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Let p be an odd prime number which splits into two distinct
primes in an imaginary quadratic field K. Then K has certain
kinds of noncyclotomic Z,-extensions which are constructed
through ray class fields with respect to a prime ideal lying above
p. We try to show that lwasawa invariants p and A both vanish
for these specfic noncyclotomic Zp-extensions.

1. INTRODUCTION

Let p be a prime number. Then the rational number field
Q has the unique Z,-extension Q. Iwasawa proved ele-
gantly that the class numbers of all intermediate fields of
Qo /Q are prime to p ([Iwasawa 56]). Consequently, Iwa-
sawa invariants ©(Qs/Q) and A(Qs/Q) are both zero.
This is based on the fact that there is a unique prime
ideal of Q ramified in Q. which is totally ramified. Our
purpose in this paper is to consider a noncyclotomic ana-
log to Iwasawa’s theorem in the case where the base field
is an imaginary quadratic field. We give some numerical
evidence for our expectation.

Let K be an imaginary quadratic field and p an odd
prime number which splits into two distinct primes p and
p in K. We denote by K/, = K(p™*!) the ray class field
of K modulo p"*! and put K/ = U K/. Then there
exists a unique Zy-extension K, of K in K/ . In the
same way as Q. /Q, there is a unique prime ideal of K
which is ramified in K,,. One of the differences is that
the prime p of K is not always totally ramified in K.
We are led to the following problem.

Problem 1.1. If p is totally ramified in K, over K, do
the Iwasawa invariants u(Ks/K) and A(Ks/K) vanish?

We note that our situation can be also considered as an
analog to Greenberg’s conjecture which states that both
p and X vanish for the cyclotomic Z,-extension of any
totally real number field. Since an imaginary quadratic
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field has no nontrivial units, our situation is simpler even
in comparison with Greenberg’s conjecture for the real
quadratic case. We hope that studies of this problem
provide a somewhat new approach to the original conjec-
ture of Greenberg.

2. CRITERIA

We begin with some notation. Let k be an algebraic
number field. We denote by Oy, the integer ring of k, by
I}, the ideal group of k, by Py the principal ideal subgroup
of I, and by hy the class number of k. Let L be a Galois
extension of k. We denote by G(L/k) the Galois group
of L over k and Ny /5, the norm mapping of L over k.

Now, as mentioned before, let K be an imaginary
quadratic field and p an odd prime number which splits
into two distinct primes p and p in k. We denote by
K! = K(p"!) the ray class field of K modulo pm*!
and put K., = US2 (K. Then there exists a unique
Zy-extension Ko, of K in K/ . We set I' = G(Ko/K).

Let K, be the n-th layer of K, over K, A, the p-
primary part of the ideal class group of K,,, B, = AL =
{c€ A, | ¢ =cforany o € I'}, B], the subgroup of
A,, consisting of ideal classes containing ideals invariant
under the action of G(K,,/K), and D,, the subgroup of
A,, consisting of classes which contain an ideal, all of
whose prime factors lie above p. Note that the definition
of D,, here is different from that in [Greenberg 76]. If
m > n, we can define a homomorphism %y, ,, : A, = Ay,
by sending the ideal class cl(a) to cl(aDk,,) for any ideal
a of K,,. We set H, ,, = Keri, . We also define a ho-
momorphism Ny, , : Ay, — A, by sending the ideal class
cl(a) to cl(Ny,, /k, (a)) for any ideal a of K,,. Moreover,
we denote by A, and p, the Iwasawa invariants of the
Zy-extension Ko /K. It is well known that u, = 0 by
[Gillard 85] and [Schneps 1987]. On the other hand, few
results are known about A,.

We concentrate our attention on the case where p is
totally ramified in K. If hg is prime to p, then A\, =0
by Iwasawa’s theorem [Iwasawa 56]. So we are interested
in the case Ay # 0. We first note that the order of B, is
explicitly known because K has no nontrivial units. The
following lemma is the direct consequence of the genus
formula ([Yokoi 1967]).

Lemma 2.1. Assume that p is totally ramified in K
over K. Then, |By| = |Ao| for alln > 0.

The following proposition is the fundamental criterion
for A, = 0. Though the proof is essentially the same as

in [Greenberg 76, Theorem 2], we include a proof as a
convenience.

