5, the point P∞ has only
one preimage in the normalization C → C̃, which we still

denote by P∞; this point is a Weierstrass point and it is
always defined over k. If n = 6, the point P∞ has two

preimages in C, which we denote by P∞1
, P∞2

; these

points are permuted by ι and they are defined over k if

and only if an is a square in k
∗. Since the rest of the

points of C are in bijection with the points in C0, it is

common to attach to these points of C the affine coordi-

nates (x, y) of the corresponding points in C0. In affine

coordinates, the hyperelliptic involution is expressed by

ι(x, y) = (x,−y).
If char(k) = 2, any projective smooth curve of genus

2 is k-isomorphic to the normalization of the projective

closure of the plane affine curve C0 defined (after removal

of denominators) by an equation:

(a) y2 + y = ax5 + bx3 + cx2 + d, a W= 0,
(b) y2 + y = ax3 + bx+ c

x
+ d, ac W= 0,

(c1) y2 + y = ax+ b
x
+ c

x+1 + d, abc W= 0,
(c2) y2 + y = ax+ bx+c

Q(x) + d, a W= 0, (b, c) W= (0, 0),

(c3) y2 + y = ax2+bx+c
P (x) + d, (a, b, c) W= (0, 0, 0),

where Q(x), P (x) are irreducible polynomials of respec-

tive degree 2,3. As before, one attaches to the points of C

the affine coordinates of the corresponding affine model.
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The set of “points at infinity” of C coincides with the set

W of Weierstrass points, except for the model (c3), in

which case

C(k̄) \ C0(k̄) =W ∪ {P∞1 , P∞2},
with P∞1 , P∞2 permuted by ι; these two points are

defined over k if and only if d belongs to the Artin-

Schreier group: AS(k) := {λ + λ2 |λ ∈ k}. In affine

coordinates, the hyperelliptic involution is expressed by:

ι(x, y) = (x, y + 1).

3.2 Quadratic Twist

The quadratic extensions of k are parameterized by

k∗/(k∗)2 if char(k) W= 2 (Kummer theory) and by

k/AS(k) if char(k) = 2 (Artin-Schreier theory). If a

smooth projective curve C of genus 2 is given by Equa-

tion (3—1), we define the twisted curve by an element

λ ∈ k∗/(k∗)2, respectively, λ ∈ k/AS(k), as the curve
Cλ determined by the equation

y2 = λf(x), respectively, y2 + y = f(x) + λ.

The curves C and Cλ are isomorphic over the quadratic

extension of k determined by λ, but they are not neces-

sarily k-isomorphic. This induces a well-defined action of

k∗/(k∗)2, respectively, k/AS(k), on H and we denote by

Ht the quotient set of classes of curves of genus 2 up to

k-isomorphism and quadratic twist. The galois structure

of the set of Weierstrass points is preserved by quadratic

twist and we obtain an analogous decomposition for the

set Ht as the disjoint union of 11, respectively, 5 subsets.

If k = Fq is a finite field, we have k∗/(k∗)2 l Z/2Z,
respectively, k/AS(k) l Z/2Z, according to the parity of
q. Actually, if q is even, we have an exact sequence of

additive groups

0 −→ F2 −→ Fq
AS−→ Fq

Tr−→ F2 −→ 0,

where AS(λ) = λ + λ2. Thus, the subgroup AS(Fq)
coincides with the set of elements of absolute trace zero.

Let Nm(C) = #C(Fqm) be the number of rational
points of C over the unique extension of degree m of k.

If we denote by C I the nontrivial quadratic twist of C,
we have

N1(C) +N1(C
I) = 2q + 2, N2(C) = N2(C

I),

or equivalently,

a1 + a
I
1 = 0, a2 = a

I
2, (3—2)

where a1, a2 and a
I
1, a
I
2 are the coefficients of the numera-

tor of the zeta function, respectively, of C and C I (see,
for example (1—2)).

3.3 Generating Curves of Genus 2 up to k-isomorphism
and Quadratic Twist

If char(k) W= 2, the moduli functor of curves of genus 2 is
the variety

M =

w
P1
6

W
\PGL2.

The set of k-points of this functor parameterizes smooth

projective curves of genus 2 up to k-isomorphism and

quadratic twist. More precisely, if we denote by

X :=
w
P1(k̄)
6

WGal(k̄/k)
,

the set of families of six different points of P1(k̄) which
are invariant (as a family) under the galois action, we can

consider the map

w : Ht −→M(k) = X\PGL2(k), (3—3)

which assigns to any curve C the set {x(P1), · · · , x(P6)}
of images of the Weierstrass points P1, · · · , P6 of C under
any k-morphism, x : C −→ P1, of degree 2. This map
w is well-defined and bijective. The inverse map sends

{x1, · · · , x6} to the curve C defined by the equation

y2 =
�
xi W=∞

(x− xi).

In exactly the same way as H and Ht, the sets X and
X\PGL2(k) split as the union of 11 different subsets ac-
cording to the galois structure of the sextuples of points.

Clearly, the map w of (3—3) respects this decomposition.

In fact, in an affine model, the Weierstrass points have

coordinates (x, 0) and the possible Weierstrass point at

infinity P∞ with image x(P∞) = ∞ is always defined

over k.

In order to describe Ht when char(k) = 2, we don’t

use the moduli space of curves of genus 2 (described in

[Igusa 60]). Instead, we find for each of the cases (a), (b),

(c1), (c2), and (c3) explicit conditions on the coefficients

a, b, c, d of the equations, determining when two curves

of the same type are k-isomorphic. Curves of type (a)

are precisely those whose Jacobian is supersingular; this

case has been thoroughly studied in [van der Geer and

van der Vlugt 92]. For details concerning the other cases,

see [Cardona et al. 02].

We have developed two independent MATHEMAT-

ICA subroutines that find unique representatives of the

set Ht when k = Fq is the finite field with q elements.
For q odd, the subroutine Gen2 finds representatives of

the set X under the action of PGL2(k). For the sake
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Equation N1 N2 a1 a2

type (a)

y2 + y = x5 3 5 0 0

y2 + y = x5 + x2 5 9 2 4

y2 + y = x5 + x3 5 5 2 2

y2 + y = x5 + x3 + x2 3 9 0 2

type (b)

y2 + y = x3 + 1
x 4 4 1 0

y2 + y = x3 + x+ 1
x

2 8 −1 2

type (c1)

y2 + y = x+ 1
x
+ 1

x+1
3 3 0 −1

type (c2)

y2 + y = x+ 1/(x2 + x+ 1) 3 7 0 1

y2 + y = x+ x/(x2 + x+ 1) 5 7 2 3

type (c3)

y2 + y = 1/(x3 + x+ 1) 2 6 −1 1

y2 + y = x/(x3 + x+ 1) 4 10 1 3

y2 + y = (x2 + x)/(x3 + x+ 1) 6 6 3 5

TABLE 2. q = 2.

of efficiency, we split the search of these representatives

into 11 different cases, since for each different structure

of the galois set, we use different procedures to lower

the complexity of the search. For q even, the subroutine

Gen2Ch2 works directly with the five types of generat-

ing equations, restricted always to the case d = 0. We

remark that since two triples of points of P1 with the
same galois structure are in the same orbit under the

action of PGL2(Fq), the quadratic and cubic irreducible
polynomials Q(x), P (x) of cases (c2) and (c3) can be

fixed a priori. These subroutines, as well as the package

FF, can be downloaded at www.mat.uab.es/danielm.

Our programs also compute for each curve the num-

bers N1, N2 of points of the curve over the fields Fq,Fq2
and the relevant coefficients a1, a2 of the numerator of

the zeta function. For instance, we list in Table 2 the

output for q = 2 and in Table 3 the output for q = 3.

Remark 3.1. For q odd, explicit formulas for 2Ht as a

polynomial in q can be found in [López et al. 02]. By

similar methods, we found formulas for the cardinality of

each of the 11 subsets Ht
P , where P is a partition of 6.