Proposition 2.2. Assume that p is totally ramified in K
over K. Then p, = A\, = 0 if and only if B, = D,, for
some integer n > 0.

Proof: Assume B, = D,, and let m > n. Since the prime
of k,, lying over p is totally ramified in k,,, both Ny, ,, :
A, — A, and N, ,, : Dy, — D, are surjective. Then
Lemma 2.1 implies the injectivity of Ny, ,, : By, — By
and hence, the injectivity of N, : A, — A,, which
means |A,,| = |An|. Hence, p, = Ay = 0. Conversely,
assume f, = Ap = 0. Then Ay = Hy,, for some n > 0
([Greenberg 76, Proposition 2]). Hence, the genus for-
mula yields B,, = B}, = i9.n(A0)Dyn = Dy, O

Corollary 2.3. Assume that p is totally ramified in Ko
over K. Then u, = A, = 0 if and only if every ideal
class of Ay becomes principal for some n > 0. [Minardi
86]

Proof: Assume Ay = H,, for some n > 0. Then the
genus formula yields B, = B, = ion(40)Dy = D,.
Hence, up, = A, = 0 by Proposition 2.2. The converse
is a part of [Greenberg 76, Proposition 2]. |

As an application of Proposition 2.2, we have the fol-
lowing proposition. We note that for Proposition 2.4,
tp = Ap = 0 even when p is not totally ramified in K.

Proposition 2.4. If hx = p, then p, = A\, = 0.

Proof: If the initial layer K7 of K, over K is the ab-
solute class field of K, then A, = 0 by the genus formula.
Assume that p is totally ramified in K. Since hx = p,
there exists a prime number ¢ with ¢ = 3 (mod 4) such
that K = Q(y/—q). Let x be a Dirichlet character asso-

ciated to K. Then, since (_Tl) = —1, we have

p = hx= $ZX(V)V = %Z(x(u)y —x(v)(g—))
1 & = L
P RCEAVEND WIREIEEC LR

We assume that p is a principal ideal of K. Then there
exist integers z,y € Z with p = (%ﬂ), which implies
that p = % < %. This is a contradiction. Hence,
we have Dy = Ag, and thus p, = A\p = 0 by Proposition
2.2. |

LS
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In Sections 4 and 5, we apply Proposition 2.2 and
Corollary 2.3 for K, constructed explicitly by computer
when p = 3. For that, the discriminant d(K,,) of K, is
needed.

Lemma 2.5. d(K,,) = P G

)+nd(K0)p”
Proof: Apply the conductor-discriminant formula for
K, /K. |

3. CONSTRUCTION OF K,

We use the same notation as in Section 2. We explain
a method for constructing K, using complex multipli-
cation for an odd prime number p and an imaginary
quadratic field K different from Q(v/—1) and Q(v/=3).
It is well known that an abelian extension of an imagi-
nary quadratic field is generated by a special value of the
j-function, but the j-function produces polynomials with
huge coefficients and is not useful in actual computations.
There are several methods to find polynomials which gen-
erate a ray class field of an imaginary quadratic field and
have small coefficients using Weber function or Weier-
strass o-function ([Schertz 97|, [Stevenhagen 2001]). We
shall provide a similar, but slightly different, approach
using Siegel functions.

First we define Siegel functions: Let a1, as be rational
numbers and 7 a complex number with positive imagi-
nary parts. The Siegel functions are defined by

glar,az)(7) = —gfH/ed -t UO) amioa(an-1/2(1 _ g )

(1-qPq.)(1—qrq;t),

::18

n=1

2mwiT 2miz

where ¢, = e ,q, = € and z = a17 + as. Then
g(a1,a2)(7) is a modular function of some level and K,
is generated using special values of g.