For q even, in [van der Geer and van der Vlugt 92] the

authors find explicit formulas for 2Ha and, even more,

for the number of curves in Ha with prescribed number

N1 of k-points. Formulas for 2Hb and 2Hci, i = 1, 2, 3

Equation N1 N2 a1 a2

21111

y2 = (1 + x2)x(1 + x)(−1 + x) 4 6 0 −2

2211

y2 = (1 + x2)x(−1− x+ x2) 6 10 2 2

y2 = (1 + x2)(1 + x)(−1 + x+ x2) 4 14 0 2

222

y2 = (1 + x2)(−1 + x+ x2)(−1− x+ x2) 8 14 4 10

42

y2 = (1 + x2)(−1− x2 + x4) 6 18 2 6

y2 = (1 + x2)(1− x+ x2 + x4) 6 14 2 4

y2 = (1 + x2)(−1− x+ x4) 4 14 0 2

y2 = (1 + x2)(1− x+ x3 + x4) 8 10 4 8

411

y2 = x(−1 + x− x2 − x3 + x4) 4 10 0 0

y2 = x(1 + x+ x2 + x4) 6 10 2 2

y2 = x(1 + x− x3 + x4) 4 6 0 −2
y2 = x(−1− x2 + x4) 4 18 0 4

y2 = x(−1 + x+ x4) 6 14 2 4

y2 = x(1− x+ x2 − x3 + x4) 6 18 2 6

33

y2 = (−1− x+ x3)(1− x+ x3) 2 20 −2 7

y2 = (−1− x+ x3)(1− x2 + x3) 4 12 0 1

y2 = (−1− x+ x3)(−1 + x2 + x3) 6 12 2 3

3111

y2 = x(x− 1)(1 + x− x2 + x3) 3 5 −1 −2
y2 = x(x− 1)(−1 + x2 + x3) 5 13 1 2

321

y2 = (1 + x2)(1 + x− x2 + x3) 5 13 1 2

y2 = (1 + x2)(−1 + x2 + x3) 3 9 −1 0

y2 = (1 + x2)(−1− x− x2 + x3) 1 13 −3 6

y2 = (1 + x2)(1− x+ x3) 3 17 −1 4

6

y2 = 1 + x2 − x4 + x6 4 20 0 5

y2 = 1− x2 + x6 8 12 4 9

y2 = −1 + x+ x3 + x4 + x5 + x6 6 16 2 5

y2 = −1 + x5 + x6 4 16 0 3

y2 = −1− x3 − x4 + x5 + x6 2 12 −2 3

y2 = −1 + x+ x5 + x6 4 8 0 −1
y2 = 1− x+ x2 − x3 + x5 + x6 6 8 2 1

51

y2 = −1 + x− x2 − x4 + x5 3 15 −1 3

y2 = 1− x+ x5 7 15 3 7

y2 = −1 + x+ x3 + x5 1 11 −3 5

y2 = −1− x3 − x4 + x5 5 15 1 3

y2 = 1 + x− x2 − x3 + x5 5 19 1 5

y2 = −1− x− x2 + x3 − x4 + x5 3 7 −1 −1
y2 = −1− x+ x2 + x3 + x5 3 11 −1 1

y2 = −1− x− x4 + x5 5 11 1 1

TABLE 3. q = 3.
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q = 2 y2 + y = 1 + (x2 + x)/(x3 + x+ 1)

q = 3
y2 = −(x2 + 1)(x2 + x− 1)(x2 − x− 1)
y2 = −(x2 + 1)(x4 + x3 − x+ 1)
y2 = −x6 + x2 − 1

q = 4 y2 + y = s+ x/(x3 + x+ 1), s2 = s+ 1

q = 5
y2 = (2x3 + 4x− 2)(x3 − 2x2 − 1)
y2 = 2x6 − 2x5 + 2x4 + x3 − x2 − 2x+ 2
y2 = (2x2 + 1)(x4 − 2x3 + x2 − 2x− 2)

q = 7
y2 = (−x2 + 3)(x2 + 1)(x2 + 2)
y2 = −x6 + 2x4 − 3x2 − 2

q = 8 y2 + y = u+ ((u+ u2) + ux+ ux2)/(x3 + ux+ u), u3 = u2 + 1

q = 9 y2 = s(x3 − x+ 1)(x3 − x− 1), s2 = −1

q = 11 y2 = (−x2 + 2)(x4 − 5x3 + x2 + x+ 4)

TABLE 4.

can be found in [Cardona et al. 02]. Our numerical

computations agree with all these results.

As a by-product of our search, we obtain the complete

list of curves of genus 2 without rational points. ByWeil’s

bound, any curve of genus 2 over Fq has rational points
if q > 13. By searching all curves for q ≤ 13, we obtain

Theorem 3.2. Any smooth projective curve C of genus

2 defined over a finite field Fq, such that C(Fq) = ∅, is
Fq-isomorphic to one of the curves listed in Table 4.

The fact that C(F13) W= ∅ for all curves defined over
F13 has already been observed by Stark [Stark 72].

4. ABELIAN SURFACES AS JACOBIANS

We are far from having a complete answer to the question

of which isogeny classes of abelian surfaces contain a Ja-

cobian. There is abundant literature about existence and

nonexistence results for decomposable surfaces, with sig-

nificant contributions by Serre, Hayashida-Nishi, Rück,

Frey-Kani, Kani, Ibukiyama-Katsura, and Oort among

others, although in some cases, the adaptation of the ar-

guments to the finite field case is still to be done.

For simple surfaces, the situation is much clearer, prin-

cipally because of a well-known result of Weil. Actually,

we need a generalization of the classical result of [Weil

57], which can be easily deduced from the arguments of

Section 5.10 of [Adleman and Huang 92]:

Theorem 4.1. (Weil, Adleman-Huang.) Let A be a prin-
cipally polarized abelian surface defined over a finite field

k. If A is simple over the quadratic extension of k, then

A is k-isomorphic to the Jacobian of a projective smooth

curve of genus 2.

Using this result, if A is simple over the quadratic

extension of k, then the isogeny class of A contains a Ja-

cobian if and only if it contains a principally polarized

surface. This latter question has been completely solved

in the ordinary case in [Howe 95]. Moreover, in Theo-

rem 4.3 below, we use a criterion of Howe to prove that

any simple surface of the family (M) of Theorem 2.9 is

isogenous to a principally polarized surface. Thus, it re-

mains to solve the question only for a scattered family

of supersingular simple surfaces and for the simple sur-
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faces with a1 = 0, which, by Proposition 2.14, are the

only nonsupersingular surfaces that decompose over the

quadratic extension of k.

In any case, it is quite simple to carry out a computa-

tional exploration of the problem. We have written two

programs Jac2,Jac2Ch2, which for a given (odd, respec-

tively, even) prime power q display all isogeny classes of

abelian surfaces A over Fq, determine the decomposition
type of A and count the number of projective smooth

curves of genus 2 for which the Jacobian is isogenous

to A.

As a first step, the program considers the pairs of inte-

gers (a1, a2) parameterizing all Weil polynomials (Lemma

2.1) and for each of them, it checks the conditions of The-

orems 2.9 and 2.15 labeling each polynomial with one of

the following symbols:

x there exists no abelian surface corre-

sponding to this pair (a1, a2)
a absolutely simple

o ordinary, simple, not absolutely simple

s simple, supersingular

d decomposes as E1 × E2, with E1, E2 not
Fq-isogenous

e decomposes as E × E
This information is kept in the form of a matrix in-

dexed by the values of (a1, a2), with the above symbols as

entries. Once this matrix is obtained (with an insignifi-

cant expenditure of time), it is written as a first output of

the program. Afterwards, the programs Gen2,Gen2Ch2

search for all curves of genus 2 over Fq and for each
curve, they compute the pair (a1, a2) of relevant coef-

ficients of the characteristic polynomial of its Jacobian

and then add one to the entry (|a1|, a2) of the ma-
trix. Then, the programs produce as a second output

the same matrix with the changes produced by counting

the Jacobians. These subroutines can be downloaded at

www.mat.uab.es/danielm.

For instance, for q = 2, 3, the two outputs of

Jac2Ch2,Jac2 are given in Tables 5 and 6.

In the display of the matrix, the rows are indexed by

increasing values of a1, starting with a1 = 0, whereas

the columns are indexed by the values of a2 within the

a1min.a2
0 -4 sosodosde

1 -1 oaadad

2 2 sade

3 5 od

4 8 e

s o s 1 1 1 1de
o 1 1 1 1d
1 1 1 e
1d
e

TABLE 5. q = 2.

a1min.a2
0 -6 soodoosodsode

1 -2 oadaaadad

2 1 oodaade

3 5 adad

4 8 ode

5 12 d

6 15 e

s ood 2 1 1 1 2 1 1 1 e
1 1 1 2 2 2 1 1d
1 2 2 2 1 2 1

1 1 1d
1 1 1

d
e

TABLE 6. q = 3.

bounds

2|a1|√q − 2q ≤ a2 ≤ a
2
1

4
+ 2q,

given by Lemma 2.1. To accommodate the reader we

write the minimum value of a2 corresponding to the first

entry in the row at the beginning of each row.

Finally, the matrix has entries only with a1 ≥ 0 and
the program takes into account only one curve for each

pair C, C I of twisted curves. This is harmless after

the following observation, which is an immediate conse-

quence of Theorem 2.9, Theorem 2.15 and (3—2) of Sec-

tion 3.2:

Lemma 4.2.

(i) For any a1, a2 ∈ Z, the couples (a1, a2) and (−a1, a2)
have the same symbol x,a,o,s,d,e attached as above.

(ii) If C is a curve of genus 2 whose Jacobian corre-

sponds to the couple (a1, a2), then the nontrivially

twisted curve C I has Jacobian corresponding to the
couple (−a1, a2).

In particular, the figures occurring in the rows with

a1 > 0 give the exact number of k-isomorphy classes of

curves whose Jacobian belongs to this isogeny class. Only

in the row a1 = 0 do the figures give the number of curves

up to k-isomorphism and quadratic twist.

One can observe some regular behavior in the

numerical results obtained by running the programs

Jac2,Jac2Ch2 for all q ≤ 49.

4.1 Observations

For q ≤ 49, one can check that in the second output

matrix:

1. There is no a.

2. In the last position of the odd rows, we find either

an x or a d.



332 Experimental Mathematics, Vol. 11 (2002), No. 3

3. In the second position of the top row, we always find

o. If char(k) W= 2, in the third position of the top

row we find o, too.

4. Assume q ≥ 5 and p W= 3. Then, all other surfaces

in the top row, apart from the two (one if char(k) =

2) mentioned above, are Jacobians, with the only

exception of A = (0,−q) when q is not a square and
p ≡ 1 (mod 3) or p = 2, or when q is a square and
p ≡ 7(mod 12).

The first two observations can be generalized as fol-

lows:

Theorem 4.3. Every absolutely simple abelian surface A
defined over a finite field Fq is Fq-isogenous to the Jaco-
bian of a projective smooth curve of genus 2.

Theorem 4.4. Let a1 be an odd integer, |a1| < 2[2
√
q].

Let a2 = 2q + (a
2
1 − 1)/4 be the largest integer such that

(a1, a2) determine a Weil polynomial and assume that

(a1± 1)/2 are q-Waterhouse numbers. Then, the abelian
surface A = (a1, a2) decomposes over Fq and it is not Fq-
isogenous to the Jacobian of a smooth projective curve of

genus 2.

Theorem 4.4 is an immediate consequence of a result

of Serre ([Lauter 00], Lemma 1). For such a surface, we

have ∆ = 1, so that A decomposes. Moreover, β1,β2 =

(a1 ± 1)/2 are integers such that β1 − β2 = ±1; hence,
the polynomial (t − β1)(t − β2) factorizes in Z[t] as the
product of two polynomials whose resultant is ±1. By the
result of Serre, π1, π̄1,π2, π̄2 cannot be the eigenvalues of

Frobenius of a smooth projective curve of genus 2 defined

over Fq.
Theorem 4.4 can be reinterpreted in terms of number

of points as follows: If we restrict our attention to curves

C with a fixed value of N1 = 2C(Fq), then the numberN2
of points of C over the quadratic extension is bounded

by a2 ≤ 2q + (a21/4), which by (1—2) translates into

N2 ≤ 3q + (q + 1)N1 + q
2 + 1−N2

1

2
.