Let I, be the subgroup of I generated by the ideals
which are prime to p. We put Spn = {(a) € Pk |a =1
(mod p™) }. Let C be an element of the ray class group
I,/Spn+1. We call C a ray class modulo p"** in K. Let
¢ be an ideal of C and denote C by cl,41(c). Then there

exist elements wq, wy in K with Im(wy /wz) > 0 such that

p"tle! = Zwi+Zws. Since (p) = pp, there exist integers
rsEZWmh w1+ wz—l We set
B r s w1201
gp"+1 (C) - g(pn+17pn+1) (W_Q) )

which depends only on C by [Kubert and Lang 81,
page 33, Proposition 1.3]. Then gyni1(C) is in K, =

K(p™*1) by [Kubert and Lang 81, page 234, Theorem
1.1] and (gpn+1(C)) = p/S?" ™" by [Kubert and Lang 81,
page 246, Theorem 3.2], where p], is the prime ideal of
K! lying over p. Let S be a ray class modulo p"*! in K.
Then we have

!
K! /K

gy (O) ) = g (50)
by [Kubert and Lang 81, page 234, Theorem 1.1], where

(KL‘S/ K) is the Artin symbol of S. In particular, if we set
_ (KL/K
O’—( T ),then

o_ (T(L+p) s(1+p)y wr)2™
gpn+1(C)7 = g< prtl 0 pntl ) (w_2>
We use the following lemmas for our computation.

Lemma 3.1. Let clo(ay), clo(az), ---, clo(a,) be genera-
tors of Ao, p > 1 the order of clo(a;) and K the ab-
solute class group of K. We suppose that there exists an
element «; in O with o * = (oy), such that o; = 1
(mod p®itY). Then K N K, = K and there exist ideals
aj, ab, -, al of K with clg(a;) = clo(a}), such that the
orders of cl,1(al) are p®, respectively.

Proof: Since o;; = 1 (mod p™!) and since (1 + p)Syn+1
is a generator of Sp/Syn+1, there exists an integer s € Z
with (1+p)?" " a; =1 (mod p"t1). We put a; = a;(1 +
p)°. Then clp(a;) = clo(a}) and the order of cl,y1(a}) is
p®. If the order m of cly(a) is prime to p for some ideal
a, then there exists an integer a of K such that the order
of clpy41(a(a)) is m. This shows that KN K, =K. O

Lemma 3.2. Let Cy be the ray class of modulo p™+1 with

Co=cly11(Ok), o= (Elé-/TK) the Artin symbol and set

a = Ng: /K, <gp”+1 (00)1_0)

Then there exists a unique element 3 of K,, with 3P
a such that K,, = K (). Furthermore, 3 is a unit of K,

n+1

Proof: Let w; and wo be a basis of p”*! over Z with
Im(wy/we) > 0. Then there exist integers r, s € Z, such

r
that — w1 + —Fws = 1. Hence we have
pnt

gpn+1(Co) = g<#,#> <Z_;>12p
and
g (el (1 41))Co) =
(T(l +p) s(1 —|—p)><

pn+1 pn+1

w2

)12pn+1
y .
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Since the quotient

$00= (o ) ) o (P2, 2D )

2n+2

of Siegel functions is a modular function of level p
whose g¢-expansion at oo has coefficients in Z[(p2n],
f(wi/we) is in K(p**2) by [Stark 1980, Theorem 3].
We assume a = f(w;/w2)??" € K(p"t!) and X? — a
is irreducible over K(p"*t1). Since K (p™*1)(f(w1/w2))
is an abelian extension of K, we have K(p"™') &
K1) () € K@E™)(f(wi/w)®" ") since ¢, ¢
K(pntl). This is a contradiction. Hence, we have
flwi/w2)3¢ € K(p™*1) for some p"+1-th root of unity .
Moreover, we have f(w;/w2)¢’ € K(p"™!) for some
3p"*1-th root of unity ¢’ since (3 ¢ K(p™+1). O

We now make some comments about the numerical
calculation of Siegel functions. Let ¢ be an ideal of a ray
class C. We choose a basis {w1, wa} of p"Tlc™! so that
w1 /wa belongs to the fundamental domain for SLy(Z) for
rapid convergence of g(ai, az)(wi/wz). It is also impor-
tant to adjust a; so that 0 < a; <1 by

g(a1 +n1, az +n2)(7) =

(b ) gy, a) () (n; € 2)

4. COMPUTATION OF K,

For p = 3 and several Ks, we constructed K; and Ks ex-
plicitly by computer and examined whether Hy, = Ao
and whether B,, = D,. Since all the computational
difficulties lie in K5, we explain how we pursued the
computations concerning K>. A typical example will re-
veal the essential features of the computation. We take
K = Q(v/—5219), p = Z3 + Z*52212 and explain sev-
eral techniques which were needed for our computation.