Since N1 ≡ q (mod 2), the maximum possible value of

N2 would be

N2 = 3q + (q + 1)N1 +
q2 −N2

1

2
,

and Theorem 4.4 asserts that this value is never attained.

Theorem 4.3 is a consequence of Theorem 4.1, the

work of [Howe 95], [Howe 96] and our characterization

of the absolutely simple surfaces (Theorem 2.15).

Proof of Theorem 4.3: By Theorem 4.1, it is sufficient to

show that any absolutely simple abelian surface A defined

over Fq is Fq-isogenous to a principally polarized one. If
A is ordinary, this has been proved by Howe [Howe 95]. In

fact, he proves that the parameters (a1, a2) of an ordinary

abelian surface over Fq which is not isogenous to any
principally polarized surface satisfy q = a21 − a2 and this
implies that A decomposes over Fq3 by Proposition 2.13.
For A nonordinary, Howe has found sufficient conditions

for an abelian surface to be principally polarized, which

are applicable in our case ([Howe 96], Prop. 7.2).

Let A be a nonordinary absolutely simple abelian sur-

face. By Theorem 2.15, A is of type (M). The quartic field

K generated by any root π of fA(t) is a CM field with

K+ = Q(
√
∆) as the real quadratic subfield. The crite-

rion of Howe asserts in this case that if there is a prime

ideal that ramifies in K/K+, or there is an inert prime

ideal in K/K+ dividing π− π̄, then A is Fq-isogenous to
a principally polarized abelian surface. Let us check that

this condition is always satisfied.

We denote by O,O+ the respective rings of integers of
K,K+. Since p ∆ and ∆ is a quadratic residue modulo

p (with ∆ ≡ 1 (mod 8) if p = 2), the prime p decomposes
in K+:

pO+ = ℘℘I. (4—1)

On the other hand, fA(t) decomposes in Qp[t] as

fA(t) = (t
2 + βt+ q)(t− α1)(t− α2),

with t2 + βt + q irreducible ([Rück 90], Lemma 3.2).

Hence, p decomposes in O as

pO = P1P2P2, or pO = P1P2P(2). (4—2)

From fA(t) ≡ t3(t + a1) (mod p), we get by an old re-
sult of Kummer that p and π + a1 are generators of one

of the prime ideals P1,P2; let’s say: P1 = (p,π + a1).

The two decompositions (4—1), (4—2) imply that one of

the prime ideals of O+ above p decomposes in O as the

product P1P2 and the other is either ramified or inert (it
is easy to determine when it is inert or ramified in terms

of δ). Since Gal(K/K+) = {1,σ}, where σ is complex
conjugation, we know explicit generators for P2 = Pσ1
too: P2 = (p, π̄ + a1). In particular, neither P1 nor P2
can divide π − π̄; for instance,
P1 | π − π̄ = (π + a1)− (π̄ + a1) =⇒ P1 | (π̄ + a1)

=⇒ P1 ⊇ P2,
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a1 min.a2

0 -8 doxosoxdsoxodoxde

1 -4 doaaaadaaadad

2 0 daxasdxade

3 4 doaodad

4 8 daxde

5 12 dad

6 16 de

7 20 d

8 24 e

dox 2 1 2x 2 2 4x 4 2 2x 1 1
d 1 2 2 2 2 2 4 1 3 2 2d
d 3 x 4 2 4x 4d 1
d 2 2 4 1 2d
1 2 x 2 1
d 1d
de
d
e

TABLE 7. q = 4.

a1min.a2

0 -10 sooodsoooosdooosdoode

1 -5 aoadaaaaadaaadad

2 -1 oaadaaaadaade

3 4 oadaoadad

4 8 oadoade

5 13 adsd

6 17 ode

7 22 d

8 26 e

1 oo 1 2 1 1 1 4 2 2 3 5 1 3 3 3 2 2 1 2
1 1 1 2 3 4 3 2 5 3 2 2 3 3 2d
o 2 2 5 3 4 2 6 6 2 1 4 1
3 2 1 4 4 1 2 2d
1 2 3 2 3 3 1

1 1 2d
1 1 1

d
e

TABLE 8. q = 5.

which is impossible. But, p | δ and NK/Q(π− π̄) = δ (see

Lemma 4.5 below); hence the other prime in O above p

must divide π − π̄ and the criterion of Howe is satisfied.

Lemma 4.5. Let A be an abelian surface defined over Fq
such that fA(t) ∈ Z[t] is irreducible. Let K = Q(π) be the
quartic field generated by a root π of fA(t) in Q̄. Then,

NK/Q(π − π̄) = δ := (a2 + 2q)
2 − 4qa21.

Proof: If π1, π̄1,π2, π̄2 are the four roots of fA(t) in Q̄,
we have:

fA(t) = (t
2 + β1t+ q)(t

2 + β2t+ q),

where βi = πi + π̄i are real numbers. The invariant δ is

the product, δ = d1d2, of the two discriminants of these

quadratic factors. Hence, πi − π̄i = ±
√
di and

NK/Q(π − π̄) = (π1 − π̄1)(π̄1 − π1)(π2 − π̄2)(π̄2 − π2)
= (−d1)(−d2) = δ.

We have not been able to check if the third and fourth

observations above are true in general or not. By Theo-

rem 2.9, the abelian surfaces A1 = (0,−2q + 1) and (for

q odd) A2 = (0,−2q + 2) are simple and ordinary. By
([Howe 95], §13) they are Fq-isogenous to the generalized
Jacobian of a good curve in the sense of Oort-Ueno, but

as our tables show, they seem to be not Fq-isogenous to
the Jacobian of a smooth curve.

Actually, we have run a modified version of our pro-

grams centering the attention only in curves with N1 =

q + 1 (that is, a1 = 0) and we have checked that obser-

vations 3 and 4 remain true for q ≤ 64. The assertion

of Obervation 3 has been proved recently by Howe. His

proof that A1 is not isogenous to a Jacobian is included

in Section 6. For the surface A2, see [Howe 02].

5. COMPUTATIONAL RESULTS

In Tables 7—14, we collect the output of the programs

Jac2, Jac2Ch2 for 4 ≤ q ≤ 16. For each q, the out-

put consists of two matrices, indexed by pairs of integers

(a1, a2), corresponding to Weil polynomials. The content

of the matrices is explained at the beginning of Section 4.

For q ≥ 11 only the second matrix is displayed.
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a1min.a2

0 -14 soodooosoooodosoooodosoodoode

1 -8 aadaaaaaaadaaaaadaaadad

2 -3 oadaaoaaadaaaadaade

3 2 oadaaaaadaaadad

4 8 odaaaadaade

5 13 adaaadad

6 18 odaade

7 24 dad

8 29 de

9 34 d

10 39 e

1 oo 1 3 1 1 s 4 4 2 2 7 2 5 4 7 2 4 5 7 3 2 3 7 2 4 2 2
1 2 2 2 3 4 8 2 4 5 4 8 2 5 8 6 4 4 4 2 3 3d
1 4 4 4 2 8 6 6 2146 4 4 6 8 4 3 4 2

1 3 2 3 6 6 2 5 6 4 4 4 4 2d
3 6 6 2 4 6 6 2 5 4 3

1 2 4 2 3 3 1d
2 4 2 2 4 1

1 1d
1 1

d
e

TABLE 9. q = 7.

a1min.a2

0 -16 soxoxoxdsoxoxoxodoxoxoxdsoxoxoxde

1 -10 xaaoxadaxaaaxadaxaaaxaaaxad

2 -4 xaxaxdxaxaxaxaxaxdxaxe

3 1 oxaaaxaaaxodaxadax

4 7 asaxdxaxadaxdx

5 13 axadoxadax

6 18 xaxdxaxe

7 24 aaxad

8 30 xde

9 35 od

10 41 e

1 o x 3 x 4 x 3 s 6 x12 x 3 x12 7 12x 6x12x12 3 6 x 7x 9x 3 3

x 3 3 o x 6 4 6 x 6 6 9 x 6 6 9 x12 6 9x 6 6 9 x 3d

x10x 9 x 12 x 12 x 18x18 x 18x 6 x18x 7x 3

3 x 3 6 6 x 15 6 3 x 9 3 12 x 3 3 6 x

4 3 6 x15 x 12 x 12 4 6 x 9 x

3 x 6 3 6 x 6 3 3 x

x 6 x 6 x 6 x 3

1 3 x 3 d

x 3 1

1 d

e

TABLE 10. q = 8.

a1min.a2
0 -18 dooxooxoosodxooxoosodxooxoodooxodxode
1 -12 daaaoaaaaadaaaaaaadaaaaadaaxdad
2 -6 doaxaaaaodaaaaaadaaaadaade
3 0 daaxaaxadsaaxadxaadad
4 6 dooaaaxdaaaadaade
5 12 daaaoadaaadad
6 18 daaxadxade
7 24 daaadad
8 30 daode
9 36 dad
10 44 de
11 48 d
12 54 e

doox 5 2 x 2 8 s 2 5 x 4 6 x14 4 4 4 16x 3 12 1 6 10d 10 6x 6 10x 6 5 1
d 3 2 2 6 6 2 4 6 2 8 8 6 10 4 2 14 10 2 10 14 4 8 4 3 14 4 x 6 2d
d 3 4 x12 8 4 10 16 4 8 4 6 12 12 4 22 6 4 8 12 4 8 4 4 5
1 2 6 x 6 10x 6 12 4 4 12x 7 10x 8 10d 4 d
1 6 6 4 12 4 x 14 14 2 10 8 6 4 4 2 8
d 5 2 2 11 4 2 4 6 2 4 4 d
d 3 8 x 6 12x 2 8 1
d 2 2 2 3 2 d
1 2 3 1 3
d 1 d
d 1
d
e