4.1 Construction of K,

First we note that hx = 24 and p is totally ramified in
K. Set

~ r s w1 43r 4\ rwn 4

1i(e) = (9<2—7’2—7) <w_2)/9<2_7’ﬁ)(w_2)>
with an ideal ¢ of K and 1 < j < 8, where p3¢~! =
Z wq +7Z wy and rw; + swe = 27. Note that E(c) depends
only on ¢. Let Cy = cl3(Ok) and ¢y, ¢a, -+, c24 be rep-
resentatives of I /Py such that ¢?* = (v;) with 47 =
(mod p*). Then we see that

24
Ny ia(993(Co) =) = [ ] £i(e)®,
=1

where o = (%) Set
24
B; = a1 [[ £i(e)
i=1

with a 81*% root of unity (s;. Lemma 3.2 implies that £3;
is contained in K5 if we choose a suitable (g; for each j.
We determine (g1 so that the coefficients of

8

[Tex -2 x - 577),

=0

which is the minimal polynomial of 3; over Q, are close
to rational integers, where J is the complex conjugation
and the action of o for (g; is given by (g = (6. As a
result of these computations, we get (31 = 1 for each j.

Next we verify computationally that one of the 4"
roots of each §; is contained in K, (4.5). We put € =
/B;. Then ¢ is a unit of Ky and the minimal polynomial
f(X) of £ over Q has the least discriminant among {/}3;.
Even though the coefficients of f(X) are large, we show
f(X) completely for readers who are interested in this
type of computation:

f(X) =X —2737X'7 4 169351307431.X 16

+ 3928242055446129X 1° + 1116673438382601450882.X 14
— 797848048872200987503002.X 3

+ 14260371350698925012657372513 X 12

+ 6727443351204545237345329632872X 1!

+ 915274675664831410074802593822617X 10

+ 1633312619603207976653110097584811 X °

+ 1123545275437128223875406900453517X

— 433121476304848342832840903771975X 7

+ 23565623970778493517049315349313 X °

+ 1799278132239867573207777918138 X5

+ 31191572789333418743352081696 X *

— 9611439809099451726571366.X >

4 1427400245427766872971X % 4 74348908961X + 1.

4.2 Integral Basis of K>

Now we compute an integral basis of Ky over Z. We first
try using KASH or PARI, however these packages cannot
compute an integral basis due to the huge discriminant
of f(X). So we construct O, in the following way.

We start with Z[e]. By Lemma 2.5, we see that

(Ok, : Z[e]) = ~2.1-10%%,
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Namely Z[e] is a very small submodule of Ok,. We can
enlarge Z[e| dramatically by adding a conjugate of £. Set
My = Z[e] + Ze®. Then (D, : M) = 3°%. Next we set

M, = Z[e] + ZZW_J-‘”.
,J

Then we have (O, : M) = 3. Now we examine whether

6a0+a10'+a20'2+"'+0«70'7

is a cube in K> for integers 0 < a; < 2 using a method
which will be explained in Section 4.5. We find that

€1 = \9/€2+70'+60'2+80’3+40'4+30'5+50'6+0'7

is contained in K.
yielding O g, = Ms.

Finally we set M3 = My + Zeq,

4.3 Unit Group of K,

The next task is a construction of the unit group Ek, of
K. For all practical purposes, we only need a subgroup
E’ of Ek, with finite index prime to 3.

We start with E = (g, &7, -+, g’ ). In many cases,
E becomes a subgroup of Ex, with a finite index. If the
index is infinite, we add {‘/E to F and obtain a subgroup
of finite index. It is easy to enlarge E to E’ with an index
prime to 3, because Fk, has a small free rank 8.

In the case K = Q(v/—5219), we see that E' =
(g,e%, -+, 5”6, 1) is a subgroup whose index is prime
to 3.

4.4 D2 and H0,2

As we have seen in the proof of Corollary 2.3, Hy ,, = Ap
imples B, = D,,. Hence, the calculation of Hy, is not
needed to verify that A\, = 0. But we are interested in
the least n which satisfies the equalities Hy, = Ap or
B, = D,,.