TABLE 11. q = 9.

a1 min.a2
0 -22 1 oo 1 3 2 1 2 6 4 1 2 13 1 6 4 9 8 3 5 13 4 5 6 14 6 14 7 11 6 6 3 16 5 5 13 12 2 7 8 7 4 5 1 5
1 -15 1 4 2 4 4 3 7 5 5 10 9 4 9 12 8 4 6 16 8 10 6 8 13 4 12 14 12 6 13 8 5 10 4 10 5 4 5 d
2 -8 4 o 6 6 8 6 14 6 8 8 16 12 12 6 20 24 8 6 18 6 14 6 20 9 8 6 12 12 6 4 12 2
3 -2 2 2 2 8 12 2 8 8 4 14 4 4 20 8 6 15 10 4 12 12 6 10 4 3 8 4 d
4 5 4 9 4 9 4 14 4 14 14 12 4 9 11 13 8 6 12 15 4 6 6 5
5 12 2 5 7 7 4 9 10 8 4 4 8 4 4 5 4 5 d
6 18 2 6 4 2 16 9 4 11 12 6 10 2 4 5
7 25 3 4 4 3 2 4 5 4 2 d
8 32 3 4 6 2 4 6 3
9 38 2 1 2 3 d
10 45 1 2 1
11 51 1d
12 58 1

TABLE 12. q = 11.
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a1 min.a2
0 -26 2 o o 1 5 1 2 3 4 4 2 6 9 s 3 4 17 4 9 4 16 8 4 6 14 8 12 13 9 6 6 12 20 4 12 8 30 2 7 10 16 12 7 5 11 9 7 5 13 4 5 5 4
1 -18 2 3 3 4 4 5 10 7 4 8 10 8 8 6 12 16 8 8 12 13 8 12 20 12 14 10 16 16 8 8 12 12 10 16 12 6 8 11 10 8 6 9 10 3 d
2 -11 2 6 4 8 6 16 7 4 8 24 6 18 6 23 12 12 12 12 20 8 8 28 16 28 6 12 18 6 10 32 18 12 4 18 12 8 3 8 6
3 -4 1 6 5 5 12 4 8 9 18 6 6 18 12 16 8 6 24 16 6 11 14 15 10 8 6 9 10 8 12 10 4 5 d
4 3 4 4 5 12 6 11 16 12 6 17 8 23 4 18 18 24 6 10 20 14 6 14 8 15 6 7 6 12
5 11 2 10 6 4 12 8 5 8 12 12 8 4 4 12 15 8 4 12 4 6 3 d
6 18 8 8 4 6 18 12 10 10 18 9 8 4 12 16 6 5 10 2
7 25 1 2 8 6 9 4 3 6 8 4 4 7 4 d
8 32 3 6 7 2 5 10 10 4 6 4 5
9 39 1 4 2 4 4 3 3 d
10 47 2 4 2 5 2
11 54 1 1 d
12 61 2 1
13 68 d
14 75 e

TABLE 13. q = 13.

a1min.a2

0 -32 1 o x 4 x 4 x 8 x16x 8 x 8 x17 5 16x24x 16x24x 24x44x24x24 8 16x32x 16x38x32x16x36x401032x32x12x38x16x24x12x106

1 -24 d 4 x 8 4 8 x 8 4 10x16 8 12x16 4 16x161216x24 8 25x36 8 20x32 4 28x161632x16 8 16x20 8 32x24 2 18x24 8 8 x 8 d

2 -16 x14x16x24x16x36x24x64x16x 63x32x 48x48x 60x32x40x64x64x32x 48x16x24x40x40x16 x 12

3 -8 d o x 8 6 20x 8 8 20x24 8 20x40x 16x161616x241228x40 8 24x24 4 34x2410 8 x16 4 8 x

4 0 d 8 x32x16x32x36x48x32x321036x72x 32x32x 28x68x16x32d16x20x

5 8 d16x 4 8 8 x24 4 24x16 8 16x16 4 16x321016x 8 4 20x16 4 12x

6 16 x12x24x40x24x40x32x24x32x 48x16x 40x16x 8

7 24 1 4 x16 4 12x16 4 29x 8 8 24x 8 1 8 x 4 d

8 32 4 8 x16x16x34x24x16x16x16 5

9 40 d 6 x12 4 12x 8 4 15x 8 d

10 48 x12x 8 x16x 8 x 6

11 56 d 4 x 4 2 4 x

12 64 d 4 x 8 x

13 72 d 2 x

14 80 x 1

15 88 d

16 96 1

TABLE 14. q = 16.

6. APPENDIX BY EVERETT W. HOWE

For every prime power q, let fq denote the polynomial

x4+ (1− 2q)x2+ q2. In Section 4 of this article, Maisner
and Nart observe that for all prime powers q ≤ 64, no

genus-2 curve over Fq has characteristic polynomial fq.

(By the characteristic polynomial of a curve, we mean

the characteristic polynomial of the Frobenius endomor-

phism of the Jacobian of the curve.) The purpose of this

appendix is to prove that Maisner and Nart’s observation

holds for all prime powers q.