We present a method which is applicable to the case
|Ag| = 3. It is easy to modify this for other cases. If
|Do| = 3, then A3 = 0 from Proposition 2.2.
assume |Dg| = 1.

Let p" = (a) with &/ = hx /3 and let 4y = (cl(q))
with q® = (B). Furthermore, let E' = (&, €9, -+ , €8 )
be a subgroup of Ex, with index prime to 3. Then we can
determine |Ds| and |Hy 2| using the following lemmas.

So we

Lemma 4.1. If

(4-1)

is contained in Ko for some 0 < e; < 8, then |Ds| = 1.
Otherwise, |Ds| = 3.

Lemma 4.2. If

8 1/3
(811=) (4-2)
i=1
is contained in Ko for some 0 < e; <2, then |Hp 2| = 3.
Otherwise, |Hop 2| = 1.

Remark 4.3. The number of trials for Lemma 4.2 is at
most 38. We note that the number of trials for Lemma
4.1 is not 98. We can reduce it to 2 - 3% by expressing
ei=¢€0+3e1 (0<e,; <2).

For an integer « of K», we can get /a explicitly if it is
contained in K5 by a method explained in the next para-
graph. But this method requires a factorization of poly-
nomials whose calculation needs a few seconds. There-
fore, we will need several hours for the calculation given
in Lemma 4.2. We use the next lemma to avoid wasteful
trials.

Lemma 4.4. Let {{1, la, ..., L.} be a finite set of prime
numbers which split completely in Ko and take rational

integers a; and a;j, such that § = a; (mod l;) and ¢; =
a;; (mod l;), where l; is a prime factor of £; in Ky. If

8
a; H CLZ + ij
i=1

is not a cube in (Z/{;Z)* for some j, then (4-2) is not
contained in K.

We use a similar criterion for (4-1) and also for F’.

4.5 Cubic Root

We explain how to calculate &/« for an integer o of Ko.
We need a submodule of Ok, with small index (e.g.,
M, Ms in (4.2)). Though a submodule of small index is
enough for our purpose, we explain using O, for sim-
plicity.

Let {vy, v, --+, v1g } be an integral basis of Ky. If
Yo € K,, then we can get the coefficients of /a by
solving approximately simultaneous equations:

18
>zl = Var  (p € Emb(K,,C)). (4-3)
i=1

If (4-3) does not have integral solutions, then /o &
K,. This is a well-known method; it works well in the
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m hi || [Hoal| | |D1] || [Hoz| | |D2] || As
—2081 60 1 3 3 3 0
—2138 42 1 1 1 3 0
—2183 42 1 1 1 1 ?
—2186 42 1 3 3 3 0
—3206 60 1 1 1 3 0
—-3614 60 1 3 3 3 0
—4574 96 1 1 1 3 0
—4637 78 1 1 1 1 ?
—4835 30 1 3 3 3 0
—5219 24 1 1 1 3 0
—5579 30 3 3 3 3 0
—5813 78 1 3 3 3 0
—5897 48 1 1 1 3 0
—6077 48 1 1 1 3 0
—6269 | 114 1 3 3 3 0
—6761 | 132 1 1 1 1 ?
—6983 57 1 3 3 3 0
—7862 78 1 3 3 3 0
—7907 21 1 1 1 1 ?
—8459 42 1 3 3 3 0
—-9113 96 3 3 3 3 0

TABLE 1. Ay = Z/3Z.

totally real case. However, in our case, since K> is totally
imaginary, we have to consider a difference by cubic root
of unity for each ¢/a?. Namely, we need 3'® trials, which
is computationally intensive even for a modern computer.

We use the following method. First, we construct the
minimal polynomial f(X) of a over Q. The degree of
f(X) is often 18. Next we factorize f(X?3). If it is ir-
reducible over Q, then /o ¢ Ks. If f(X3) has a factor
g(X) of degree 18, then ¢/a € K. Furthermore, we
choose approximate values of ¥/a? so that g(/ar) = 0
and get coefficients of &/« by solving (4-3).