Theorem. There is no curve of genus 2 over any finite
field Fq whose characteristic polynomial is equal to fq.

Proof: Suppose, to obtain a contradiction, that C is a

genus-2 curve over a finite field Fq whose characteristic

polynomial is equal to fq. Note that then #C(Fq) = q+1

and #C(Fq2) = (q − 1)(q − 3).
Let J be the Jacobian of C, let λ be the canonical

principal polarization of J , let F be the Frobenius endo-

morphism of J , and let V = q/F be the Verschiebung

endomorphism of J . Since fq is irreducible and its mid-

dle coefficient is coprime to q, we see that J is a sim-

ple ordinary abelian surface, and it follows that the ring

(End J)⊗Q is equal to the field Q(F ). In fact, this field

is a totally imaginary quadratic extension of a totally

real quadratic field, and general theory (see [Mumford

74, p. 201]) shows that the Rosati involution x )→ x† on
Q(F ) is complex conjugation.

Let i be the endomorphism F − V of J . It is easy to

check that i2 = −1, and it follows that i†i = 1. Thus

i is an automorphism of J that respects the polariza-

tion λ, so i can be viewed as an automorphism of the
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polarized abelian variety (J,λ). Since C is hyperellip-

tic, Torelli’s theorem (see [Milne 86, p. 202]) shows that

the natural map from the automorphism group of C to

the automorphism group of (J,λ) is an isomorphism that

takes the hyperelliptic involution to −1. Thus, the auto-
morphism i of (J,λ) gives us an automorphism α of C,

defined over Fq, whose square is the hyperelliptic involu-

tion.

Let W denote the set of Weierstrass points of C,

viewed as a set with an action of the absolute Galois

group of Fq. If P is a geometric point of C whose orbit

under the action of α contains fewer than four points,

then P must be fixed by α2 = −1, so P must lie in W .

Thus, for every finite extension field k of Fq we have

#C(k) ≡ #W (k) mod 4.
Suppose that q is odd. Then W consists of six points,

and we will show that exactly two of these points are

fixed by α.

Consider the map C → P1 obtained from the hyperel-

liptic involution, and let W I denote the set of six points
of P1 lying under the Weierstrass points of C. The auto-

morphism α induces an involution β of P1 that takes the

set W I to itself. Geometrically, this involution is conju-
gate to the involution x )→ −x, so if none of the points
in W I were fixed by β the curve C would be isomorphic

(over the algebraic closure of Fq) to a curve of the form

y2 = f(x2), where f is a cubic polynomial. But then

α would have to be of the form (x, y) )→ (−x,±y), and
such an automorphism has order two. Thus, β must fix

at least one of the six points of W I. But the points not
fixed by β come in plus/minus pairs, so there must be

at least two points of W I fixed by β. Since x )→ −x
has exactly two fixed points in P1, there must be exactly

two points of W I fixed by β. It follows that exactly two
points of W are fixed by α, as claimed.

Since α is defined over Fq, the two points of W fixed

by α must be defined over Fq2 . Thus, #W (Fq2) ≥ 2.

But we also have

#W (Fq2) ≡ #C(Fq2) = (q − 1)(q − 3) ≡ 0 mod 4,

so we must have #W (Fq2) = 4. But this is impossible,

as one can see by asking where the other two points of

W are defined. Thus, if q is odd, no curve can have

characteristic polynomial fq.

Suppose that q is a power of 2. Then q must be a

multiple of 4, because if q were 2 the curve C would have

−1 points over F4. We see that #W (Fq) ≡ 1 mod 4 and
#W (Fq2) ≡ 3 mod 4. But a genus-2 curve in character-
istic 2 has at most three Weierstrass points, so C must

have exactly three Weierstrass points, and exactly one of

them is defined over Fq.

Once again we let W I denote the points of P1 lying
under the Weierstrass points of C and we let β be the

involution of P1 obtained from α. Clearly β must fix the

unique point of W I(Fq). But β cannot fix the other two
points ofW I, because in that case β would be the identity
on P1, and α could not have order four. Thus, β must

swap the other two points of W I. It follows that over
the algebraic closure of Fq we can write C as y2 + y =

ax+b/x+b/(x+1), where we have chosen the coordinates

so that β is given by x )→ x + 1. But then α must

send (x, y) to (x + 1, y + c) where c2 + c = a, and this

automorphism has order two. Once again we obtain a

contradiction, and the theorem is proved.

Maisner and Nart also note that for every odd prime

power q < 64, no genus-2 curve over Fq has characteris-

tic polynomial gq = x4 + (2 − 2q)x2 + q2. The obvious
conjecture is that the same statement is true for all odd

prime powers q. Unfortunately, the argument we used

above cannot be easily modified to prove this conjecture;

the critical fact we used was that the ring Z[F, V ] con-

tains a root of unity other than ±1, and this is no longer
true when we replace fq with gq in our argument. In

a forthcoming paper [Howe 02], we will prove this con-

jecture using an argument that depends on the Brauer

relations in a biquadratic number field.
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