5. EXPERIMENTATION FOR p = 3

We show the result of the calculations which we have
done in the case p = 3. Let K = Q(y/m ) with negative
square free integer m. There exist 2282 m in the range
—10000 < m < 0 such that (4-3) splits into pp in K.
The distribution of m is as follows:

number of m A3

|Aol =1 1483 0

hy,=3 4 0

hy >3, A0 =3 522 ?
|Ao] =9 214 ?

|Ao| = 27 51 ?

|Ap| = 81 8 ?

If |Ag| =1 or hx = 3, then A3 = 0. So we concentrate
our attention on 522 m where hx > 3 and |Ag| = 3. Let
Ao = (cl(q)) with g® = (8). Then p is totally ramified in
K ifand only if 3% = 1 (mod p?). When p is unramified
in K1 /K, the genus formula implies |A, | = 1 for alln > 1
and consequently A3 = 0. Furthermore, when p is totally
ramified in K, then |Ag| = |Dy| implies A3 = 0. The
situation is summarized in the following table.

P number of m A

unramified in Ky 398 0
totally ramified in Ko, |Do| = 3 103 0
totally ramified in Koo, |Do| =1 21 ?

The number of targets for our experiments is 21. We
show the results of the calculations for K7 and K5 in Ta-

>
&

m hK

—T7265| T2
—17786 | 234
—19238 | 90
—19466 | 234
—19862 | 126
—23231| 234
—23666 | 180
—29402 | 144
—34319 | 279
—39335 | 198
—41927 | 171
—43415 | 144
—45893 | 126
—48266 | 198
—48470 | 144
—50846 | 360
—54602 | 180
—55067 | 90
—65105 | 288
—70223 | 315
—76307| 72
—76469 | 396
—78341 | 306
—82442 | 342
—83147| 72
—85019 | 144
—88709 | 360
—91895 | 288
—92654 | 396
—94631 | 414
—97946 | 414
—98009 | 252
—99041 | 504

C,OP—‘P—‘OJP—‘P—‘COOJOJP—‘COCOOJP—‘OJCOCOCOOJP—‘COCOCOP—‘OJOJCOCOOJOJOJCOCOE
c,or—tr—\r—\»—t»—t»—tr—\r—\r—\»—Acor—\oor—\»—Aco»—tr—\r—\»—tr—tr—toor—\oo»—A»—Ar—\r—\r—\w»—ASE
www@ww@@@w@w@w@@@@@w@@@w@w@@@@@w@5
c'.o»—w—xco»—n»—nwwcor—xw@w@wwwww»—xwwwwwwwwwwwwwﬁE
@@:oco@@@coco@@@@@@@@@@@@@@@@@@@@@@w@NE
[eNeNeoleleNeleleolNeoleoNeoNeoNoNoNoleololoBoNeoNeoNeoNeoNeoNeoNeoNoNoeNoeNeNe R e

TABLE 2. Ay = Z/9Z.
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ble 1, which seem to support a positive answer to Prob-
lem 1.1.

Our next trial is an experiment for K with |Ag| = 9.
Since the treatment for K with noncyclic Ay is delicate,
we restricted our targets to cyclic cases. There exist 197
m such that Ay = Z/97Z and p is totally ramified in K
in the range —100000 < m < 0. We see A3 = 0 for 164 m
verifying that |Dg| = 9. Data for the 33 m with |Dy| < 3
is summarized in Table 2. This also suggests a positive
answer to Problem 1.1.

Remark 5.1. Problem 1.1 is related to GGC (Generalized
Greenberg Conjecture). Indeed, Minardi proved that if
p is totally ramified in Ko/K and A, = 0, then GGC
holds for K ([Minardi 86|, [Ozaki 01]). So our examples
are also examples for which GGC holds.

All the calculations in this paper were done by
TC, which is available from ftp://tnt.math.metro-
u.ac.jp/pub/math-packs/tc/. The Alpha 21264 667 MHz
needed 2 minutes for m = —5219, which is the easiest and
114 minutes for m = —99041, which is the hardest.

It is a natural question to ask the growth of the order
of A,, in the cases of Table 1 and 2. PARI succeeded in
computing A; for small m. We report that |A;| = 9 for
all K in Table 1. It is difficult to compute Az or |As|
using PARI. Note that the proof of Lemma 2.2 implies
|An| =9 (n>1) for K in Table 1 with |D;| = 3.
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